This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/nodes/intern/geometry_nodes_lazy_function.cc
Jacques Lucke eedcf1876a Functions: introduce multi-function namespace
This moves all multi-function related code in the `functions` module
into a new `multi_function` namespace. This is similar to how there
is a `lazy_function` namespace.

The main benefit of this is that many types names that were prefixed
with `MF` (for "multi function") can be simplified.

There is also a common shorthand for the `multi_function` namespace: `mf`.
This is also similar to lazy-functions where the shortened namespace
is called `lf`.
2023-01-07 17:32:28 +01:00

2911 lines
110 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
/**
* This file mainly converts a #bNodeTree into a lazy-function graph. This generally works by
* creating a lazy-function for every node, which is then put into the lazy-function graph. Then
* the nodes in the new graph are linked based on links in the original #bNodeTree. Some additional
* nodes are inserted for things like type conversions and multi-input sockets.
*
* Currently, lazy-functions are even created for nodes that don't strictly require it, like
* reroutes or muted nodes. In the future we could avoid that at the cost of additional code
* complexity. So far, this does not seem to be a performance issue.
*/
#include "NOD_geometry_exec.hh"
#include "NOD_geometry_nodes_lazy_function.hh"
#include "NOD_multi_function.hh"
#include "NOD_node_declaration.hh"
#include "BLI_cpp_types.hh"
#include "BLI_dot_export.hh"
#include "BLI_hash.h"
#include "BLI_lazy_threading.hh"
#include "BLI_map.hh"
#include "DNA_ID.h"
#include "BKE_compute_contexts.hh"
#include "BKE_geometry_set.hh"
#include "BKE_type_conversions.hh"
#include "FN_field_cpp_type.hh"
#include "FN_lazy_function_graph_executor.hh"
#include "DEG_depsgraph_query.h"
namespace blender::nodes {
using fn::ValueOrField;
using fn::ValueOrFieldCPPType;
static const CPPType *get_socket_cpp_type(const bNodeSocketType &typeinfo)
{
const CPPType *type = typeinfo.geometry_nodes_cpp_type;
if (type == nullptr) {
return nullptr;
}
BLI_assert(type->has_special_member_functions());
return type;
}
static const CPPType *get_socket_cpp_type(const bNodeSocket &socket)
{
return get_socket_cpp_type(*socket.typeinfo);
}
static const CPPType *get_vector_type(const CPPType &type)
{
const VectorCPPType *vector_type = VectorCPPType::get_from_value(type);
if (vector_type == nullptr) {
return nullptr;
}
return &vector_type->self;
}
/**
* Checks which sockets of the node are available and creates corresponding inputs/outputs on the
* lazy-function.
*/
static void lazy_function_interface_from_node(const bNode &node,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs,
Vector<lf::Input> &r_inputs,
Vector<lf::Output> &r_outputs)
{
const bool is_muted = node.is_muted();
const bool supports_laziness = node.typeinfo->geometry_node_execute_supports_laziness ||
node.is_group();
const lf::ValueUsage input_usage = supports_laziness ? lf::ValueUsage::Maybe :
lf::ValueUsage::Used;
for (const bNodeSocket *socket : node.input_sockets()) {
if (!socket->is_available()) {
continue;
}
const CPPType *type = get_socket_cpp_type(*socket);
if (type == nullptr) {
continue;
}
if (socket->is_multi_input() && !is_muted) {
type = get_vector_type(*type);
}
r_inputs.append({socket->identifier, *type, input_usage});
r_used_inputs.append(socket);
}
for (const bNodeSocket *socket : node.output_sockets()) {
if (!socket->is_available()) {
continue;
}
const CPPType *type = get_socket_cpp_type(*socket);
if (type == nullptr) {
continue;
}
r_outputs.append({socket->identifier, *type});
r_used_outputs.append(socket);
}
}
/**
* Used for most normal geometry nodes like Subdivision Surface and Set Position.
*/
class LazyFunctionForGeometryNode : public LazyFunction {
private:
const bNode &node_;
public:
/**
* Index of a boolean input that indicates whether the output socket is used.
*/
Map<StringRef, int> lf_input_for_output_bsocket_usage_;
/**
* Index of an attribute set input that indicates which anonymous attributes should be
* propagated to the output.
*/
Map<StringRef, int> lf_input_for_attribute_propagation_to_output_;
LazyFunctionForGeometryNode(const bNode &node,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs)
: node_(node)
{
BLI_assert(node.typeinfo->geometry_node_execute != nullptr);
debug_name_ = node.name;
lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_);
const NodeDeclaration &node_decl = *node.declaration();
const aal::RelationsInNode *relations = node_decl.anonymous_attribute_relations();
if (relations == nullptr) {
return;
}
Vector<const bNodeSocket *> handled_field_outputs;
for (const aal::AvailableRelation &relation : relations->available_relations) {
const bNodeSocket &output_bsocket = node.output_socket(relation.field_output);
if (output_bsocket.is_available() && !handled_field_outputs.contains(&output_bsocket)) {
handled_field_outputs.append(&output_bsocket);
const int lf_index = inputs_.append_and_get_index_as("Output Used", CPPType::get<bool>());
lf_input_for_output_bsocket_usage_.add(output_bsocket.identifier, lf_index);
}
}
Vector<const bNodeSocket *> handled_geometry_outputs;
for (const aal::PropagateRelation &relation : relations->propagate_relations) {
const bNodeSocket &output_bsocket = node.output_socket(relation.to_geometry_output);
if (output_bsocket.is_available() && !handled_geometry_outputs.contains(&output_bsocket)) {
handled_geometry_outputs.append(&output_bsocket);
const int lf_index = inputs_.append_and_get_index_as(
"Propagate to Output", CPPType::get<bke::AnonymousAttributeSet>());
lf_input_for_attribute_propagation_to_output_.add(output_bsocket.identifier, lf_index);
}
}
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
GeoNodeExecParams geo_params{node_,
params,
context,
lf_input_for_output_bsocket_usage_,
lf_input_for_attribute_propagation_to_output_};
geo_eval_log::TimePoint start_time = geo_eval_log::Clock::now();
node_.typeinfo->geometry_node_execute(geo_params);
geo_eval_log::TimePoint end_time = geo_eval_log::Clock::now();
if (geo_eval_log::GeoModifierLog *modifier_log = user_data->modifier_data->eval_log) {
geo_eval_log::GeoTreeLogger &tree_logger = modifier_log->get_local_tree_logger(
*user_data->compute_context);
tree_logger.node_execution_times.append({node_.identifier, start_time, end_time});
}
}
std::string input_name(const int index) const override
{
for (const auto [identifier, lf_index] : lf_input_for_output_bsocket_usage_.items()) {
if (index == lf_index) {
return "Use Output '" + identifier + "'";
}
}
for (const auto [identifier, lf_index] :
lf_input_for_attribute_propagation_to_output_.items()) {
if (index == lf_index) {
return "Propagate to '" + identifier + "'";
}
}
return inputs_[index].debug_name;
}
std::string output_name(const int index) const override
{
return outputs_[index].debug_name;
}
};
/**
* Used to gather all inputs of a multi-input socket. A separate node is necessary because
* multi-inputs are not supported in lazy-function graphs.
*/
class LazyFunctionForMultiInput : public LazyFunction {
private:
const CPPType *base_type_;
public:
LazyFunctionForMultiInput(const bNodeSocket &socket)
{
debug_name_ = "Multi Input";
base_type_ = get_socket_cpp_type(socket);
BLI_assert(base_type_ != nullptr);
BLI_assert(socket.is_multi_input());
const bNodeTree &btree = socket.owner_tree();
for (const bNodeLink *link : socket.directly_linked_links()) {
if (link->is_muted() || !link->fromsock->is_available() ||
nodeIsDanglingReroute(&btree, link->fromnode)) {
continue;
}
inputs_.append({"Input", *base_type_});
}
const CPPType *vector_type = get_vector_type(*base_type_);
BLI_assert(vector_type != nullptr);
outputs_.append({"Output", *vector_type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
/* Currently we only have multi-inputs for geometry and string sockets. This could be
* generalized in the future. */
base_type_->to_static_type_tag<GeometrySet, ValueOrField<std::string>>([&](auto type_tag) {
using T = typename decltype(type_tag)::type;
if constexpr (std::is_void_v<T>) {
/* This type is not supported in this node for now. */
BLI_assert_unreachable();
}
else {
void *output_ptr = params.get_output_data_ptr(0);
Vector<T> &values = *new (output_ptr) Vector<T>();
for (const int i : inputs_.index_range()) {
values.append(params.extract_input<T>(i));
}
params.output_set(0);
}
});
}
};
/**
* Simple lazy-function that just forwards the input.
*/
class LazyFunctionForRerouteNode : public LazyFunction {
public:
LazyFunctionForRerouteNode(const CPPType &type)
{
debug_name_ = "Reroute";
inputs_.append({"Input", type});
outputs_.append({"Output", type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
void *input_value = params.try_get_input_data_ptr(0);
void *output_value = params.get_output_data_ptr(0);
BLI_assert(input_value != nullptr);
BLI_assert(output_value != nullptr);
const CPPType &type = *inputs_[0].type;
type.move_construct(input_value, output_value);
params.output_set(0);
}
};
/**
* Lazy functions for nodes whose type cannot be found. An undefined function just outputs default
* values. It's useful to have so other parts of the conversion don't have to care about undefined
* nodes.
*/
class LazyFunctionForUndefinedNode : public LazyFunction {
public:
LazyFunctionForUndefinedNode(const bNode &node, Vector<const bNodeSocket *> &r_used_outputs)
{
debug_name_ = "Undefined";
Vector<const bNodeSocket *> dummy_used_inputs;
Vector<lf::Input> dummy_inputs;
lazy_function_interface_from_node(
node, dummy_used_inputs, r_used_outputs, dummy_inputs, outputs_);
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
params.set_default_remaining_outputs();
}
};
/**
* Executes a multi-function. If all inputs are single values, the results will also be single
* values. If any input is a field, the outputs will also be fields.
*/
static void execute_multi_function_on_value_or_field(
const MultiFunction &fn,
const std::shared_ptr<MultiFunction> &owned_fn,
const Span<const ValueOrFieldCPPType *> input_types,
const Span<const ValueOrFieldCPPType *> output_types,
const Span<const void *> input_values,
const Span<void *> output_values)
{
BLI_assert(fn.param_amount() == input_types.size() + output_types.size());
BLI_assert(input_types.size() == input_values.size());
BLI_assert(output_types.size() == output_values.size());
/* Check if any input is a field. */
bool any_input_is_field = false;
for (const int i : input_types.index_range()) {
const ValueOrFieldCPPType &type = *input_types[i];
const void *value_or_field = input_values[i];
if (type.is_field(value_or_field)) {
any_input_is_field = true;
break;
}
}
if (any_input_is_field) {
/* Convert all inputs into fields, so that they can be used as input in the new field. */
Vector<GField> input_fields;
for (const int i : input_types.index_range()) {
const ValueOrFieldCPPType &type = *input_types[i];
const void *value_or_field = input_values[i];
input_fields.append(type.as_field(value_or_field));
}
/* Construct the new field node. */
std::shared_ptr<fn::FieldOperation> operation;
if (owned_fn) {
operation = std::make_shared<fn::FieldOperation>(owned_fn, std::move(input_fields));
}
else {
operation = std::make_shared<fn::FieldOperation>(fn, std::move(input_fields));
}
/* Store the new fields in the output. */
for (const int i : output_types.index_range()) {
const ValueOrFieldCPPType &type = *output_types[i];
void *value_or_field = output_values[i];
type.construct_from_field(value_or_field, GField{operation, i});
}
}
else {
/* In this case, the multi-function is evaluated directly. */
mf::ParamsBuilder params{fn, 1};
mf::ContextBuilder context;
for (const int i : input_types.index_range()) {
const ValueOrFieldCPPType &type = *input_types[i];
const void *value_or_field = input_values[i];
const void *value = type.get_value_ptr(value_or_field);
params.add_readonly_single_input(GPointer{type.value, value});
}
for (const int i : output_types.index_range()) {
const ValueOrFieldCPPType &type = *output_types[i];
void *value_or_field = output_values[i];
type.self.default_construct(value_or_field);
void *value = type.get_value_ptr(value_or_field);
type.value.destruct(value);
params.add_uninitialized_single_output(GMutableSpan{type.value, value, 1});
}
fn.call(IndexRange(1), params, context);
}
}
/**
* Behavior of muted nodes:
* - Some inputs are forwarded to outputs without changes.
