Compare commits

..

15 Commits

Author SHA1 Message Date
ca7079a44e Merge branch 'master' into outliner-cpp-refactor 2020-11-11 17:35:26 +01:00
fdd9cb713e Merge branch 'master' into outliner-cpp-refactor 2020-11-09 13:56:13 +01:00
8c4f121492 Cleanup: Split header for Outliner tree building into C and C++ headers
It's odd to include a C++ header (".hh") in C code, we should avoid that. All
of the Outliner code should be moved to C++, I don't expect this C header to
stay for long.
2020-11-09 13:54:30 +01:00
c796364f05 Cleanup: Rename Outliner "tree-view" types to "tree-display" & update comments
"View" leads to weird names like `TreeViewViewLayer` and after all they are
specific to what we call a "display mode", so "display" is more appropriate.

Also add, update and correct comments.
2020-11-09 13:37:28 +01:00
4a572f06e9 Cleanup: Follow C++ code style for new Outliner building code
* Use C++17 nested namespaces.
* Use `_` suffix rather than prefix for private member variables.

Also: Simplify code visually in `tree_view.cc` with `using namespace`.
2020-11-09 12:21:51 +01:00
fa91f90287 Cleanup: General cleanup of Outliner Blender File display mode building
* Turn functions into member functions (makes API for a type more obvious &
  local, allows implicitly sharing data through member variables, enables order
  independend definition of functions, allows more natural language for
  function names because of the obvious context).
* Prefer references over pointers for passing by reference (makes clear that
  NULL is not a valid value and that the current scope is not the owner).
* Reduce indentation levels, use `continue` in loops to ensure preconditions
  are met.
* Add asserts for sanity checks.
2020-11-09 00:37:41 +01:00
2d60f64960 UI Code Quality: Convert Outliner Blender File mode to new tree buiding design
See https://developer.blender.org/D9499.

Also:
* Add `space_outliner/tree/common.cc` for functions shared between display
  modes.
* Had to add a cast to `ListBaseWrapper` to make it work with ID lists.
* Cleanup: Remove internal `Tree` alias for `ListBase`. That was more confusing
  than helpful.
2020-11-07 22:46:51 +01:00
fc6338d863 Cleanup: Put Outliner C++ namespace into blender::ed namespace, add comments
Also remove unnecessary forward declaration.
2020-11-07 14:23:06 +01:00
d962ca7387 Fix possible null-pointer dereference in new Outliner tree building code 2020-11-07 01:24:18 +01:00
e1a361d287 Cleanup: Remove redundant parameter from new Outliner tree building code 2020-11-07 01:21:47 +01:00
8b787089b3 Merge branch 'master' into outliner-cpp-refactor 2020-11-07 01:09:59 +01:00
126b6f8cc7 Cleanup: Comments & style improvements for new Outliner C++ code
* Add comments to explain the design ideas better.
* Follow code style guide for class layout.
* Avoid uninitialized value after construction (general good practice).
2020-11-07 01:04:17 +01:00
86fe1ec968 UI Code Quality: Use C++ data-structures for Outliner object hierarchy building
* Use `blender::Map` over `GHash`
* Use `blender::Vector` over allocated `ListBase *`

Benefits:
* Significantly reduces the amount of heap allocations in large trees (e.g.
  from O(n) to O(log(n)), where n is number of objects).
* Higher type safety (no `void *`, virtually no casts).
* More optimized (e.g. small buffer optimization).
* More practicable, const-correct APIs with well-defined exception behavior.

