This moves all multi-function related code in the `functions` module
into a new `multi_function` namespace. This is similar to how there
is a `lazy_function` namespace.
The main benefit of this is that many types names that were prefixed
with `MF` (for "multi function") can be simplified.
There is also a common shorthand for the `multi_function` namespace: `mf`.
This is also similar to lazy-functions where the shortened namespace
is called `lf`.
Previously, the lifetimes of anonymous attributes were determined by
reference counts which were non-deterministic when multiple threads
are used. Now the lifetimes of anonymous attributes are handled
more explicitly and deterministically. This is a prerequisite for any kind
of caching, because caching the output of nodes that do things
non-deterministically and have "invisible inputs" (reference counts)
doesn't really work.
For more details for how deterministic lifetimes are achieved, see D16858.
No functional changes are expected. Small performance changes are expected
as well (within few percent, anything larger regressions should be reported as
bugs).
Differential Revision: https://developer.blender.org/D16858
When these declarations are built without the help of the special
builder class, it's much more convenient to set them directly rather
than with a constructor, etc. In most other situations the declarations
should be const anyway, so theoretically this doesn't affect safety too
much. Most construction of declarations should still use the builder.
Whenever a node group is entered during evaluation, a new compute
context is entered which has a corresponding hash. When node groups
are entered and exited a lot, this can have some overhead. In my test
file with ~100.000 node group invocations, this patch improves performance
by about 7%.
The speedup is achieved in two ways:
* Avoid computing the same hash twice by caching it.
* Invoke the hashing algorithm (md5 currently) only once instead of twice.
Geometry nodes used to log all socket values during evaluation.
This allowed the user to hover over any socket (that was evaluated)
to see its last value. The problem is that in large (nested) node trees,
the number of sockets becomes huge, causing a lot of performance
and memory overhead (in extreme cases, more than 70% of the
total execution time).
This patch changes it so, that only socket values are logged that the
user is likely to investigate. The simple heuristic is that socket values
of the currently visible node tree are logged.
The downside is that when the user changes the visible node tree, it
won't have any logged values until it is reevaluated. I updated the
tooltip message for that case to be a bit more precise.
If user feedback suggests that this new behavior is too annoying, we
can always add a UI option to log all socket values again. That shouldn't
be done without an actual need though because it takes up UI space.
Differential Revision: https://developer.blender.org/D16884
Previously, the code tried to keep node groups working even if some of
their input/output sockets had undefined type. This caused some
complexity with no benefit because not all places outside of this file
would handle the case correctly. Now node groups with undefined
interface sockets are disabled and have to be fixed manually before
they work again.
Undefined interface sockets are mostly caused by invalid Python
API usage and incomplete forward compatibility (e.g. when newer
versions introduce new socket types that the older version does
not know).
This patch adds an integer identifier to nodes that doesn't change when
the node name changes. This identifier can be used by different systems
to reference a node. This may be important to store caches and simulation
states per node, because otherwise those would always be invalidated
when a node name changes.
Additionally, this kind of identifier could make some things more efficient,
because with it an integer is enough to identify a node and one does not
have to store the node name.
I observed a 10% improvement in evaluation time in a file with an extreme
number of simple math nodes, due to reduced logging overhead-- from
0.226s to 0.205s.
Differential Revision: https://developer.blender.org/D15775
* Support bidirectional type lookups. E.g. finding the base type of a
field was supported, but not the other way around. This also removes
the todo in `get_vector_type`. To achieve this, types have to be
registered up-front.
* Separate `CPPType` from other "type traits". For example, previously
`ValueOrFieldCPPType` adds additional behavior on top of `CPPType`.
Previously, it was a subclass, now it just contains a reference to the
`CPPType` it corresponds to. This follows the composition-over-inheritance
idea. This makes it easier to have self-contained "type traits" without
having to put everything into `CPPType`.
Differential Revision: https://developer.blender.org/D16479
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
For consistency with other node systems in Blender and older
versions of geometry nodes, dangling reroute inputs should
not affect the output. When an input socket is linked to dangling
reroutes, its own value should be used instead.
This adds support for showing geometry passed to the Viewer in the 3d
viewport (instead of just in the spreadsheet). The "viewer geometry"
bypasses the group output. So it is not necessary to change the final
output of the node group to be able to see the intermediate geometry.
**Activation and deactivation of a viewer node**
* A viewer node is activated by clicking on it.
* Ctrl+shift+click on any node/socket connects it to the viewer and
makes it active.
* Ctrl+shift+click in empty space deactivates the active viewer.