* - Some inputs are converted to a different type which becomes the output.
* - Some outputs are value initialized because they don't have a corresponding input.
*/
class LazyFunctionForMutedNode : public LazyFunction {
private:
Array<int> input_by_output_index_;
public:
LazyFunctionForMutedNode(const bNode &node,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs)
{
debug_name_ = "Muted";
lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_);
for (lf::Input &fn_input : inputs_) {
fn_input.usage = lf::ValueUsage::Maybe;
}
for (lf::Input &fn_input : inputs_) {
fn_input.usage = lf::ValueUsage::Unused;
}
input_by_output_index_.reinitialize(outputs_.size());
input_by_output_index_.fill(-1);
for (const bNodeLink *internal_link : node.internal_links()) {
const int input_i = r_used_inputs.first_index_of_try(internal_link->fromsock);
const int output_i = r_used_outputs.first_index_of_try(internal_link->tosock);
if (ELEM(-1, input_i, output_i)) {
continue;
}
input_by_output_index_[output_i] = input_i;
inputs_[input_i].usage = lf::ValueUsage::Maybe;
}
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
for (const int output_i : outputs_.index_range()) {
if (params.output_was_set(output_i)) {
continue;
}
const CPPType &output_type = *outputs_[output_i].type;
void *output_value = params.get_output_data_ptr(output_i);
const int input_i = input_by_output_index_[output_i];
if (input_i == -1) {
/* The output does not have a corresponding input. */
output_type.value_initialize(output_value);
params.output_set(output_i);
continue;
}
const void *input_value = params.try_get_input_data_ptr_or_request(input_i);
if (input_value == nullptr) {
continue;
}
const CPPType &input_type = *inputs_[input_i].type;
if (input_type == output_type) {
/* Forward the value as is. */
input_type.copy_construct(input_value, output_value);
params.output_set(output_i);
continue;
}
/* Perform a type conversion and then format the value. */
const bke::DataTypeConversions &conversions = bke::get_implicit_type_conversions();
const auto *from_type = ValueOrFieldCPPType::get_from_self(input_type);
const auto *to_type = ValueOrFieldCPPType::get_from_self(output_type);
if (from_type != nullptr && to_type != nullptr) {
if (conversions.is_convertible(from_type->value, to_type->value)) {
const MultiFunction &multi_fn = *conversions.get_conversion_multi_function(
mf::DataType::ForSingle(from_type->value), mf::DataType::ForSingle(to_type->value));
execute_multi_function_on_value_or_field(
multi_fn, {}, {from_type}, {to_type}, {input_value}, {output_value});
}
params.output_set(output_i);
continue;
}
/* Use a value initialization if the conversion does not work. */
output_type.value_initialize(output_value);
params.output_set(output_i);
}
}
};
/**
* Type conversions are generally implemented as multi-functions. This node checks if the input is
* a field or single value and outputs a field or single value respectively.
*/
class LazyFunctionForMultiFunctionConversion : public LazyFunction {
private:
const MultiFunction &fn_;
const ValueOrFieldCPPType &from_type_;
const ValueOrFieldCPPType &to_type_;
public:
LazyFunctionForMultiFunctionConversion(const MultiFunction &fn,
const ValueOrFieldCPPType &from,
const ValueOrFieldCPPType &to)
: fn_(fn), from_type_(from), to_type_(to)
{
debug_name_ = "Convert";
inputs_.append({"From", from.self});
outputs_.append({"To", to.self});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
const void *from_value = params.try_get_input_data_ptr(0);
void *to_value = params.get_output_data_ptr(0);
BLI_assert(from_value != nullptr);
BLI_assert(to_value != nullptr);
execute_multi_function_on_value_or_field(
fn_, {}, {&from_type_}, {&to_type_}, {from_value}, {to_value});
params.output_set(0);
}
};
/**
* This lazy-function wraps nodes that are implemented as multi-function (mostly math nodes).
*/
class LazyFunctionForMultiFunctionNode : public LazyFunction {
private:
const NodeMultiFunctions::Item fn_item_;
Vector<const ValueOrFieldCPPType *> input_types_;
Vector<const ValueOrFieldCPPType *> output_types_;
public:
LazyFunctionForMultiFunctionNode(const bNode &node,
NodeMultiFunctions::Item fn_item,
Vector<const bNodeSocket *> &r_used_inputs,
Vector<const bNodeSocket *> &r_used_outputs)
: fn_item_(std::move(fn_item))
{
BLI_assert(fn_item_.fn != nullptr);
debug_name_ = node.name;
lazy_function_interface_from_node(node, r_used_inputs, r_used_outputs, inputs_, outputs_);
for (const lf::Input &fn_input : inputs_) {
input_types_.append(ValueOrFieldCPPType::get_from_self(*fn_input.type));
}
for (const lf::Output &fn_output : outputs_) {
output_types_.append(ValueOrFieldCPPType::get_from_self(*fn_output.type));
}
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
Vector<const void *> input_values(inputs_.size());
Vector<void *> output_values(outputs_.size());
for (const int i : inputs_.index_range()) {
input_values[i] = params.try_get_input_data_ptr(i);
}
for (const int i : outputs_.index_range()) {
output_values[i] = params.get_output_data_ptr(i);
}
execute_multi_function_on_value_or_field(
*fn_item_.fn, fn_item_.owned_fn, input_types_, output_types_, input_values, output_values);
for (const int i : outputs_.index_range()) {
params.output_set(i);
}
}
};
/**
* Some sockets have non-trivial implicit inputs (e.g. the Position input of the Set Position
* node). Those are implemented as a separate node that outputs the value.
*/
class LazyFunctionForImplicitInput : public LazyFunction {
private:
/**
* The function that generates the implicit input. The passed in memory is uninitialized.
*/
std::function<void(void *)> init_fn_;
public:
LazyFunctionForImplicitInput(const CPPType &type, std::function<void(void *)> init_fn)
: init_fn_(std::move(init_fn))
{
debug_name_ = "Input";
outputs_.append({"Output", type});
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
void *value = params.get_output_data_ptr(0);
init_fn_(value);
params.output_set(0);
}
};
/**
* The viewer node does not have outputs. Instead it is executed because the executor knows that it
* has side effects. The side effect is that the inputs to the viewer are logged.
*/
class LazyFunctionForViewerNode : public LazyFunction {
private:
const bNode &bnode_;
/** The field is only logged when it is linked. */
bool use_field_input_ = true;
public:
LazyFunctionForViewerNode(const bNode &bnode, Vector<const bNodeSocket *> &r_used_inputs)
: bnode_(bnode)
{
debug_name_ = "Viewer";
Vector<const bNodeSocket *> dummy_used_outputs;
lazy_function_interface_from_node(bnode, r_used_inputs, dummy_used_outputs, inputs_, outputs_);
const Span<const bNodeLink *> links = r_used_inputs[1]->directly_linked_links();
if (links.is_empty() || nodeIsDanglingReroute(&bnode.owner_tree(), links.first()->fromnode)) {
use_field_input_ = false;
r_used_inputs.pop_last();
inputs_.pop_last();
}
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (user_data->modifier_data == nullptr) {
return;
}
if (user_data->modifier_data->eval_log == nullptr) {
return;
}
GeometrySet geometry = params.extract_input<GeometrySet>(0);
const NodeGeometryViewer *storage = static_cast<NodeGeometryViewer *>(bnode_.storage);
if (use_field_input_) {
const void *value_or_field = params.try_get_input_data_ptr(1);
BLI_assert(value_or_field != nullptr);
const auto &value_or_field_type = *ValueOrFieldCPPType::get_from_self(*inputs_[1].type);
GField field = value_or_field_type.as_field(value_or_field);
const eAttrDomain domain = eAttrDomain(storage->domain);
const StringRefNull viewer_attribute_name = ".viewer";
if (domain == ATTR_DOMAIN_INSTANCE) {
if (geometry.has_instances()) {
GeometryComponent &component = geometry.get_component_for_write(
GEO_COMPONENT_TYPE_INSTANCES);
bke::try_capture_field_on_geometry(
component, viewer_attribute_name, ATTR_DOMAIN_INSTANCE, field);
}
}
else {
geometry.modify_geometry_sets([&](GeometrySet &geometry) {
for (const GeometryComponentType type : {GEO_COMPONENT_TYPE_MESH,
GEO_COMPONENT_TYPE_POINT_CLOUD,
GEO_COMPONENT_TYPE_CURVE}) {
if (geometry.has(type)) {
GeometryComponent &component = geometry.get_component_for_write(type);
eAttrDomain used_domain = domain;
if (used_domain == ATTR_DOMAIN_AUTO) {
if (const std::optional<eAttrDomain> detected_domain =
bke::try_detect_field_domain(component, field)) {
used_domain = *detected_domain;
}
else {
used_domain = ATTR_DOMAIN_POINT;
}
}
bke::try_capture_field_on_geometry(
component, viewer_attribute_name, used_domain, field);
}
}
});
}
}
geo_eval_log::GeoTreeLogger &tree_logger =
user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context);
tree_logger.log_viewer_node(bnode_, std::move(geometry));
}
};
/**
* Outputs true when a specific viewer node is used in the current context and false otherwise.
*/
class LazyFunctionForViewerInputUsage : public LazyFunction {
private:
const lf::FunctionNode &lf_viewer_node_;
public:
LazyFunctionForViewerInputUsage(const lf::FunctionNode &lf_viewer_node)
: lf_viewer_node_(lf_viewer_node)
{
debug_name_ = "Viewer Input Usage";
outputs_.append_as("Viewer is Used", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
const ComputeContextHash &context_hash = user_data->compute_context->hash();
const GeoNodesModifierData &modifier_data = *user_data->modifier_data;
const Span<const lf::FunctionNode *> nodes_with_side_effects =
modifier_data.side_effect_nodes->lookup(context_hash);
const bool viewer_is_used = nodes_with_side_effects.contains(&lf_viewer_node_);
params.set_output(0, viewer_is_used);
}
};
/**
* This lazy-function wraps a group node. Internally it just executes the lazy-function graph of
* the referenced group.
*/
class LazyFunctionForGroupNode : public LazyFunction {
private:
const bNode &group_node_;
bool has_many_nodes_ = false;
std::optional<GeometryNodesLazyFunctionLogger> lf_logger_;
std::optional<GeometryNodesLazyFunctionSideEffectProvider> lf_side_effect_provider_;
std::optional<lf::GraphExecutor> graph_executor_;
struct Storage {
void *graph_executor_storage = nullptr;
/* To avoid computing the hash more than once. */
std::optional<ComputeContextHash> context_hash_cache;
};
public:
/**
* For every input bsocket there is a corresponding boolean output that indicates whether that
* input is used.
*/
Map<int, int> lf_output_for_input_bsocket_usage_;
/**
* For every output bsocket there is a corresponding boolean input that indicates whether the
* output is used.
*/
Map<int, int> lf_input_for_output_bsocket_usage_;
/**
* For every geometry output that can propagate attributes from an input, there is an attribute
* set input. It indicates which attributes should be propagated to the output.