Code generally becomes more readable (less lines of code, less boilerplate,
more logic-focused APIs because of greater language flexibility).
2020-11-07 00:15:09 +01:00
6f87489536 UI Code Quality: General refactor of Outliner View Layer display mode creation
* Turn functions into member functions (makes API for a type more obvious &
  local, allows implicitly sharing data through member variables, enables order
  independend definition of functions, allows more natural language for
  function names because of the obvious context).
* Move important variables to classes rather than passing around all the time
  (shorter, more task-focused code, localizes important data names).
* Add helper class for adding object children sub-trees (smaller, more focused
  units are easier to reason about, have higher coherence, better testability,
  can manage own resources easily with RAII).
* Use C++ iterators over C-macros (arguably more readable, less macros is
  generally preferred)
* Add doxygen groups (visually emphasizes the coherence of code sections,
  provide place for higher level comments on sections).
* Prefer references over pointers for passing by reference (makes clear that
  NULL is not a valid value and that the current scope is not the owner).
2020-11-06 22:55:36 +01:00
cf94571762 UI Code Quality: Start refactoring Outliner tree creation (using C++)
The Outliner tree creation was very messy and hard to follow. Hardcoded display
type checks are scattered over many places.
This introduces a new abstraction "tree-view" to help constructing and managing
the tree for the different display types (View Layer, Scene, Blender file,
etc.).

Idea is to have an abstract base class to define an interface
(`AbstractTreeView`), and then subclasses with the implementation of each
display type (e.g. `TreeViewViewLayer`, `TreeViewBlenderFile`, etc). The
tree-viewer is kept alive until tree-rebuild as runtime data of the space, so
that further queries based on the display type can be executed (e.g. "does the
view support selection syncing?", "does it support restriction toggle
columns?", etc.).

I may still change the names a bit, not sure yet if "tree-view" is the right
term for this helper.
2020-11-06 20:54:20 +01:00
745 changed files with 12437 additions and 21684 deletions

View File

@@ -29,6 +29,7 @@ Checks: >
-bugprone-sizeof-expression,
-bugprone-integer-division,
-bugprone-exception-escape,
-bugprone-redundant-branch-condition,
modernize-*,

View File

@@ -1480,12 +1480,10 @@ if(CMAKE_COMPILER_IS_GNUCC)
ADD_CHECK_C_COMPILER_FLAG(C_REMOVE_STRICT_FLAGS C_WARN_NO_INT_IN_BOOL_CONTEXT -Wno-int-in-bool-context)
ADD_CHECK_C_COMPILER_FLAG(C_REMOVE_STRICT_FLAGS C_WARN_NO_FORMAT -Wno-format)
ADD_CHECK_C_COMPILER_FLAG(C_REMOVE_STRICT_FLAGS C_WARN_NO_SWITCH -Wno-switch)
ADD_CHECK_C_COMPILER_FLAG(C_REMOVE_STRICT_FLAGS C_WARN_NO_UNUSED_VARIABLE -Wno-unused-variable)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_CLASS_MEMACCESS -Wno-class-memaccess)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_COMMENT -Wno-comment)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_UNUSED_TYPEDEFS -Wno-unused-local-typedefs)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_UNUSED_VARIABLE -Wno-unused-variable)
if(CMAKE_COMPILER_IS_GNUCC AND (NOT "${CMAKE_C_COMPILER_VERSION}" VERSION_LESS "7.0"))
ADD_CHECK_C_COMPILER_FLAG(C_REMOVE_STRICT_FLAGS C_WARN_NO_IMPLICIT_FALLTHROUGH -Wno-implicit-fallthrough)
@@ -1540,7 +1538,6 @@ elseif(CMAKE_C_COMPILER_ID MATCHES "Clang")
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_CXX11_NARROWING -Wno-c++11-narrowing)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_NON_VIRTUAL_DTOR -Wno-non-virtual-dtor)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_UNUSED_MACROS -Wno-unused-macros)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_UNUSED_VARIABLE -Wno-unused-variable)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_REORDER -Wno-reorder)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_COMMENT -Wno-comment)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_REMOVE_STRICT_FLAGS CXX_WARN_NO_UNUSED_TYPEDEFS -Wno-unused-local-typedefs)