* When the active viewer is not visible anymore (e.g. another object
is selected, or the current node group is exit), it is deactivated.
* Clicking on the icon in the header of the Viewer node toggles whether
its active or not.
**Pinning**
* The spreadsheet still allows pinning the active viewer as before.
When pinned, the spreadsheet still references the viewer node even
when it becomes inactive.
* The viewport does not support pinning at the moment. It always shows
the active viewer.
**Attribute**
* When a field is linked to the second input of the viewer node it is
displayed as an overlay in the viewport.
* When possible the correct domain for the attribute is determined
automatically. This does not work in all cases. It falls back to the
face corner domain on meshes and the point domain on curves. When
necessary, the domain can be picked manually.
* The spreadsheet now only shows the "Viewer" column for the domain
that is selected in the Viewer node.
* Instance attributes are visualized as a constant color per instance.
**Viewport Options**
* The attribute overlay opacity can be controlled with the "Viewer Node"
setting in the overlays popover.
* A viewport can be configured not to show intermediate viewer-geometry
by disabling the "Viewer Node" option in the "View" menu.
**Implementation Details**
* The "spreadsheet context path" was generalized to a "viewer path" that
is used in more places now.
* The viewer node itself determines the attribute domain, evaluates the
field and stores the result in a `.viewer` attribute.
* A new "viewer attribute' overlay displays the data from the `.viewer`
attribute.
* The ground truth for the active viewer node is stored in the workspace
now. Node editors, spreadsheets and viewports retrieve the active
viewer from there unless they are pinned.
* The depsgraph object iterator has a new "viewer path" setting. When set,
the viewed geometry of the corresponding object is part of the iterator
instead of the final evaluated geometry.
* To support the instance attribute overlay `DupliObject` was extended
to contain the information necessary for drawing the overlay.
* The ctrl+shift+click operator has been refactored so that it can make
existing links to viewers active again.
* The auto-domain-detection in the Viewer node works by checking the
"preferred domain" for every field input. If there is not exactly one
preferred domain, the fallback is used.
Known limitations:
* Loose edges of meshes don't have the attribute overlay. This could be
added separately if necessary.
* Some attributes are hard to visualize as a color directly. For example,
the values might have to be normalized or some should be drawn as arrays.
For now, we encourage users to build node groups that generate appropriate
viewer-geometry. We might include some of that functionality in future versions.
Support for displaying attribute values as text in the viewport is planned as well.
* There seems to be an issue with the attribute overlay for pointclouds on
nvidia gpus, to be investigated.
Differential Revision: https://developer.blender.org/D15954
Previously, all implicit inputs where stored in a centralized place.
Now the information which nodes have which implicit inputs is
stored in the nodes directly.
In large node setup the threading overhead was sometimes very significant.
That's especially true when most nodes do very little work.
This commit improves the scheduling by not using multi-threading in many
cases unless it's likely that it will be worth it. For more details see the comments
in `BLI_lazy_threading.hh`.
Differential Revision: https://developer.blender.org/D15976
This reduces logging overhead. The performance difference is only
significant when there are many fast nodes. In my test file with many
math nodes, the performance improved from 720ms to 630ms.
The new evaluator crashes for multi-input sockets coming from undefined
nodes. The multi-input socket lazy node tries to retrieve the default
value since the undefined node never created output values. But there
is no default value stored because the socket is linked.
Differential Revision: https://developer.blender.org/D15980
This refactors the geometry nodes evaluation system. No changes for the
user are expected. At a high level the goals are:
* Support using geometry nodes outside of the geometry nodes modifier.
* Support using the evaluator infrastructure for other purposes like field evaluation.
* Support more nodes, especially when many of them are disabled behind switch nodes.
* Support doing preprocessing on node groups.
For more details see T98492.
There are fairly detailed comments in the code, but here is a high level overview
for how it works now:
* There is a new "lazy-function" system. It is similar in spirit to the multi-function
system but with different goals. Instead of optimizing throughput for highly
parallelizable work, this system is designed to compute only the data that is actually
necessary. What data is necessary can be determined dynamically during evaluation.
Many lazy-functions can be composed in a graph to form a new lazy-function, which can
again be used in a graph etc.
* Each geometry node group is converted into a lazy-function graph prior to evaluation.
To evaluate geometry nodes, one then just has to evaluate that graph. Node groups are
no longer inlined into their parents.
Next steps for the evaluation system is to reduce the use of threads in some situations
to avoid overhead. Many small node groups don't benefit from multi-threading at all.
This is much easier to do now because not everything has to be inlined in one huge
node tree anymore.
Differential Revision: https://developer.blender.org/D15914