*/
Map<int, int> lf_input_for_attribute_propagation_to_output_;
LazyFunctionForGroupNode(const bNode &group_node,
const GeometryNodesLazyFunctionGraphInfo &lf_graph_info)
: group_node_(group_node)
{
debug_name_ = group_node.name;
allow_missing_requested_inputs_ = true;
Vector<const bNodeSocket *> tmp_inputs;
Vector<const bNodeSocket *> tmp_outputs;
lazy_function_interface_from_node(group_node, tmp_inputs, tmp_outputs, inputs_, outputs_);
has_many_nodes_ = lf_graph_info.num_inline_nodes_approximate > 1000;
Vector<const lf::OutputSocket *> graph_inputs;
/* Add inputs that also exist on the bnode. */
graph_inputs.extend(lf_graph_info.mapping.group_input_sockets);
/* Add a boolean input for every output bsocket that indicates whether that socket is used. */
for (const int i : group_node.output_sockets().index_range()) {
lf_input_for_output_bsocket_usage_.add_new(
i,
graph_inputs.append_and_get_index(lf_graph_info.mapping.group_output_used_sockets[i]));
inputs_.append_as("Output is Used", CPPType::get<bool>(), lf::ValueUsage::Maybe);
}
graph_inputs.extend(lf_graph_info.mapping.group_output_used_sockets);
/* Add an attribute set input for every output geometry socket that can propagate attributes
* from inputs. */
for (auto [output_index, lf_socket] :
lf_graph_info.mapping.attribute_set_by_geometry_output.items()) {
const int lf_index = inputs_.append_and_get_index_as(
"Attribute Set", CPPType::get<bke::AnonymousAttributeSet>(), lf::ValueUsage::Maybe);
graph_inputs.append(lf_socket);
lf_input_for_attribute_propagation_to_output_.add(output_index, lf_index);
}
Vector<const lf::InputSocket *> graph_outputs;
/* Add outputs that also exist on the bnode. */
graph_outputs.extend(lf_graph_info.mapping.standard_group_output_sockets);
/* Add a boolean output for every input bsocket that indicates whether that socket is used. */
for (const int i : group_node.input_sockets().index_range()) {
const InputUsageHint &input_usage_hint = lf_graph_info.mapping.group_input_usage_hints[i];
if (input_usage_hint.type == InputUsageHintType::DynamicSocket) {
const lf::InputSocket *lf_socket = lf_graph_info.mapping.group_input_usage_sockets[i];
lf_output_for_input_bsocket_usage_.add_new(i,
graph_outputs.append_and_get_index(lf_socket));
outputs_.append_as("Input is Used", CPPType::get<bool>());
}
}
lf_logger_.emplace(lf_graph_info);
lf_side_effect_provider_.emplace();
graph_executor_.emplace(lf_graph_info.graph,
std::move(graph_inputs),
std::move(graph_outputs),
&*lf_logger_,
&*lf_side_effect_provider_);
}
void execute_impl(lf::Params &params, const lf::Context &context) const override
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (has_many_nodes_) {
/* If the called node group has many nodes, it's likely that executing it takes a while even
* if every individual node is very small. */
lazy_threading::send_hint();
}
Storage *storage = static_cast<Storage *>(context.storage);
/* The compute context changes when entering a node group. */
bke::NodeGroupComputeContext compute_context{
user_data->compute_context, group_node_.identifier, storage->context_hash_cache};
storage->context_hash_cache = compute_context.hash();
GeoNodesLFUserData group_user_data = *user_data;
group_user_data.compute_context = &compute_context;
if (user_data->modifier_data->socket_log_contexts) {
group_user_data.log_socket_values = user_data->modifier_data->socket_log_contexts->contains(
compute_context.hash());
}
lf::Context group_context = context;
group_context.user_data = &group_user_data;
group_context.storage = storage->graph_executor_storage;
graph_executor_->execute(params, group_context);
}
void *init_storage(LinearAllocator<> &allocator) const override
{
Storage *s = allocator.construct<Storage>().release();
s->graph_executor_storage = graph_executor_->init_storage(allocator);
return s;
}
void destruct_storage(void *storage) const override
{
Storage *s = static_cast<Storage *>(storage);
graph_executor_->destruct_storage(s->graph_executor_storage);
std::destroy_at(s);
}
std::string name() const override
{
std::stringstream ss;
ss << "Group '" << (group_node_.id->name + 2) << "' (" << group_node_.name << ")";
return ss.str();
}
std::string input_name(const int i) const override
{
if (i < group_node_.input_sockets().size()) {
return group_node_.input_socket(i).name;
}
for (const auto [bsocket_index, lf_socket_index] :
lf_input_for_output_bsocket_usage_.items()) {
if (i == lf_socket_index) {
std::stringstream ss;
ss << "'" << group_node_.output_socket(bsocket_index).name << "' output is used";
return ss.str();
}
}
for (const auto [bsocket_index, lf_index] :
lf_input_for_attribute_propagation_to_output_.items()) {
if (i == lf_index) {
std::stringstream ss;
ss << "Propagate to '" << group_node_.output_socket(bsocket_index).name << "'";
return ss.str();
}
}
return inputs_[i].debug_name;
}
std::string output_name(const int i) const override
{
if (i < group_node_.output_sockets().size()) {
return group_node_.output_socket(i).name;
}
for (const auto [bsocket_index, lf_socket_index] :
lf_output_for_input_bsocket_usage_.items()) {
if (i == lf_socket_index) {
std::stringstream ss;
ss << "'" << group_node_.input_socket(bsocket_index).name << "' input is used";
return ss.str();
}
}
return outputs_[i].debug_name;
}
};
static GMutablePointer get_socket_default_value(LinearAllocator<> &allocator,
const bNodeSocket &bsocket)
{
const bNodeSocketType &typeinfo = *bsocket.typeinfo;
const CPPType *type = get_socket_cpp_type(typeinfo);
if (type == nullptr) {
return {};
}
void *buffer = allocator.allocate(type->size(), type->alignment());
typeinfo.get_geometry_nodes_cpp_value(bsocket, buffer);
return {type, buffer};
}
class GroupInputDebugInfo : public lf::DummyDebugInfo {
public:
Vector<StringRef> socket_names;
std::string node_name() const override
{
return "Group Input";
}
std::string output_name(const int i) const override
{
return this->socket_names[i];
}
};
class GroupOutputDebugInfo : public lf::DummyDebugInfo {
public:
Vector<StringRef> socket_names;
std::string node_name() const override
{
return "Group Output";
}
std::string input_name(const int i) const override
{
return this->socket_names[i];
}
};
/**
* Computes the logical or of the inputs and supports short-circuit evaluation (i.e. if the first
* input is true already, the other inputs are not checked).
*/
class LazyFunctionForLogicalOr : public lf::LazyFunction {
public:
LazyFunctionForLogicalOr(const int inputs_num)
{
debug_name_ = "Logical Or";
for ([[maybe_unused]] const int i : IndexRange(inputs_num)) {
inputs_.append_as("Input", CPPType::get<bool>(), lf::ValueUsage::Maybe);
}
outputs_.append_as("Output", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
int first_unavailable_input = -1;
for (const int i : inputs_.index_range()) {
if (const bool *value = params.try_get_input_data_ptr<bool>(i)) {
if (*value) {
params.set_output(0, true);
return;
}
}
else {
first_unavailable_input = i;
}
}
if (first_unavailable_input == -1) {
params.set_output(0, false);
return;
}
params.try_get_input_data_ptr_or_request(first_unavailable_input);
}
};
/**
* Outputs booleans that indicate which inputs of a switch node are used. Note that it's possible
* that both inputs are used when the condition is a field.
*/
class LazyFunctionForSwitchSocketUsage : public lf::LazyFunction {
public:
LazyFunctionForSwitchSocketUsage()
{
debug_name_ = "Switch Socket Usage";
inputs_.append_as("Condition", CPPType::get<ValueOrField<bool>>());
outputs_.append_as("False", CPPType::get<bool>());
outputs_.append_as("True", CPPType::get<bool>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
const ValueOrField<bool> &condition = params.get_input<ValueOrField<bool>>(0);
if (condition.is_field()) {
params.set_output(0, true);
params.set_output(1, true);
}
else {
const bool value = condition.as_value();
params.set_output(0, !value);
params.set_output(1, value);
}
}
};
/**
* Takes a field as input and extracts the set of anonymous attributes that it references.
*/
class LazyFunctionForAnonymousAttributeSetExtract : public lf::LazyFunction {
private:
const ValueOrFieldCPPType &type_;
public:
LazyFunctionForAnonymousAttributeSetExtract(const ValueOrFieldCPPType &type) : type_(type)
{
debug_name_ = "Extract Attribute Set";
inputs_.append_as("Field", type.self);
outputs_.append_as("Attributes", CPPType::get<bke::AnonymousAttributeSet>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
const void *value_or_field = params.try_get_input_data_ptr(0);
bke::AnonymousAttributeSet attributes;
if (type_.is_field(value_or_field)) {
const GField &field = *type_.get_field_ptr(value_or_field);
field.node().for_each_field_input_recursive([&](const FieldInput &field_input) {
if (const auto *attr_field_input = dynamic_cast<const AnonymousAttributeFieldInput *>(
&field_input)) {
if (!attributes.names) {
attributes.names = std::make_shared<Set<std::string>>();
}
attributes.names->add_as(attr_field_input->anonymous_id()->name());
}
});
}
params.set_output(0, std::move(attributes));
}
};
/**
* Conditionally joins multiple attribute sets. Each input attribute set can be disabled with a
* corresponding boolean input.
*/
class LazyFunctionForAnonymousAttributeSetJoin : public lf::LazyFunction {
const int amount_;
public:
LazyFunctionForAnonymousAttributeSetJoin(const int amount) : amount_(amount)
{
debug_name_ = "Join Attribute Sets";
for ([[maybe_unused]] const int i : IndexRange(amount)) {
inputs_.append_as("Use", CPPType::get<bool>());
inputs_.append_as(
"Attribute Set", CPPType::get<bke::AnonymousAttributeSet>(), lf::ValueUsage::Maybe);
}
outputs_.append_as("Attribute Set", CPPType::get<bke::AnonymousAttributeSet>());
}
void execute_impl(lf::Params &params, const lf::Context & /*context*/) const override
{
Vector<bke::AnonymousAttributeSet *> sets;
bool set_is_missing = false;
for (const int i : IndexRange(amount_)) {
if (params.get_input<bool>(this->get_use_input(i))) {
if (bke::AnonymousAttributeSet *set =
params.try_get_input_data_ptr_or_request<bke::AnonymousAttributeSet>(
this->get_attribute_set_input(i))) {
sets.append(set);
}
else {
set_is_missing = true;
}
}
}
if (set_is_missing) {
return;
}
bke::AnonymousAttributeSet joined_set;
if (sets.is_empty()) {
/* Nothing to do. */
}
else if (sets.size() == 1) {
joined_set.names = std::move(sets[0]->names);
}
else {
joined_set.names = std::make_shared<Set<std::string>>();
for (const bke::AnonymousAttributeSet *set : sets) {
if (set->names) {
for (const std::string &name : *set->names) {
joined_set.names->add(name);
}
}
}
}
params.set_output(0, std::move(joined_set));
}
int get_use_input(const int i) const
{
return 2 * i;
}
int get_attribute_set_input(const int i) const
{
return 2 * i + 1;
}
};
enum class AttributeReferenceKeyType {
/** Attribute referenced by a field passed into the group. */
InputField,
/** Attributes referenced on the output geometry outside of the current group. */
OutputGeometry,
/** Attribute referenced by a field created within the current group. */
Socket,
};
/**
* Identifier for something that can reference anonymous attributes that should be propagated.
*/
struct AttributeReferenceKey {
AttributeReferenceKeyType type;
/* Used when type is InputField or OutputGeometry. */
int index = 0;
/* Used when type is Socket. */
const bNodeSocket *bsocket = nullptr;
uint64_t hash() const
{
return get_default_hash_3(this->type, this->bsocket, this->index);
}
friend bool operator==(const AttributeReferenceKey &a, const AttributeReferenceKey &b)
{
return a.type == b.type && a.bsocket == b.bsocket && a.index == b.index;
}
friend std::ostream &operator<<(std::ostream &stream, const AttributeReferenceKey &value)
{
if (value.type == AttributeReferenceKeyType::InputField) {
stream << "Input Field: " << value.index;
}
else if (value.type == AttributeReferenceKeyType::OutputGeometry) {
stream << "Output Geometry: " << value.index;
}
else {
stream << "Socket: " << value.bsocket->owner_node().name << " -> " << value.bsocket->name;
}
return stream;
}
};
/**
* Additional information that corresponds to an #AttributeReferenceKey.
*/
struct AttributeReferenceInfo {
/** Output socket that contains an attribute set containing the referenced attributes. */
lf::OutputSocket *lf_attribute_set_socket = nullptr;
/** Geometry sockets that contain the referenced attributes. */
Vector<const bNodeSocket *> initial_geometry_sockets;
};
/**
* Utility class to build a lazy-function graph based on a geometry nodes tree.
* This is mainly a separate class because it makes it easier to have variables that can be
* accessed by many functions.
*/
struct GeometryNodesLazyFunctionGraphBuilder {
private:
const bNodeTree &btree_;
GeometryNodesLazyFunctionGraphInfo *lf_graph_info_;
lf::Graph *lf_graph_;
GeometryNodeLazyFunctionGraphMapping *mapping_;
MultiValueMap<const bNodeSocket *, lf::InputSocket *> input_socket_map_;
Map<const bNodeSocket *, lf::OutputSocket *> output_socket_map_;
Map<const bNodeSocket *, lf::Node *> multi_input_socket_nodes_;
const bke::DataTypeConversions *conversions_;
/**
* Maps bsockets to boolean sockets in the graph whereby each boolean socket indicates whether
* the bsocket is used. Sockets not contained in this map are not used.
* This is indexed by `bNodeSocket::index_in_tree()`.