View File

@@ -18,72 +18,12 @@
# <pep8 compliant>
import dataclasses
import json
import os
from pathlib import Path
from typing import Optional
import codesign.util as util
class ArchiveStateError(Exception):
message: str
def __init__(self, message):
self.message = message
super().__init__(self.message)
@dataclasses.dataclass
class ArchiveState:
"""
Additional information (state) of the archive
Includes information like expected file size of the archive file in the case
the archive file is expected to be successfully created.
If the archive can not be created, this state will contain error message
indicating details of error.
"""
# Size in bytes of the corresponding archive.
file_size: Optional[int] = None
# Non-empty value indicates that error has happenned.
error_message: str = ''
def has_error(self) -> bool:
"""
Check whether the archive is at error state
"""
return self.error_message
def serialize_to_string(self) -> str:
payload = dataclasses.asdict(self)
return json.dumps(payload, sort_keys=True, indent=4)
def serialize_to_file(self, filepath: Path) -> None:
string = self.serialize_to_string()
filepath.write_text(string)
@classmethod
def deserialize_from_string(cls, string: str) -> 'ArchiveState':
try:
object_as_dict = json.loads(string)
except json.decoder.JSONDecodeError:
raise ArchiveStateError('Error parsing JSON')
return cls(**object_as_dict)
@classmethod
def deserialize_from_file(cls, filepath: Path):
string = filepath.read_text()
return cls.deserialize_from_string(string)
class ArchiveWithIndicator:
"""
The idea of this class is to wrap around logic which takes care of keeping
@@ -139,19 +79,6 @@ class ArchiveWithIndicator:
if not self.ready_indicator_filepath.exists():
return False
try:
archive_state = ArchiveState.deserialize_from_file(
self.ready_indicator_filepath)
except ArchiveStateError as error:
print(f'Error deserializing archive state: {error.message}')
return False
if archive_state.has_error():
# If the error did happen during codesign procedure there will be no
# corresponding archive file.
# The caller code will deal with the error check further.
return True
# Sometimes on macOS indicator file appears prior to the actual archive
# despite the order of creation and os.sync() used in tag_ready().
# So consider archive not ready if there is an indicator without an
@@ -161,11 +88,23 @@ class ArchiveWithIndicator:
f'({self.archive_filepath}) to appear.')
return False
# Read archive size from indicator/
#
# Assume that file is either empty or is fully written. This is being checked
# by performing ValueError check since empty string will throw this exception
# when attempted to be converted to int.
expected_archive_size_str = self.ready_indicator_filepath.read_text()
try:
expected_archive_size = int(expected_archive_size_str)
except ValueError:
print(f'Invalid archive size "{expected_archive_size_str}"')
return False
# Wait for until archive is fully stored.
actual_archive_size = self.archive_filepath.stat().st_size
if actual_archive_size != archive_state.file_size:
if actual_archive_size != expected_archive_size:
print('Partial/invalid archive size (expected '
f'{archive_state.file_size} got {actual_archive_size})')
f'{expected_archive_size} got {actual_archive_size})')
return False
return True
@@ -190,7 +129,7 @@ class ArchiveWithIndicator:
print(f'Exception checking archive: {e}')
return False
def tag_ready(self, error_message='') -> None:
def tag_ready(self) -> None:
"""
Tag the archive as ready by creating the corresponding indication file.
@@ -199,34 +138,13 @@ class ArchiveWithIndicator:
If it is violated, an assert will fail.
"""
assert not self.is_ready()
# Try the best to make sure everything is synced to the file system,
# to avoid any possibility of stamp appearing on a network share prior to
# an actual file.
if util.get_current_platform() != util.Platform.WINDOWS:
os.sync()
archive_size = -1
if self.archive_filepath.exists():
archive_size = self.archive_filepath.stat().st_size
archive_info = ArchiveState(
file_size=archive_size, error_message=error_message)
self.ready_indicator_filepath.write_text(
archive_info.serialize_to_string())
def get_state(self) -> ArchiveState:
"""
Get state object for this archive
The state is read from the corresponding state file.
"""
try:
return ArchiveState.deserialize_from_file(self.ready_indicator_filepath)
except ArchiveStateError as error:
return ArchiveState(error_message=f'Error in information format: {error}')
archive_size = self.archive_filepath.stat().st_size
self.ready_indicator_filepath.write_text(str(archive_size))
def clean(self) -> None:
"""

