Now the axes are displayed correctly at the tip of the bone and with the
axes names.
I've made some modifications though:
- Axes are colored. (should not be in object mode but that's TODO)
- Axes ends are not flat arrows anymore. Replaced with a small diamond.
- Axes names are now scale by their respective axes instead of being
affected by other axes.
- Changed axes names "font" to be a bit more sexy.
This will enable us to do more nice stuff in future commits.
This commit is a temporary commit, it will compile but will crash if
trying to display any armature. Next commit does work.
The actual weighting calculation is not smooth as the bone display.
The bone itself can be smooth for esthetic purpose but the distance display
should match the underlying weighting formula.
Past shader was too slow and had bad artifacts. This method is much simpler
and eficient and only exhibit some popping when the raidus of the head/tail
is changed.
We now use a more pleasant and efficient way to display enveloppe bones
and their radius.
For this we use a capsule geometry that is displaced (in the vertex shader)
to a signed distance field that represents the bone shape.
The bone distance radius are now drawn in 3D using a "pseudo-fresnel" effect.
This gives a better understanding of what is inside the radius of influence.
When capsules are not needed, we switch to default raytraced points.
The capsules are not distorded by the bone's matrix (same as their actual
influence radius) and are correctly displayed even with complex scaled
parents hierarchy.
Here is how it works:
We render a high poly disc that we orient & scale towards the camera so that
it covers the same pixel of the sphere it's supposed to represent.
Then the pixel shader raytrace the sphere (effectively starting from
the poly disc depth) and outputs the depth to gl_FragDepth.
This approach has many benefit:
- high quality obviously: per pixel accurate depth!
- compatible with MSAA: since the sphere horizon is delimited by polygons,
we get the coverage computed by the rasterizer. However we still gets
aliasing if the sphere intersect directly other meshes.
- virtually no overdraw: there is no backface to shade but we still get
overdraw because by little triangle [gpus rasterize pixel by groups of 4].
- allows early depth test: since the poly disc is set at the nearest depth
we can output, we can use GL_ARB_conservative_depth to enable early depth
test and discard pixels that are already behind geometry.
- can draw outline pretty easily without geometry shader.
This fix the issue with the zfighting we were getting at bones edges.
Moreover, this enables us to render arbitrarly large outline with
varying thickness.
- Removed the depth pass as it will reuse the depth pass of the render
engine
- Used gl_FrontFacing to determine the facing
- Blender the result with the render engine result
Implemented the face orientation overlay for testing.
Overlay mode is only drawn when there are overlays to be rendered.
The overlay mode is rendered before the object mode.
This is by default. We can still enable the thicker outlines for high dpi
screens or personnal preference but it's not used atm. This also improve
the performance removing 1/3 of the outline cost.
This changes quite a few things.
- Outline is now per object.
- No more outline at object intersection (fix hairs problem).
- Simplify the code quite a bit.
We use a R16UI buffer to save one id per object outline. We convert this id
to color when detecting the outline.
Added textureGatherOffsets to the code but could not test on current hardware
so leaving it commented for now.
This module has no use now with the new DrawManager and DrawEngines and it
is using deprecated paths.
Moving gpu_shader_fullscreen_vert.glsl
to draw/modes/shaders/common_fullscreen_vert.glsl
This leads to less lookups to the GWNShaderInterface and less uniform upload.
We still keep a legacy path so that Builtin uniforms can still work. We might restrict this path to Builtin shader only in the future.
This adds a custom depth test that have the benefits to glitch less and be more visually pleasing.
Downside is that it let the grid pass trough the objects a little.
This effect is done in NDC space so that it counteract the logarithmic depth distribution imprecision (read as it's less visible near the camera but more present far away).
This patch also includes some cleanups.
This required some small changes to the data display shaders so that they match the way the object mode renders them.
Strangely enough, I had to remove the normal attribute from the display code because it was being not bound as soon as I created another rendering call in object mode. The problem may be deeper but I did not have time for this so I derive the normal from the sphere pos.
Adds a FXAA for smoothing out the extracted outlines.
The Post Process Anti Aliasing is only done on the Alpha channel of the outlines.
Because of that we need to add bleed the outline color out of the silouhette so the AA'd alpha can blend the right color and not pick black when the alpha is smoothed out of the silhouette.
Also because of the AA needs to have clear contrast to work with, I decided to ditch the "bluring" or the occluded outlines.
The FXAA adds an overhead of 0.17ms but we gain back 0.22ms * 4 = 0.88ms by removing the blur.
The FXAA Implementation is from Corey Richardson (cmr) (D2717). I had to modify it a bit to only filter the alpha channel.
This introduce some little artifacts on the border of edges because some pixel with very low opacity does not get discarded and then occlude the face rendered behind if it has not been drawn yet.
To fix this. I added an offset in the geometry shader for the edge fixup. This make the artifact only visible on the border of the object if there is a very dense wire region. It's only visible in edge select mode since vertex and face center also hides the artifacts.
We can enable this only if AA is enabled but for now it's always enabled.