*/
Array<lf::OutputSocket *> socket_is_used_map_;
/**
* Some built-in nodes get additional boolean inputs that indicate whether certain outputs are
* used (field output sockets that contain new anonymous attribute references).
*/
Vector<std::pair<const bNodeSocket *, lf::InputSocket *>> output_used_sockets_for_builtin_nodes_;
/**
* Maps from output geometry sockets to corresponding attribute set inputs.
*/
Map<const bNodeSocket *, lf::InputSocket *> attribute_set_propagation_map_;
/**
* Boolean inputs that tell a node if some socket (of the same or another node) is used. If this
* socket is in a link-cycle, its input can become a constant true.
*/
Set<const lf::InputSocket *> socket_usage_inputs_;
/**
* All group input nodes are combined into one dummy node in the lazy-function graph.
*/
lf::DummyNode *group_input_lf_node_;
friend class UsedSocketVisualizeOptions;
public:
GeometryNodesLazyFunctionGraphBuilder(const bNodeTree &btree,
GeometryNodesLazyFunctionGraphInfo &lf_graph_info)
: btree_(btree), lf_graph_info_(&lf_graph_info)
{
}
void build()
{
btree_.ensure_topology_cache();
lf_graph_ = &lf_graph_info_->graph;
mapping_ = &lf_graph_info_->mapping;
conversions_ = &bke::get_implicit_type_conversions();
socket_is_used_map_.reinitialize(btree_.all_sockets().size());
socket_is_used_map_.fill(nullptr);
this->prepare_node_multi_functions();
this->build_group_input_node();
if (btree_.group_output_node() == nullptr) {
this->build_fallback_output_node();
}
this->handle_nodes();
this->handle_links();
this->add_default_inputs();
this->build_attribute_propagation_input_node();
this->build_output_usage_input_node();
this->build_input_usage_output_node();
this->build_socket_usages();
this->build_attribute_propagation_sets();
this->fix_link_cycles();
// this->print_graph();
lf_graph_->update_node_indices();
lf_graph_info_->num_inline_nodes_approximate += lf_graph_->nodes().size();
}
private:
void prepare_node_multi_functions()
{
lf_graph_info_->node_multi_functions = std::make_unique<NodeMultiFunctions>(btree_);
}
void build_group_input_node()
{
Vector<const CPPType *, 16> input_cpp_types;
const Span<const bNodeSocket *> interface_inputs = btree_.interface_inputs();
for (const bNodeSocket *interface_input : interface_inputs) {
input_cpp_types.append(interface_input->typeinfo->geometry_nodes_cpp_type);
}
/* Create a dummy node for the group inputs. */
auto debug_info = std::make_unique<GroupInputDebugInfo>();
group_input_lf_node_ = &lf_graph_->add_dummy({}, input_cpp_types, debug_info.get());
for (const int i : interface_inputs.index_range()) {
mapping_->group_input_sockets.append(&group_input_lf_node_->output(i));
debug_info->socket_names.append(interface_inputs[i]->name);
}
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
/**
* Build an output node that just outputs default values in the case when there is no Group
* Output node in the tree.
*/
void build_fallback_output_node()
{
Vector<const CPPType *, 16> output_cpp_types;
auto debug_info = std::make_unique<GroupOutputDebugInfo>();
for (const bNodeSocket *interface_output : btree_.interface_outputs()) {
output_cpp_types.append(interface_output->typeinfo->geometry_nodes_cpp_type);
debug_info->socket_names.append(interface_output->name);
}
lf::Node &lf_node = lf_graph_->add_dummy(output_cpp_types, {}, debug_info.get());
for (lf::InputSocket *lf_socket : lf_node.inputs()) {
const CPPType &type = lf_socket->type();
lf_socket->set_default_value(type.default_value());
}
mapping_->standard_group_output_sockets = lf_node.inputs();
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
void handle_nodes()
{
/* Insert all nodes into the lazy function graph. */
for (const bNode *bnode : btree_.all_nodes()) {
const bNodeType *node_type = bnode->typeinfo;
if (node_type == nullptr) {
continue;
}
if (bnode->is_muted()) {
this->handle_muted_node(*bnode);
continue;
}
switch (node_type->type) {
case NODE_FRAME: {
/* Ignored. */
break;
}
case NODE_REROUTE: {
this->handle_reroute_node(*bnode);
break;
}
case NODE_GROUP_INPUT: {
this->handle_group_input_node(*bnode);
break;
}
case NODE_GROUP_OUTPUT: {
this->handle_group_output_node(*bnode);
break;
}
case NODE_CUSTOM_GROUP:
case NODE_GROUP: {
this->handle_group_node(*bnode);
break;
}
case GEO_NODE_VIEWER: {
this->handle_viewer_node(*bnode);
break;
}
default: {
if (node_type->geometry_node_execute) {
this->handle_geometry_node(*bnode);
break;
}
const NodeMultiFunctions::Item &fn_item = lf_graph_info_->node_multi_functions->try_get(
*bnode);
if (fn_item.fn != nullptr) {
this->handle_multi_function_node(*bnode, fn_item);
break;
}
if (node_type == &NodeTypeUndefined) {
this->handle_undefined_node(*bnode);
break;
}
/* Nodes that don't match any of the criteria above are just ignored. */
break;
}
}
}
}
void handle_muted_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_inputs;
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForMutedNode>(
bnode, used_inputs, used_outputs);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_reroute_node(const bNode &bnode)
{
const bNodeSocket &input_bsocket = bnode.input_socket(0);
const bNodeSocket &output_bsocket = bnode.output_socket(0);
const CPPType *type = get_socket_cpp_type(input_bsocket);
if (type == nullptr) {
return;
}
auto lazy_function = std::make_unique<LazyFunctionForRerouteNode>(*type);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
lf::InputSocket &lf_input = lf_node.input(0);
lf::OutputSocket &lf_output = lf_node.output(0);
input_socket_map_.add(&input_bsocket, &lf_input);
output_socket_map_.add_new(&output_bsocket, &lf_output);
mapping_->bsockets_by_lf_socket_map.add(&lf_input, &input_bsocket);
mapping_->bsockets_by_lf_socket_map.add(&lf_output, &output_bsocket);
}
void handle_group_input_node(const bNode &bnode)
{
for (const int i : btree_.interface_inputs().index_range()) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::OutputSocket &lf_socket = group_input_lf_node_->output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->dummy_socket_map.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_group_output_node(const bNode &bnode)
{
Vector<const CPPType *, 16> output_cpp_types;
auto debug_info = std::make_unique<GroupOutputDebugInfo>();
for (const bNodeSocket *interface_input : btree_.interface_outputs()) {
output_cpp_types.append(interface_input->typeinfo->geometry_nodes_cpp_type);
debug_info->socket_names.append(interface_input->name);
}
lf::DummyNode &group_output_lf_node = lf_graph_->add_dummy(
output_cpp_types, {}, debug_info.get());
for (const int i : group_output_lf_node.inputs().index_range()) {
const bNodeSocket &bsocket = bnode.input_socket(i);
lf::InputSocket &lf_socket = group_output_lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->dummy_socket_map.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
if (&bnode == btree_.group_output_node()) {
mapping_->standard_group_output_sockets = group_output_lf_node.inputs();
}
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
void handle_group_node(const bNode &bnode)
{
const bNodeTree *group_btree = reinterpret_cast<bNodeTree *>(bnode.id);
if (group_btree == nullptr) {
return;
}
const GeometryNodesLazyFunctionGraphInfo *group_lf_graph_info =
ensure_geometry_nodes_lazy_function_graph(*group_btree);
if (group_lf_graph_info == nullptr) {
return;
}
auto lazy_function = std::make_unique<LazyFunctionForGroupNode>(bnode, *group_lf_graph_info);
lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function);
for (const int i : bnode.input_sockets().index_range()) {
const bNodeSocket &bsocket = bnode.input_socket(i);
BLI_assert(!bsocket.is_multi_input());
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : bnode.output_sockets().index_range()) {
const bNodeSocket &bsocket = bnode.output_socket(i);
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
mapping_->group_node_map.add(&bnode, &lf_node);
lf_graph_info_->num_inline_nodes_approximate +=
group_lf_graph_info->num_inline_nodes_approximate;
static const bool static_false = false;
for (const int i : lazy_function->lf_input_for_output_bsocket_usage_.values()) {
lf_node.input(i).set_default_value(&static_false);
socket_usage_inputs_.add(&lf_node.input(i));
}
/* Keep track of attribute set inputs that need to be populated later. */
for (const auto [output_index, lf_input_index] :
lazy_function->lf_input_for_attribute_propagation_to_output_.items()) {
attribute_set_propagation_map_.add(&bnode.output_socket(output_index),
&lf_node.input(lf_input_index));
}
lf_graph_info_->functions.append(std::move(lazy_function));
}
void handle_geometry_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_inputs;
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForGeometryNode>(
bnode, used_inputs, used_outputs);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
lf::InputSocket &lf_socket = lf_node.input(i);
if (bsocket.is_multi_input()) {
auto multi_input_lazy_function = std::make_unique<LazyFunctionForMultiInput>(bsocket);
lf::Node &lf_multi_input_node = lf_graph_->add_function(*multi_input_lazy_function);
lf_graph_info_->functions.append(std::move(multi_input_lazy_function));
lf_graph_->add_link(lf_multi_input_node.output(0), lf_socket);
multi_input_socket_nodes_.add_new(&bsocket, &lf_multi_input_node);
for (lf::InputSocket *lf_multi_input_socket : lf_multi_input_node.inputs()) {
mapping_->bsockets_by_lf_socket_map.add(lf_multi_input_socket, &bsocket);
}
}
else {
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add_new(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const auto [identifier, lf_input_index] :
lazy_function->lf_input_for_output_bsocket_usage_.items()) {
output_used_sockets_for_builtin_nodes_.append_as(&bnode.output_by_identifier(identifier),
&lf_node.input(lf_input_index));
socket_usage_inputs_.add_new(&lf_node.input(lf_input_index));
}
/* Keep track of attribute set inputs that need to be populated later. */
for (const auto [identifier, lf_input_index] :
lazy_function->lf_input_for_attribute_propagation_to_output_.items()) {
attribute_set_propagation_map_.add(&bnode.output_by_identifier(identifier),
&lf_node.input(lf_input_index));
}
lf_graph_info_->functions.append(std::move(lazy_function));
}
void handle_multi_function_node(const bNode &bnode, const NodeMultiFunctions::Item &fn_item)
{
Vector<const bNodeSocket *> used_inputs;
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForMultiFunctionNode>(
bnode, fn_item, used_inputs, used_outputs);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
BLI_assert(!bsocket.is_multi_input());
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_viewer_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_inputs;
auto lazy_function = std::make_unique<LazyFunctionForViewerNode>(bnode, used_inputs);
lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_inputs.index_range()) {
const bNodeSocket &bsocket = *used_inputs[i];
lf::InputSocket &lf_socket = lf_node.input(i);
input_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
mapping_->viewer_node_map.add(&bnode, &lf_node);
}
void handle_undefined_node(const bNode &bnode)
{
Vector<const bNodeSocket *> used_outputs;
auto lazy_function = std::make_unique<LazyFunctionForUndefinedNode>(bnode, used_outputs);
lf::FunctionNode &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const int i : used_outputs.index_range()) {
const bNodeSocket &bsocket = *used_outputs[i];
lf::OutputSocket &lf_socket = lf_node.output(i);
output_socket_map_.add(&bsocket, &lf_socket);
mapping_->bsockets_by_lf_socket_map.add(&lf_socket, &bsocket);
}
}
void handle_links()
{
for (const auto item : output_socket_map_.items()) {
this->insert_links_from_socket(*item.key, *item.value);
}
}
void insert_links_from_socket(const bNodeSocket &from_bsocket, lf::OutputSocket &from_lf_socket)
{