View File

@@ -58,7 +58,6 @@ import codesign.util as util
from codesign.absolute_and_relative_filename import AbsoluteAndRelativeFileName
from codesign.archive_with_indicator import ArchiveWithIndicator
from codesign.exception import CodeSignException
logger = logging.getLogger(__name__)
@@ -146,13 +145,13 @@ class BaseCodeSigner(metaclass=abc.ABCMeta):
def cleanup_environment_for_builder(self) -> None:
# TODO(sergey): Revisit need of cleaning up the existing files.
# In practice it wasn't so helpful, and with multiple clients
# talking to the same server it becomes even more tricky.
# talking to the same server it becomes even mor etricky.
pass
def cleanup_environment_for_signing_server(self) -> None:
# TODO(sergey): Revisit need of cleaning up the existing files.
# In practice it wasn't so helpful, and with multiple clients
# talking to the same server it becomes even more tricky.
# talking to the same server it becomes even mor etricky.
pass
def generate_request_id(self) -> str:
@@ -221,15 +220,9 @@ class BaseCodeSigner(metaclass=abc.ABCMeta):
"""
Wait until archive with signed files is available.
Will only return if the archive with signed files is available. If there
was an error during code sign procedure the SystemExit exception is
raised, with the message set to the error reported by the codesign
server.
Will only wait for the configured time. If that time exceeds and there
is still no responce from the signing server the application will exit
with a non-zero exit code.
"""
signed_archive_info = self.signed_archive_info_for_request_id(
@@ -243,17 +236,9 @@ class BaseCodeSigner(metaclass=abc.ABCMeta):
time.sleep(1)
time_slept_in_seconds = time.monotonic() - time_start
if time_slept_in_seconds > timeout_in_seconds:
signed_archive_info.clean()
unsigned_archive_info.clean()
raise SystemExit("Signing server didn't finish signing in "
f'{timeout_in_seconds} seconds, dying :(')
archive_state = signed_archive_info.get_state()
if archive_state.has_error():
signed_archive_info.clean()
unsigned_archive_info.clean()
raise SystemExit(
f'Error happenned during codesign procedure: {archive_state.error_message}')
f"{timeout_in_seconds} seconds, dying :(")
def copy_signed_files_to_directory(
self, signed_dir: Path, destination_dir: Path) -> None:
@@ -411,13 +396,7 @@ class BaseCodeSigner(metaclass=abc.ABCMeta):
temp_dir)
logger_server.info('Signing all requested files...')
try:
self.sign_all_files(files)
except CodeSignException as error:
signed_archive_info.tag_ready(error_message=error.message)
unsigned_archive_info.clean()
logger_server.info('Signing is complete with errors.')
return
self.sign_all_files(files)
logger_server.info('Packing signed files...')
pack_files(files=files,

View File

@@ -1,26 +0,0 @@
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
class CodeSignException(Exception):
message: str
def __init__(self, message):
self.message = message
super().__init__(self.message)

View File

@@ -33,7 +33,6 @@ from buildbot_utils import Builder
from codesign.absolute_and_relative_filename import AbsoluteAndRelativeFileName
from codesign.base_code_signer import BaseCodeSigner
from codesign.exception import CodeSignException
logger = logging.getLogger(__name__)
logger_server = logger.getChild('server')
@@ -46,10 +45,6 @@ EXTENSIONS_TO_BE_SIGNED = {'.dylib', '.so', '.dmg'}
NAME_PREFIXES_TO_BE_SIGNED = {'python'}
class NotarizationException(CodeSignException):
pass
def is_file_from_bundle(file: AbsoluteAndRelativeFileName) -> bool:
"""
Check whether file is coming from an .app bundle
@@ -191,7 +186,7 @@ class MacOSCodeSigner(BaseCodeSigner):
file.absolute_filepath]
self.run_command_or_mock(command, util.Platform.MACOS)
def codesign_all_files(self, files: List[AbsoluteAndRelativeFileName]) -> None:
def codesign_all_files(self, files: List[AbsoluteAndRelativeFileName]) -> bool:
"""
Run codesign tool on all eligible files in the given list.
@@ -230,6 +225,8 @@ class MacOSCodeSigner(BaseCodeSigner):
file_index + 1, num_signed_files,
signed_file.relative_filepath)
return True
def codesign_bundles(
self, files: List[AbsoluteAndRelativeFileName]) -> None:
"""
@@ -276,6 +273,8 @@ class MacOSCodeSigner(BaseCodeSigner):
files.extend(extra_files)
return True
############################################################################
# Notarization.
@@ -335,40 +334,7 @@ class MacOSCodeSigner(BaseCodeSigner):
logger_server.error('xcrun command did not report RequestUUID')
return None
def notarize_review_status(self, xcrun_output: str) -> bool:
"""
Review status returned by xcrun's notarization info
Returns truth if the notarization process has finished.
If there are errors during notarization, a NotarizationException()
exception is thrown with status message from the notarial office.
"""
# Parse status and message
status = xcrun_field_value_from_output('Status', xcrun_output)
status_message = xcrun_field_value_from_output(
'Status Message', xcrun_output)
if status == 'success':
logger_server.info(
'Package successfully notarized: %s', status_message)
return True
if status == 'invalid':
logger_server.error(xcrun_output)
logger_server.error(
'Package notarization has failed: %s', status_message)
raise NotarizationException(status_message)
if status == 'in progress':
return False
logger_server.info(
'Unknown notarization status %s (%s)', status, status_message)
return False
def notarize_wait_result(self, request_uuid: str) -> None:
def notarize_wait_result(self, request_uuid: str) -> bool:
"""
Wait for until notarial office have a reply
"""
@@ -385,11 +351,29 @@ class MacOSCodeSigner(BaseCodeSigner):
timeout_in_seconds = self.config.MACOS_NOTARIZE_TIMEOUT_IN_SECONDS
while True:
xcrun_output = self.check_output_or_mock(
output = self.check_output_or_mock(
command, util.Platform.MACOS, allow_nonzero_exit_code=True)
# Parse status and message
status = xcrun_field_value_from_output('Status', output)
status_message = xcrun_field_value_from_output(
'Status Message', output)
if self.notarize_review_status(xcrun_output):
break
# Review status.
if status:
if status == 'success':
logger_server.info(
'Package successfully notarized: %s', status_message)
return True
elif status == 'invalid':
logger_server.error(output)
logger_server.error(
'Package notarization has failed: %s', status_message)
return False
elif status == 'in progress':
pass
else:
logger_server.info(
'Unknown notarization status %s (%s)', status, status_message)
logger_server.info('Keep waiting for notarization office.')
time.sleep(30)
@@ -410,6 +394,8 @@ class MacOSCodeSigner(BaseCodeSigner):
command = ['xcrun', 'stapler', 'staple', '-v', file.absolute_filepath]
self.check_output_or_mock(command, util.Platform.MACOS)
return True
def notarize_dmg(self, file: AbsoluteAndRelativeFileName) -> bool:
"""
Run entire pipeline to get DMG notarized.
@@ -428,7 +414,10 @@ class MacOSCodeSigner(BaseCodeSigner):
return False
# Staple.
self.notarize_staple(file)
if not self.notarize_staple(file):
return False
return True
def notarize_all_dmg(
self, files: List[AbsoluteAndRelativeFileName]) -> bool:
@@ -443,7 +432,10 @@ class MacOSCodeSigner(BaseCodeSigner):
if not self.check_file_is_to_be_signed(file):
continue
self.notarize_dmg(file)
if not self.notarize_dmg(file):
return False
return True
############################################################################
# Entry point.
@@ -451,6 +443,11 @@ class MacOSCodeSigner(BaseCodeSigner):
def sign_all_files(self, files: List[AbsoluteAndRelativeFileName]) -> None:
# TODO(sergey): Handle errors somehow.
self.codesign_all_files(files)
self.codesign_bundles(files)
self.notarize_all_dmg(files)
if not self.codesign_all_files(files):
return
if not self.codesign_bundles(files):
return
if not self.notarize_all_dmg(files):
return