if (nodeIsDanglingReroute(&btree_, &from_bsocket.owner_node())) {
return;
}
const Span<const bNodeLink *> links_from_bsocket = from_bsocket.directly_linked_links();
struct TypeWithLinks {
const CPPType *type;
Vector<const bNodeLink *> links;
};
/* Group available target sockets by type so that they can be handled together. */
Vector<TypeWithLinks> types_with_links;
for (const bNodeLink *link : links_from_bsocket) {
if (link->is_muted()) {
continue;
}
if (!link->is_available()) {
continue;
}
const bNodeSocket &to_bsocket = *link->tosock;
const CPPType *to_type = get_socket_cpp_type(to_bsocket);
if (to_type == nullptr) {
continue;
}
bool inserted = false;
for (TypeWithLinks &types_with_links : types_with_links) {
if (types_with_links.type == to_type) {
types_with_links.links.append(link);
inserted = true;
break;
}
}
if (inserted) {
continue;
}
types_with_links.append({to_type, {link}});
}
for (const TypeWithLinks &type_with_links : types_with_links) {
const CPPType &to_type = *type_with_links.type;
const Span<const bNodeLink *> links = type_with_links.links;
lf::OutputSocket *converted_from_lf_socket = this->insert_type_conversion_if_necessary(
from_lf_socket, to_type);
auto make_input_link_or_set_default = [&](lf::InputSocket &to_lf_socket) {
if (converted_from_lf_socket == nullptr) {
const void *default_value = to_type.default_value();
to_lf_socket.set_default_value(default_value);
}
else {
lf_graph_->add_link(*converted_from_lf_socket, to_lf_socket);
}
};
for (const bNodeLink *link : links) {
const bNodeSocket &to_bsocket = *link->tosock;
if (to_bsocket.is_multi_input()) {
/* TODO: Cache this index on the link. */
int link_index = 0;
for (const bNodeLink *multi_input_link : to_bsocket.directly_linked_links()) {
if (multi_input_link == link) {
break;
}
if (multi_input_link->is_muted() || !multi_input_link->fromsock->is_available() ||
nodeIsDanglingReroute(&btree_, multi_input_link->fromnode)) {
continue;
}
link_index++;
}
if (to_bsocket.owner_node().is_muted()) {
if (link_index == 0) {
for (lf::InputSocket *to_lf_socket : input_socket_map_.lookup(&to_bsocket)) {
make_input_link_or_set_default(*to_lf_socket);
}
}
}
else {
lf::Node *multi_input_lf_node = multi_input_socket_nodes_.lookup_default(&to_bsocket,
nullptr);
if (multi_input_lf_node == nullptr) {
continue;
}
make_input_link_or_set_default(multi_input_lf_node->input(link_index));
}
}
else {
for (lf::InputSocket *to_lf_socket : input_socket_map_.lookup(&to_bsocket)) {
make_input_link_or_set_default(*to_lf_socket);
}
}
}
}
}
lf::OutputSocket *insert_type_conversion_if_necessary(lf::OutputSocket &from_socket,
const CPPType &to_type)
{
const CPPType &from_type = from_socket.type();
if (from_type == to_type) {
return &from_socket;
}
const auto *from_field_type = ValueOrFieldCPPType::get_from_self(from_type);
const auto *to_field_type = ValueOrFieldCPPType::get_from_self(to_type);
if (from_field_type != nullptr && to_field_type != nullptr) {
if (conversions_->is_convertible(from_field_type->value, to_field_type->value)) {
const MultiFunction &multi_fn = *conversions_->get_conversion_multi_function(
mf::DataType::ForSingle(from_field_type->value),
mf::DataType::ForSingle(to_field_type->value));
auto fn = std::make_unique<LazyFunctionForMultiFunctionConversion>(
multi_fn, *from_field_type, *to_field_type);
lf::Node &conversion_node = lf_graph_->add_function(*fn);
lf_graph_info_->functions.append(std::move(fn));
lf_graph_->add_link(from_socket, conversion_node.input(0));
return &conversion_node.output(0);
}
}
return nullptr;
}
void add_default_inputs()
{
for (auto item : input_socket_map_.items()) {
const bNodeSocket &bsocket = *item.key;
const Span<lf::InputSocket *> lf_sockets = item.value;
for (lf::InputSocket *lf_socket : lf_sockets) {
if (lf_socket->origin() != nullptr) {
/* Is linked already. */
continue;
}
this->add_default_input(bsocket, *lf_socket);
}
}
}
void add_default_input(const bNodeSocket &input_bsocket, lf::InputSocket &input_lf_socket)
{
if (this->try_add_implicit_input(input_bsocket, input_lf_socket)) {
return;
}
GMutablePointer value = get_socket_default_value(lf_graph_info_->allocator, input_bsocket);
if (value.get() == nullptr) {
/* Not possible to add a default value. */
return;
}
input_lf_socket.set_default_value(value.get());
if (!value.type()->is_trivially_destructible()) {
lf_graph_info_->values_to_destruct.append(value);
}
}
bool try_add_implicit_input(const bNodeSocket &input_bsocket, lf::InputSocket &input_lf_socket)
{
const bNode &bnode = input_bsocket.owner_node();
const SocketDeclaration *socket_decl = input_bsocket.runtime->declaration;
if (socket_decl == nullptr) {
return false;
}
if (socket_decl->input_field_type != InputSocketFieldType::Implicit) {
return false;
}
const ImplicitInputValueFn *implicit_input_fn = socket_decl->implicit_input_fn();
if (implicit_input_fn == nullptr) {
return false;
}
std::function<void(void *)> init_fn = [&bnode, implicit_input_fn](void *r_value) {
(*implicit_input_fn)(bnode, r_value);
};
const CPPType &type = input_lf_socket.type();
auto lazy_function = std::make_unique<LazyFunctionForImplicitInput>(type, std::move(init_fn));
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
lf_graph_->add_link(lf_node.output(0), input_lf_socket);
return true;
}
/**
* Every output geometry socket that may propagate attributes has to know which attributes should
* be propagated. Therefore, every one of these outputs gets a corresponding attribute set input.
*/
void build_attribute_propagation_input_node()
{
const aal::RelationsInNode &tree_relations = *btree_.runtime->anonymous_attribute_relations;
Vector<int> output_indices;
for (const aal::PropagateRelation &relation : tree_relations.propagate_relations) {
output_indices.append_non_duplicates(relation.to_geometry_output);
}
Vector<const CPPType *> cpp_types;
auto debug_info = std::make_unique<lf::SimpleDummyDebugInfo>();
debug_info->name = "Attributes to Propagate to Output";
cpp_types.append_n_times(&CPPType::get<bke::AnonymousAttributeSet>(), output_indices.size());
lf::Node &lf_node = lf_graph_->add_dummy({}, cpp_types, debug_info.get());
for (const int i : output_indices.index_range()) {
const int output_index = output_indices[i];
mapping_->attribute_set_by_geometry_output.add(output_index, &lf_node.output(i));
debug_info->output_names.append(btree_.interface_outputs()[output_index]->name);
}
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
/**
* Build new boolean group inputs that indicate which group outputs are used.
*/
void build_output_usage_input_node()
{
const Span<const bNodeSocket *> interface_outputs = btree_.interface_outputs();
Vector<const CPPType *> cpp_types;
cpp_types.append_n_times(&CPPType::get<bool>(), interface_outputs.size());
auto debug_info = std::make_unique<lf::SimpleDummyDebugInfo>();
debug_info->name = "Output Socket Usage";
lf::Node &lf_node = lf_graph_->add_dummy({}, cpp_types, debug_info.get());
for (const int i : interface_outputs.index_range()) {
mapping_->group_output_used_sockets.append(&lf_node.output(i));
debug_info->output_names.append(interface_outputs[i]->name);
}
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
/**
* Build new boolean group outputs that indicate which group inputs are used depending on other
* group inputs.
*/
void build_input_usage_output_node()
{
const Span<const bNodeSocket *> interface_inputs = btree_.interface_inputs();
Vector<const CPPType *> cpp_types;
cpp_types.append_n_times(&CPPType::get<bool>(), interface_inputs.size());
auto debug_info = std::make_unique<lf::SimpleDummyDebugInfo>();
debug_info->name = "Input Socket Usage";
lf::Node &lf_node = lf_graph_->add_dummy(cpp_types, {}, debug_info.get());
for (const int i : interface_inputs.index_range()) {
mapping_->group_input_usage_sockets.append(&lf_node.input(i));
debug_info->input_names.append(interface_inputs[i]->name);
}
lf_graph_info_->dummy_debug_infos_.append(std::move(debug_info));
}
/**
* For every socket we want to determine if it will be used depending on the inputs of the node
* group (just static analysis is not enough when there are e.g. Switch nodes). This function
* populates #socket_is_used_map_ with that information.
*/
void build_socket_usages()
{
OrSocketUsagesCache or_socket_usages_cache;
if (const bNode *group_output_bnode = btree_.group_output_node()) {
/* Whether a group output is used is determined by a group input that has been created
* exactly for this purpose. */
for (const bNodeSocket *bsocket : group_output_bnode->input_sockets().drop_back(1)) {
const int index = bsocket->index();
socket_is_used_map_[bsocket->index_in_tree()] = const_cast<lf::OutputSocket *>(
mapping_->group_output_used_sockets[index]);
}
}
/* Iterate over all nodes from right to left to determine when which sockets are used. */
for (const bNode *bnode : btree_.toposort_right_to_left()) {
const bNodeType *node_type = bnode->typeinfo;
if (node_type == nullptr) {
/* Ignore. */
continue;
}
this->build_output_socket_usages(*bnode, or_socket_usages_cache);
if (bnode->is_muted()) {
this->build_muted_node_usages(*bnode, or_socket_usages_cache);
continue;
}
switch (node_type->type) {
case NODE_GROUP_OUTPUT: {
/* Handled before this loop already. */
break;
}
case NODE_GROUP_INPUT: {
/* Handled after this loop. */
break;
}
case NODE_FRAME: {
/* Ignored. */
break;
}
case NODE_REROUTE: {
/* The input is used exactly when the output is used. */
socket_is_used_map_[bnode->input_socket(0).index_in_tree()] =
socket_is_used_map_[bnode->output_socket(0).index_in_tree()];
break;
}
case GEO_NODE_SWITCH: {
this->build_switch_node_socket_usage(*bnode);
break;
}
case GEO_NODE_VIEWER: {
this->build_viewer_node_socket_usage(*bnode);
break;
}
case NODE_GROUP:
case NODE_CUSTOM_GROUP: {
this->build_group_node_socket_usage(*bnode, or_socket_usages_cache);
break;
}
default: {
this->build_standard_node_input_socket_usage(*bnode, or_socket_usages_cache);
break;
}
}
}
this->build_group_input_usages(or_socket_usages_cache);
this->link_output_used_sockets_for_builtin_nodes();
}
using OrSocketUsagesCache = Map<Vector<lf::OutputSocket *>, lf::OutputSocket *>;
/**
* Combine multiple socket usages with a logical or. Inserts a new node for that purpose if
* necessary.
*/
lf::OutputSocket *or_socket_usages(MutableSpan<lf::OutputSocket *> usages,
OrSocketUsagesCache &cache)
{
if (usages.is_empty()) {
return nullptr;
}
if (usages.size() == 1) {
return usages[0];
}
std::sort(usages.begin(), usages.end());
return cache.lookup_or_add_cb_as(usages, [&]() {
auto logical_or_fn = std::make_unique<LazyFunctionForLogicalOr>(usages.size());
lf::Node &logical_or_node = lf_graph_->add_function(*logical_or_fn);
lf_graph_info_->functions.append(std::move(logical_or_fn));
for (const int i : usages.index_range()) {
lf_graph_->add_link(*usages[i], logical_or_node.input(i));
}
return &logical_or_node.output(0);
});
}
void build_output_socket_usages(const bNode &bnode, OrSocketUsagesCache &or_socket_usages_cache)
{
/* Output sockets are used when any of their linked inputs are used. */
for (const bNodeSocket *socket : bnode.output_sockets()) {
if (!socket->is_available()) {
continue;
}
/* Determine when linked target sockets are used. */
Vector<lf::OutputSocket *> target_usages;
for (const bNodeLink *link : socket->directly_linked_links()) {
if (!link->is_used()) {
continue;
}
const bNodeSocket &target_socket = *link->tosock;
if (lf::OutputSocket *is_used_socket =
socket_is_used_map_[target_socket.index_in_tree()]) {
target_usages.append_non_duplicates(is_used_socket);
}
}
/* Combine target socket usages into the usage of the current socket. */
socket_is_used_map_[socket->index_in_tree()] = this->or_socket_usages(
target_usages, or_socket_usages_cache);
}
}
/**
* An input of a muted node is used when any of its internally linked outputs is used.
*/
void build_muted_node_usages(const bNode &bnode, OrSocketUsagesCache &or_socket_usages_cache)
{
/* Find all outputs that use a specific input. */
MultiValueMap<const bNodeSocket *, const bNodeSocket *> outputs_by_input;
for (const bNodeLink *blink : bnode.internal_links()) {
outputs_by_input.add(blink->fromsock, blink->tosock);
}
for (const auto item : outputs_by_input.items()) {
const bNodeSocket &input_bsocket = *item.key;
const Span<const bNodeSocket *> output_bsockets = item.value;
/* The input is used if any of the internally linked outputs is used. */
Vector<lf::OutputSocket *> lf_socket_usages;
for (const bNodeSocket *output_bsocket : output_bsockets) {
if (lf::OutputSocket *lf_socket = socket_is_used_map_[output_bsocket->index_in_tree()]) {
lf_socket_usages.append(lf_socket);
}
}
socket_is_used_map_[input_bsocket.index_in_tree()] = this->or_socket_usages(
lf_socket_usages, or_socket_usages_cache);
}
}
void build_switch_node_socket_usage(const bNode &bnode)
{
const bNodeSocket *switch_input_bsocket = nullptr;
const bNodeSocket *false_input_bsocket = nullptr;
const bNodeSocket *true_input_bsocket = nullptr;
const bNodeSocket *output_bsocket = nullptr;
for (const bNodeSocket *socket : bnode.input_sockets()) {
if (!socket->is_available()) {
continue;
}
if (socket->name == StringRef("Switch")) {
switch_input_bsocket = socket;
}
else if (socket->name == StringRef("False")) {
false_input_bsocket = socket;
}
else if (socket->name == StringRef("True")) {
true_input_bsocket = socket;
}
}
for (const bNodeSocket *socket : bnode.output_sockets()) {
if (socket->is_available()) {
output_bsocket = socket;
break;
}
}
lf::OutputSocket *output_is_used_socket = socket_is_used_map_[output_bsocket->index_in_tree()];
if (output_is_used_socket == nullptr) {
return;
}
socket_is_used_map_[switch_input_bsocket->index_in_tree()] = output_is_used_socket;
lf::InputSocket *lf_switch_input = input_socket_map_.lookup(switch_input_bsocket)[0];
if (lf::OutputSocket *lf_switch_origin = lf_switch_input->origin()) {
/* The condition input is dynamic, so the usage of the other inputs is as well. */
static const LazyFunctionForSwitchSocketUsage switch_socket_usage_fn;
lf::Node &lf_node = lf_graph_->add_function(switch_socket_usage_fn);
lf_graph_->add_link(*lf_switch_origin, lf_node.input(0));
socket_is_used_map_[false_input_bsocket->index_in_tree()] = &lf_node.output(0);
socket_is_used_map_[true_input_bsocket->index_in_tree()] = &lf_node.output(1);
}
else {
if (switch_input_bsocket->default_value_typed<bNodeSocketValueBoolean>()->value) {
socket_is_used_map_[true_input_bsocket->index_in_tree()] = output_is_used_socket;
}
else {
socket_is_used_map_[false_input_bsocket->index_in_tree()] = output_is_used_socket;
}
}
}
void build_viewer_node_socket_usage(const bNode &bnode)
{
const lf::FunctionNode &lf_viewer_node = *mapping_->viewer_node_map.lookup(&bnode);
auto lazy_function = std::make_unique<LazyFunctionForViewerInputUsage>(lf_viewer_node);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_info_->functions.append(std::move(lazy_function));
for (const bNodeSocket *bsocket : bnode.input_sockets()) {
if (bsocket->is_available()) {
socket_is_used_map_[bsocket->index_in_tree()] = &lf_node.output(0);
}
}
}
void build_group_node_socket_usage(const bNode &bnode,
OrSocketUsagesCache &or_socket_usages_cache)
{
const bNodeTree *bgroup = reinterpret_cast<const bNodeTree *>(bnode.id);
if (bgroup == nullptr) {
return;
}
const GeometryNodesLazyFunctionGraphInfo *group_lf_graph_info =
ensure_geometry_nodes_lazy_function_graph(*bgroup);
if (group_lf_graph_info == nullptr) {
return;
}
lf::FunctionNode &lf_group_node = const_cast<lf::FunctionNode &>(
*mapping_->group_node_map.lookup(&bnode));
const auto &fn = static_cast<const LazyFunctionForGroupNode &>(lf_group_node.function());
for (const bNodeSocket *input_bsocket : bnode.input_sockets()) {
const int input_index = input_bsocket->index();
const InputUsageHint &input_usage_hint =
group_lf_graph_info->mapping.group_input_usage_hints[input_index];
switch (input_usage_hint.type) {
case InputUsageHintType::Never: {
/* Nothing to do. */
break;
}
case InputUsageHintType::DependsOnOutput: {
Vector<lf::OutputSocket *> output_usages;
for (const int i : input_usage_hint.output_dependencies) {
if (lf::OutputSocket *lf_socket =
socket_is_used_map_[bnode.output_socket(i).index_in_tree()]) {
output_usages.append(lf_socket);
}
}
socket_is_used_map_[input_bsocket->index_in_tree()] = this->or_socket_usages(
output_usages, or_socket_usages_cache);
break;
}
case InputUsageHintType::DynamicSocket: {
socket_is_used_map_[input_bsocket->index_in_tree()] = &const_cast<lf::OutputSocket &>(
lf_group_node.output(fn.lf_output_for_input_bsocket_usage_.lookup(input_index)));
break;
}
}
}
for (const bNodeSocket *output_bsocket : bnode.output_sockets()) {
const int output_index = output_bsocket->index();
const int lf_input_index = fn.lf_input_for_output_bsocket_usage_.lookup(output_index);
lf::InputSocket &lf_socket = lf_group_node.input(lf_input_index);
if (lf::OutputSocket *lf_output_is_used =
socket_is_used_map_[output_bsocket->index_in_tree()]) {
lf_graph_->add_link(*lf_output_is_used, lf_socket);
}
else {
static const bool static_false = false;
lf_socket.set_default_value(&static_false);
}
}
}
void build_standard_node_input_socket_usage(const bNode &bnode,
OrSocketUsagesCache &or_socket_usages_cache)
{
if (bnode.input_sockets().is_empty()) {
return;
}
Vector<lf::OutputSocket *> output_usages;
for (const bNodeSocket *output_socket : bnode.output_sockets()) {
if (!output_socket->is_available()) {
continue;
}
if (lf::OutputSocket *is_used_socket = socket_is_used_map_[output_socket->index_in_tree()]) {
output_usages.append_non_duplicates(is_used_socket);
}
}
/* Assume every input is used when any output is used. */
lf::OutputSocket *lf_usage = this->or_socket_usages(output_usages, or_socket_usages_cache);
if (lf_usage == nullptr) {
return;
}
for (const bNodeSocket *input_socket : bnode.input_sockets()) {
if (input_socket->is_available()) {
socket_is_used_map_[input_socket->index_in_tree()] = lf_usage;
}
}
}
void build_group_input_usages(OrSocketUsagesCache &or_socket_usages_cache)
{
const Span<const bNode *> group_input_nodes = btree_.group_input_nodes();
for (const int i : btree_.interface_inputs().index_range()) {
Vector<lf::OutputSocket *> target_usages;
for (const bNode *group_input_node : group_input_nodes) {
if (lf::OutputSocket *lf_socket =
socket_is_used_map_[group_input_node->output_socket(i).index_in_tree()]) {
target_usages.append_non_duplicates(lf_socket);
}
}
lf::OutputSocket *lf_socket = this->or_socket_usages(target_usages, or_socket_usages_cache);
lf::InputSocket *lf_group_output = const_cast<lf::InputSocket *>(
mapping_->group_input_usage_sockets[i]);
InputUsageHint input_usage_hint;
if (lf_socket == nullptr) {
static const bool static_false = false;
lf_group_output->set_default_value(&static_false);
input_usage_hint.type = InputUsageHintType::Never;
}
else {
lf_graph_->add_link(*lf_socket, *lf_group_output);
if (lf_socket->node().is_dummy()) {
/* Can support slightly more complex cases where it depends on more than one output in
* the future. */
input_usage_hint.type = InputUsageHintType::DependsOnOutput;
input_usage_hint.output_dependencies = {
mapping_->group_output_used_sockets.first_index_of(lf_socket)};
}
else {
input_usage_hint.type = InputUsageHintType::DynamicSocket;
}
}
lf_graph_info_->mapping.group_input_usage_hints.append(std::move(input_usage_hint));
}
}
void link_output_used_sockets_for_builtin_nodes()
{
for (const auto &[output_bsocket, lf_input] : output_used_sockets_for_builtin_nodes_) {
if (lf::OutputSocket *lf_is_used = socket_is_used_map_[output_bsocket->index_in_tree()]) {
lf_graph_->add_link(*lf_is_used, *lf_input);
}
else {
static const bool static_false = false;
lf_input->set_default_value(&static_false);
}
}
}
void build_attribute_propagation_sets()
{
ResourceScope scope;
const Array<const aal::RelationsInNode *> relations_by_node =
bke::anonymous_attribute_inferencing::get_relations_by_node(btree_, scope);
VectorSet<AttributeReferenceKey> attribute_reference_keys;
/* Indexed by reference key index. */
Vector<AttributeReferenceInfo> attribute_reference_infos;
this->build_attribute_references(
relations_by_node, attribute_reference_keys, attribute_reference_infos);
MultiValueMap<const bNodeSocket *, int> referenced_by_field_socket;
MultiValueMap<const bNodeSocket *, int> propagated_to_geometry_socket;
this->gather_referenced_and_potentially_propagated_data(relations_by_node,
attribute_reference_keys,
attribute_reference_infos,
referenced_by_field_socket,
propagated_to_geometry_socket);
MultiValueMap<const bNodeSocket *, int> required_propagated_to_geometry_socket;
this->gather_required_propagated_data(relations_by_node,
attribute_reference_keys,
referenced_by_field_socket,
propagated_to_geometry_socket,
required_propagated_to_geometry_socket);
this->build_attribute_sets_to_propagate(attribute_reference_keys,
attribute_reference_infos,
required_propagated_to_geometry_socket);
}
void build_attribute_references(const Span<const aal::RelationsInNode *> relations_by_node,
VectorSet<AttributeReferenceKey> &r_attribute_reference_keys,
Vector<AttributeReferenceInfo> &r_attribute_reference_infos)
{
auto add_get_attributes_node = [&](lf::OutputSocket &lf_field_socket) -> lf::OutputSocket & {
const ValueOrFieldCPPType &type = *ValueOrFieldCPPType::get_from_self(
lf_field_socket.type());
auto lazy_function = std::make_unique<LazyFunctionForAnonymousAttributeSetExtract>(type);
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
lf_graph_->add_link(lf_field_socket, lf_node.input(0));
lf_graph_info_->functions.append(std::move(lazy_function));
return lf_node.output(0);
};
/* Find nodes that create new anonymous attributes. */
for (const bNode *node : btree_.all_nodes()) {
const aal::RelationsInNode &relations = *relations_by_node[node->index()];
for (const aal::AvailableRelation &relation : relations.available_relations) {
const bNodeSocket &geometry_bsocket = node->output_socket(relation.geometry_output);
const bNodeSocket &field_bsocket = node->output_socket(relation.field_output);
if (!field_bsocket.is_available()) {
continue;
}
if (!field_bsocket.is_directly_linked()) {
continue;
}
AttributeReferenceKey key;
key.type = AttributeReferenceKeyType::Socket;
key.bsocket = &field_bsocket;
const int key_index = r_attribute_reference_keys.index_of_or_add(key);
if (key_index >= r_attribute_reference_infos.size()) {
AttributeReferenceInfo info;
lf::OutputSocket &lf_field_socket = *output_socket_map_.lookup(&field_bsocket);
info.lf_attribute_set_socket = &add_get_attributes_node(lf_field_socket);
r_attribute_reference_infos.append(info);
}
AttributeReferenceInfo &info = r_attribute_reference_infos[key_index];
if (geometry_bsocket.is_available()) {
info.initial_geometry_sockets.append(&geometry_bsocket);
}
}
}
/* Find field group inputs that are evaluated within this node tree. */
const aal::RelationsInNode &tree_relations = *btree_.runtime->anonymous_attribute_relations;
for (const aal::EvalRelation &relation : tree_relations.eval_relations) {
AttributeReferenceKey key;
key.type = AttributeReferenceKeyType::InputField;
key.index = relation.field_input;
r_attribute_reference_keys.add_new(key);
AttributeReferenceInfo info;
lf::OutputSocket &lf_field_socket = *const_cast<lf::OutputSocket *>(
mapping_->group_input_sockets[relation.field_input]);
info.lf_attribute_set_socket = &add_get_attributes_node(lf_field_socket);
for (const bNode *bnode : btree_.group_input_nodes()) {
info.initial_geometry_sockets.append(&bnode->output_socket(relation.geometry_input));
}
r_attribute_reference_infos.append(std::move(info));
}
/* Find group outputs that attributes need to be propagated to. */
for (const aal::PropagateRelation &relation : tree_relations.propagate_relations) {
AttributeReferenceKey key;
key.type = AttributeReferenceKeyType::OutputGeometry;
key.index = relation.to_geometry_output;
const int key_index = r_attribute_reference_keys.index_of_or_add(key);
if (key_index >= r_attribute_reference_infos.size()) {
AttributeReferenceInfo info;
info.lf_attribute_set_socket = const_cast<lf::OutputSocket *>(
mapping_->attribute_set_by_geometry_output.lookup(relation.to_geometry_output));
r_attribute_reference_infos.append(info);
}
AttributeReferenceInfo &info = r_attribute_reference_infos[key_index];
for (const bNode *bnode : btree_.group_input_nodes()) {
info.initial_geometry_sockets.append(&bnode->output_socket(relation.from_geometry_input));
}
}
}
/**
* For every field socket, figure out which anonymous attributes it may reference.
* For every geometry socket, figure out which anonymous attributes may be propagated to it.
*/
void gather_referenced_and_potentially_propagated_data(
const Span<const aal::RelationsInNode *> relations_by_node,
const Span<AttributeReferenceKey> attribute_reference_keys,
const Span<AttributeReferenceInfo> attribute_reference_infos,
MultiValueMap<const bNodeSocket *, int> &r_referenced_by_field_socket,
MultiValueMap<const bNodeSocket *, int> &r_propagated_to_geometry_socket)
{
/* Initialize maps. */
for (const int key_index : attribute_reference_keys.index_range()) {
const AttributeReferenceKey &key = attribute_reference_keys[key_index];
const AttributeReferenceInfo &info = attribute_reference_infos[key_index];
switch (key.type) {
case AttributeReferenceKeyType::InputField: {
for (const bNode *bnode : btree_.group_input_nodes()) {
const bNodeSocket &bsocket = bnode->output_socket(key.index);
r_referenced_by_field_socket.add(&bsocket, key_index);
}
break;
}
case AttributeReferenceKeyType::OutputGeometry: {
break;
}
case AttributeReferenceKeyType::Socket: {
r_referenced_by_field_socket.add(key.bsocket, key_index);
break;
}
}
for (const bNodeSocket *geometry_bsocket : info.initial_geometry_sockets) {
r_propagated_to_geometry_socket.add(geometry_bsocket, key_index);
}
}
/* Propagate attribute usages from left to right. */
for (const bNode *bnode : btree_.toposort_left_to_right()) {
for (const bNodeSocket *bsocket : bnode->input_sockets()) {
if (bsocket->is_available()) {
Vector<int> referenced_keys;
Vector<int> propagated_keys;
for (const bNodeLink *blink : bsocket->directly_linked_links()) {
if (blink->is_used()) {
referenced_keys.extend_non_duplicates(
r_referenced_by_field_socket.lookup(blink->fromsock));
propagated_keys.extend_non_duplicates(
r_propagated_to_geometry_socket.lookup(blink->fromsock));
}
}
if (!referenced_keys.is_empty()) {
r_referenced_by_field_socket.add_multiple(bsocket, referenced_keys);
}
if (!propagated_keys.is_empty()) {
r_propagated_to_geometry_socket.add_multiple(bsocket, propagated_keys);
}
}
}
const aal::RelationsInNode &relations = *relations_by_node[bnode->index()];
for (const aal::ReferenceRelation &relation : relations.reference_relations) {
const bNodeSocket &input_bsocket = bnode->input_socket(relation.from_field_input);
const bNodeSocket &output_bsocket = bnode->output_socket(relation.to_field_output);
if (!input_bsocket.is_available() || !output_bsocket.is_available()) {
continue;
}
r_referenced_by_field_socket.add_multiple(
&output_bsocket, Vector<int>(r_referenced_by_field_socket.lookup(&input_bsocket)));
}
for (const aal::PropagateRelation &relation : relations.propagate_relations) {
const bNodeSocket &input_bsocket = bnode->input_socket(relation.from_geometry_input);
const bNodeSocket &output_bsocket = bnode->output_socket(relation.to_geometry_output);
if (!input_bsocket.is_available() || !output_bsocket.is_available()) {
continue;
}
r_propagated_to_geometry_socket.add_multiple(
&output_bsocket, Vector<int>(r_propagated_to_geometry_socket.lookup(&input_bsocket)));
}
}
}
/**
* Determines which anonymous attributes should be propagated to which geometry sockets.
*/
void gather_required_propagated_data(
const Span<const aal::RelationsInNode *> relations_by_node,
const VectorSet<AttributeReferenceKey> &attribute_reference_keys,
const MultiValueMap<const bNodeSocket *, int> &referenced_by_field_socket,
const MultiValueMap<const bNodeSocket *, int> &propagated_to_geometry_socket,
MultiValueMap<const bNodeSocket *, int> &r_required_propagated_to_geometry_socket)
{
const aal::RelationsInNode &tree_relations = *btree_.runtime->anonymous_attribute_relations;
MultiValueMap<const bNodeSocket *, int> required_by_geometry_socket;
/* Initialize required attributes at group output. */
if (const bNode *group_output_bnode = btree_.group_output_node()) {
for (const aal::PropagateRelation &relation : tree_relations.propagate_relations) {
AttributeReferenceKey key;
key.type = AttributeReferenceKeyType::OutputGeometry;
key.index = relation.to_geometry_output;
const int key_index = attribute_reference_keys.index_of(key);
required_by_geometry_socket.add(
&group_output_bnode->input_socket(relation.to_geometry_output), key_index);
}
for (const aal::AvailableRelation &relation : tree_relations.available_relations) {
const bNodeSocket &geometry_bsocket = group_output_bnode->input_socket(
relation.geometry_output);
const bNodeSocket &field_bsocket = group_output_bnode->input_socket(relation.field_output);
required_by_geometry_socket.add_multiple(
&geometry_bsocket, referenced_by_field_socket.lookup(&field_bsocket));
}
}
/* Propagate attribute usages from right to left. */
for (const bNode *bnode : btree_.toposort_right_to_left()) {
const aal::RelationsInNode &relations = *relations_by_node[bnode->index()];
for (const bNodeSocket *bsocket : bnode->output_sockets()) {
if (!bsocket->is_available()) {
continue;
}
Vector<int> required_attributes;
for (const bNodeLink *blink : bsocket->directly_linked_links()) {
if (blink->is_used()) {
const bNodeSocket &to_socket = *blink->tosock;
required_attributes.extend_non_duplicates(
required_by_geometry_socket.lookup(&to_socket));
}
}
const Span<int> available_attributes = propagated_to_geometry_socket.lookup(bsocket);
for (const int key_index : required_attributes) {
if (available_attributes.contains(key_index)) {
required_by_geometry_socket.add(bsocket, key_index);
const AttributeReferenceKey &key = attribute_reference_keys[key_index];
if (key.type != AttributeReferenceKeyType::Socket ||
&key.bsocket->owner_node() != bnode) {
r_required_propagated_to_geometry_socket.add(bsocket, key_index);
}
}
}
}
for (const bNodeSocket *bsocket : bnode->input_sockets()) {
if (!bsocket->is_available()) {
continue;
}
Vector<int> required_attributes;
for (const aal::PropagateRelation &relation : relations.propagate_relations) {
if (relation.from_geometry_input == bsocket->index()) {
const bNodeSocket &output_bsocket = bnode->output_socket(relation.to_geometry_output);
required_attributes.extend_non_duplicates(
required_by_geometry_socket.lookup(&output_bsocket));
}
}
for (const aal::EvalRelation &relation : relations.eval_relations) {
if (relation.geometry_input == bsocket->index()) {
const bNodeSocket &field_bsocket = bnode->input_socket(relation.field_input);
if (field_bsocket.is_available()) {
required_attributes.extend_non_duplicates(
referenced_by_field_socket.lookup(&field_bsocket));
}
}
}
const Span<int> available_attributes = propagated_to_geometry_socket.lookup(bsocket);
for (const int key_index : required_attributes) {
if (available_attributes.contains(key_index)) {
required_by_geometry_socket.add(bsocket, key_index);
}
}
}
}
}
/**
* For every node that propagates attributes, prepare an attribute set containing information
* about which attributes should be propagated.
*/
void build_attribute_sets_to_propagate(
const Span<AttributeReferenceKey> attribute_reference_keys,
const Span<AttributeReferenceInfo> attribute_reference_infos,
const MultiValueMap<const bNodeSocket *, int> &required_propagated_to_geometry_socket)
{
JoinAttibuteSetsCache join_attribute_sets_cache;
for (const auto [geometry_output_bsocket, lf_attribute_set_input] :
attribute_set_propagation_map_.items()) {
const Span<int> required = required_propagated_to_geometry_socket.lookup(
geometry_output_bsocket);
Vector<lf::OutputSocket *> attribute_set_sockets;
Vector<lf::OutputSocket *> used_sockets;
for (const int i : required.index_range()) {
const int key_index = required[i];
const AttributeReferenceKey &key = attribute_reference_keys[key_index];
const AttributeReferenceInfo &info = attribute_reference_infos[key_index];
lf::OutputSocket *lf_socket_usage = nullptr;
switch (key.type) {
case AttributeReferenceKeyType::InputField: {
lf_socket_usage = const_cast<lf::InputSocket *>(
mapping_->group_input_usage_sockets[key.index])
->origin();
break;
}
case AttributeReferenceKeyType::OutputGeometry: {
lf_socket_usage = const_cast<lf::OutputSocket *>(
mapping_->group_output_used_sockets[key.index]);
break;
}
case AttributeReferenceKeyType::Socket: {
lf_socket_usage = socket_is_used_map_[key.bsocket->index_in_tree()];
break;
}
}
if (lf_socket_usage) {
attribute_set_sockets.append(info.lf_attribute_set_socket);
used_sockets.append(lf_socket_usage);
}
}
if (lf::OutputSocket *joined_attribute_set = this->join_attribute_sets(
attribute_set_sockets, used_sockets, join_attribute_sets_cache)) {
lf_graph_->add_link(*joined_attribute_set, *lf_attribute_set_input);
}
else {
static const bke::AnonymousAttributeSet empty_set;
lf_attribute_set_input->set_default_value(&empty_set);
}
}
}
using JoinAttibuteSetsCache = Map<Vector<lf::OutputSocket *>, lf::OutputSocket *>;
/**
* Join multiple attributes set into a single attribute set that can be passed into a node.
*/
lf::OutputSocket *join_attribute_sets(const Span<lf::OutputSocket *> attribute_set_sockets,
const Span<lf::OutputSocket *> used_sockets,
JoinAttibuteSetsCache &cache)
{
BLI_assert(attribute_set_sockets.size() == used_sockets.size());
if (attribute_set_sockets.is_empty()) {
return nullptr;
}
if (attribute_set_sockets.size() == 1) {
return attribute_set_sockets[0];
}
Vector<lf::OutputSocket *, 16> key;
key.extend(attribute_set_sockets);
key.extend(used_sockets);
std::sort(key.begin(), key.end());
return cache.lookup_or_add_cb(key, [&]() {
auto lazy_function = std::make_unique<LazyFunctionForAnonymousAttributeSetJoin>(
attribute_set_sockets.size());
lf::Node &lf_node = lf_graph_->add_function(*lazy_function);
for (const int i : attribute_set_sockets.index_range()) {
lf::InputSocket &lf_use_input = lf_node.input(lazy_function->get_use_input(i));
socket_usage_inputs_.add(&lf_use_input);
lf::InputSocket &lf_attributes_input = lf_node.input(
lazy_function->get_attribute_set_input(i));
lf_graph_->add_link(*used_sockets[i], lf_use_input);
lf_graph_->add_link(*attribute_set_sockets[i], lf_attributes_input);
}
lf_graph_info_->functions.append(std::move(lazy_function));
return &lf_node.output(0);
});
}
/**
* By depending on "the future" (whether a specific socket is used in the future), it is possible
* to introduce cycles in the graph. This function finds those cycles and breaks them by removing
* specific links.
*
* Example for a cycle: There is a `Distribute Points on Faces` node and its `Normal` output is
* only used when the number of generated points is larger than 1000 because of some switch node
* later in the tree. In this case, to know whether the `Normal` output is needed, one first has
* to compute the points, but for that one has to know whether the normal information has to be
* added to the points. The fix is to always add the normal information in this case.
*/
void fix_link_cycles()
{
lf_graph_->update_socket_indices();
const int sockets_num = lf_graph_->socket_num();
struct SocketState {
bool done = false;
bool in_stack = false;
};
Array<SocketState> socket_states(sockets_num);
Stack<lf::Socket *> lf_sockets_to_check;
for (lf::Node *lf_node : lf_graph_->nodes()) {
if (lf_node->is_function()) {
for (lf::OutputSocket *lf_socket : lf_node->outputs()) {
if (lf_socket->targets().is_empty()) {
lf_sockets_to_check.push(lf_socket);
}
}
}
if (lf_node->outputs().is_empty()) {
for (lf::InputSocket *lf_socket : lf_node->inputs()) {
lf_sockets_to_check.push(lf_socket);
}
}
}
Vector<lf::Socket *> lf_socket_stack;
while (!lf_sockets_to_check.is_empty()) {
lf::Socket *lf_inout_socket = lf_sockets_to_check.peek();
lf::Node &lf_node = lf_inout_socket->node();
SocketState &state = socket_states[lf_inout_socket->index_in_graph()];
lf_socket_stack.append(lf_inout_socket);
state.in_stack = true;
Vector<lf::Socket *, 16> lf_origin_sockets;
if (lf_inout_socket->is_input()) {
lf::InputSocket &lf_input_socket = lf_inout_socket->as_input();
if (lf::OutputSocket *lf_origin_socket = lf_input_socket.origin()) {
lf_origin_sockets.append(lf_origin_socket);
}
}
else {
lf::OutputSocket &lf_output_socket = lf_inout_socket->as_output();
if (lf_node.is_function()) {
lf::FunctionNode &lf_function_node = static_cast<lf::FunctionNode &>(lf_node);
const lf::LazyFunction &fn = lf_function_node.function();
fn.possible_output_dependencies(
lf_output_socket.index(), [&](const Span<int> input_indices) {
for (const int input_index : input_indices) {
lf_origin_sockets.append(&lf_node.input(input_index));
}
});
}
}
bool pushed_socket = false;
for (lf::Socket *lf_origin_socket : lf_origin_sockets) {
if (socket_states[lf_origin_socket->index_in_graph()].in_stack) {
const Span<lf::Socket *> cycle = lf_socket_stack.as_span().drop_front(
lf_socket_stack.first_index_of(lf_origin_socket));
bool broke_cycle = false;
for (lf::Socket *lf_cycle_socket : cycle) {
if (lf_cycle_socket->is_input() &&
socket_usage_inputs_.contains(&lf_cycle_socket->as_input())) {
lf::InputSocket &lf_cycle_input_socket = lf_cycle_socket->as_input();
lf_graph_->clear_origin(lf_cycle_input_socket);
static const bool static_true = true;
lf_cycle_input_socket.set_default_value(&static_true);
broke_cycle = true;
}
}
if (!broke_cycle) {
BLI_assert_unreachable();
}
}
else if (!socket_states[lf_origin_socket->index_in_graph()].done) {
lf_sockets_to_check.push(lf_origin_socket);
pushed_socket = true;
}
}
if (pushed_socket) {
continue;
}
state.done = true;
state.in_stack = false;
lf_sockets_to_check.pop();
lf_socket_stack.pop_last();
}
}
void print_graph();
};
class UsedSocketVisualizeOptions : public lf::Graph::ToDotOptions {
private:
const GeometryNodesLazyFunctionGraphBuilder &builder_;
Map<const lf::Socket *, std::string> socket_font_colors_;
Map<const lf::Socket *, std::string> socket_name_suffixes_;
public:
UsedSocketVisualizeOptions(const GeometryNodesLazyFunctionGraphBuilder &builder)
: builder_(builder)
{
VectorSet<lf::OutputSocket *> found;
for (const int bsocket_index : builder_.socket_is_used_map_.index_range()) {
const bNodeSocket *bsocket = builder_.btree_.all_sockets()[bsocket_index];
lf::OutputSocket *lf_used_socket = builder_.socket_is_used_map_[bsocket_index];
if (lf_used_socket == nullptr) {
continue;
}
const float hue = BLI_hash_int_01(uintptr_t(lf_used_socket));
std::stringstream ss;
ss.precision(3);
ss << hue << " 0.9 0.5";
const std::string color_str = ss.str();
const std::string suffix = " (" + std::to_string(found.index_of_or_add(lf_used_socket)) +
")";
socket_font_colors_.add(lf_used_socket, color_str);
socket_name_suffixes_.add(lf_used_socket, suffix);
if (bsocket->is_input()) {
for (const lf::InputSocket *lf_socket : builder_.input_socket_map_.lookup(bsocket)) {
socket_font_colors_.add(lf_socket, color_str);
socket_name_suffixes_.add(lf_socket, suffix);
}
}
else if (lf::OutputSocket *lf_socket = builder_.output_socket_map_.lookup(bsocket)) {
socket_font_colors_.add(lf_socket, color_str);
socket_name_suffixes_.add(lf_socket, suffix);
}
}
}
std::optional<std::string> socket_font_color(const lf::Socket &socket) const override
{
if (const std::string *color = socket_font_colors_.lookup_ptr(&socket)) {
return *color;
}
return std::nullopt;
}
std::string socket_name(const lf::Socket &socket) const override
{
return socket.name() + socket_name_suffixes_.lookup_default(&socket, "");
}
void add_edge_attributes(const lf::OutputSocket & /*from*/,
const lf::InputSocket &to,
dot::DirectedEdge &dot_edge) const override
{
if (builder_.socket_usage_inputs_.contains_as(&to)) {
// dot_edge.attributes.set("constraint", "false");
dot_edge.attributes.set("color", "#00000055");
}
}
};
void GeometryNodesLazyFunctionGraphBuilder::print_graph()
{
UsedSocketVisualizeOptions options{*this};
std::cout << "\n\n" << lf_graph_->to_dot(options) << "\n\n";
}
const GeometryNodesLazyFunctionGraphInfo *ensure_geometry_nodes_lazy_function_graph(
const bNodeTree &btree)
{
btree.ensure_topology_cache();
if (btree.has_available_link_cycle()) {
return nullptr;
}
if (const ID *id_orig = DEG_get_original_id(const_cast<ID *>(&btree.id))) {
if (id_orig->tag & LIB_TAG_MISSING) {
return nullptr;
}
}
for (const bNodeSocket *interface_bsocket : btree.interface_inputs()) {
if (interface_bsocket->typeinfo->geometry_nodes_cpp_type == nullptr) {
return nullptr;
}
}
for (const bNodeSocket *interface_bsocket : btree.interface_outputs()) {
if (interface_bsocket->typeinfo->geometry_nodes_cpp_type == nullptr) {
return nullptr;
}
}
std::unique_ptr<GeometryNodesLazyFunctionGraphInfo> &lf_graph_info_ptr =
btree.runtime->geometry_nodes_lazy_function_graph_info;
if (lf_graph_info_ptr) {
return lf_graph_info_ptr.get();
}
std::lock_guard lock{btree.runtime->geometry_nodes_lazy_function_graph_info_mutex};
if (lf_graph_info_ptr) {
return lf_graph_info_ptr.get();
}
auto lf_graph_info = std::make_unique<GeometryNodesLazyFunctionGraphInfo>();
GeometryNodesLazyFunctionGraphBuilder builder{btree, *lf_graph_info};
builder.build();
lf_graph_info_ptr = std::move(lf_graph_info);
return lf_graph_info_ptr.get();
}
GeometryNodesLazyFunctionLogger::GeometryNodesLazyFunctionLogger(
const GeometryNodesLazyFunctionGraphInfo &lf_graph_info)
: lf_graph_info_(lf_graph_info)
{
}
void GeometryNodesLazyFunctionLogger::log_socket_value(
const fn::lazy_function::Socket &lf_socket,
const GPointer value,
const fn::lazy_function::Context &context) const
{
/* In this context we expect only a single kind of user data, so use `static_cast`. */
GeoNodesLFUserData *user_data = static_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(dynamic_cast<GeoNodesLFUserData *>(context.user_data) != nullptr);
if (!user_data->log_socket_values) {
return;
}
if (user_data->modifier_data->eval_log == nullptr) {
return;
}
const Span<const bNodeSocket *> bsockets =
lf_graph_info_.mapping.bsockets_by_lf_socket_map.lookup(&lf_socket);
if (bsockets.is_empty()) {
return;
}
geo_eval_log::GeoTreeLogger &tree_logger =
user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context);
for (const bNodeSocket *bsocket : bsockets) {
/* Avoid logging to some sockets when the same value will also be logged to a linked socket.
* This reduces the number of logged values without losing information. */
if (bsocket->is_input() && bsocket->is_directly_linked()) {
continue;
}
const bNode &bnode = bsocket->owner_node();
if (bnode.is_reroute()) {
continue;
}
tree_logger.log_value(bsocket->owner_node(), *bsocket, value);
}
}
static std::mutex dump_error_context_mutex;
void GeometryNodesLazyFunctionLogger::dump_when_outputs_are_missing(
const lf::FunctionNode &node,
Span<const lf::OutputSocket *> missing_sockets,
const lf::Context &context) const
{
std::lock_guard lock{dump_error_context_mutex};
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
user_data->compute_context->print_stack(std::cout, node.name());
std::cout << "Missing outputs:\n";
for (const lf::OutputSocket *socket : missing_sockets) {
std::cout << " " << socket->name() << "\n";
}
}
void GeometryNodesLazyFunctionLogger::dump_when_input_is_set_twice(
const lf::InputSocket &target_socket,
const lf::OutputSocket &from_socket,
const lf::Context &context) const
{
std::lock_guard lock{dump_error_context_mutex};
std::stringstream ss;
ss << from_socket.node().name() << ":" << from_socket.name() << " -> "
<< target_socket.node().name() << ":" << target_socket.name();
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
user_data->compute_context->print_stack(std::cout, ss.str());
}
Vector<const lf::FunctionNode *> GeometryNodesLazyFunctionSideEffectProvider::
get_nodes_with_side_effects(const lf::Context &context) const
{
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
const ComputeContextHash &context_hash = user_data->compute_context->hash();
const GeoNodesModifierData &modifier_data = *user_data->modifier_data;
return modifier_data.side_effect_nodes->lookup(context_hash);
}
GeometryNodesLazyFunctionGraphInfo::GeometryNodesLazyFunctionGraphInfo() = default;
GeometryNodesLazyFunctionGraphInfo::~GeometryNodesLazyFunctionGraphInfo()
{
for (GMutablePointer &p : this->values_to_destruct) {
p.destruct();
}
}
[[maybe_unused]] static void add_thread_id_debug_message(
const GeometryNodesLazyFunctionGraphInfo &lf_graph_info,
const lf::FunctionNode &node,
const lf::Context &context)
{
static std::atomic<int> thread_id_source = 0;
static thread_local const int thread_id = thread_id_source.fetch_add(1);
static thread_local const std::string thread_id_str = "Thread: " + std::to_string(thread_id);
GeoNodesLFUserData *user_data = dynamic_cast<GeoNodesLFUserData *>(context.user_data);
BLI_assert(user_data != nullptr);
if (user_data->modifier_data->eval_log == nullptr) {
return;
}
geo_eval_log::GeoTreeLogger &tree_logger =
user_data->modifier_data->eval_log->get_local_tree_logger(*user_data->compute_context);
/* Find corresponding node based on the socket mapping. */
auto check_sockets = [&](const Span<const lf::Socket *> lf_sockets) {
for (const lf::Socket *lf_socket : lf_sockets) {
const Span<const bNodeSocket *> bsockets =
lf_graph_info.mapping.bsockets_by_lf_socket_map.lookup(lf_socket);
if (!bsockets.is_empty()) {
const bNodeSocket &bsocket = *bsockets[0];
const bNode &bnode = bsocket.owner_node();
tree_logger.debug_messages.append({bnode.identifier, thread_id_str});
return true;
}
}
return false;
};
if (check_sockets(node.inputs().cast<const lf::Socket *>())) {
return;
}
check_sockets(node.outputs().cast<const lf::Socket *>());
}
void GeometryNodesLazyFunctionLogger::log_before_node_execute(const lf::FunctionNode &node,
const lf::Params & /*params*/,
const lf::Context &context) const
{
/* Enable this to see the threads that invoked a node. */
if constexpr (false) {
add_thread_id_debug_message(lf_graph_info_, node, context);
}
}
} // namespace blender::nodes