View File

@@ -29,7 +29,6 @@ from buildbot_utils import Builder
from codesign.absolute_and_relative_filename import AbsoluteAndRelativeFileName
from codesign.base_code_signer import BaseCodeSigner
from codesign.exception import CodeSignException
logger = logging.getLogger(__name__)
logger_server = logger.getChild('server')
@@ -41,9 +40,6 @@ BLACKLIST_FILE_PREFIXES = (
'api-ms-', 'concrt', 'msvcp', 'ucrtbase', 'vcomp', 'vcruntime')
class SigntoolException(CodeSignException):
pass
class WindowsCodeSigner(BaseCodeSigner):
def check_file_is_to_be_signed(
self, file: AbsoluteAndRelativeFileName) -> bool:
@@ -54,41 +50,12 @@ class WindowsCodeSigner(BaseCodeSigner):
return file.relative_filepath.suffix in EXTENSIONS_TO_BE_SIGNED
def get_sign_command_prefix(self) -> List[str]:
return [
'signtool', 'sign', '/v',
'/f', self.config.WIN_CERTIFICATE_FILEPATH,
'/tr', self.config.WIN_TIMESTAMP_AUTHORITY_URL]
def run_codesign_tool(self, filepath: Path) -> None:
command = self.get_sign_command_prefix() + [filepath]
codesign_output = self.check_output_or_mock(command, util.Platform.WINDOWS)
logger_server.info(f'signtool output:\n{codesign_output}')
got_number_of_success = False
for line in codesign_output.split('\n'):
line_clean = line.strip()
line_clean_lower = line_clean.lower()
if line_clean_lower.startswith('number of warnings') or \
line_clean_lower.startswith('number of errors'):
number = int(line_clean_lower.split(':')[1])
if number != 0:
raise SigntoolException('Non-clean success of signtool')
if line_clean_lower.startswith('number of files successfully signed'):
got_number_of_success = True
number = int(line_clean_lower.split(':')[1])
if number != 1:
raise SigntoolException('Signtool did not consider codesign a success')
if not got_number_of_success:
raise SigntoolException('Signtool did not report number of files signed')
def sign_all_files(self, files: List[AbsoluteAndRelativeFileName]) -> None:
# NOTE: Sign files one by one to avoid possible command line length
# overflow (which could happen if we ever decide to sign every binary
@@ -106,7 +73,12 @@ class WindowsCodeSigner(BaseCodeSigner):
file_index + 1, num_files, file.relative_filepath)
continue
command = self.get_sign_command_prefix()
command.append(file.absolute_filepath)
logger_server.info(
'Running signtool command for file [%d/%d] %s...',
file_index + 1, num_files, file.relative_filepath)
self.run_codesign_tool(file.absolute_filepath)
# TODO(sergey): Check the status somehow. With a missing certificate
# the command still exists with a zero code.
self.run_command_or_mock(command, util.Platform.WINDOWS)
# TODO(sergey): Report number of signed and ignored files.

View File

@@ -44,7 +44,6 @@ set(WITH_OPENMP ON CACHE BOOL "" FORCE)
set(WITH_OPENSUBDIV ON CACHE BOOL "" FORCE)
set(WITH_OPENVDB ON CACHE BOOL "" FORCE)
set(WITH_OPENVDB_BLOSC ON CACHE BOOL "" FORCE)
set(WITH_NANOVDB ON CACHE BOOL "" FORCE)
set(WITH_POTRACE ON CACHE BOOL "" FORCE)
set(WITH_PYTHON_INSTALL ON CACHE BOOL "" FORCE)
set(WITH_QUADRIFLOW ON CACHE BOOL "" FORCE)

View File

@@ -51,7 +51,6 @@ set(WITH_OPENIMAGEIO OFF CACHE BOOL "" FORCE)
set(WITH_OPENMP OFF CACHE BOOL "" FORCE)
set(WITH_OPENSUBDIV OFF CACHE BOOL "" FORCE)
set(WITH_OPENVDB OFF CACHE BOOL "" FORCE)
set(WITH_NANOVDB OFF CACHE BOOL "" FORCE)
set(WITH_QUADRIFLOW OFF CACHE BOOL "" FORCE)
set(WITH_SDL OFF CACHE BOOL "" FORCE)
set(WITH_TBB OFF CACHE BOOL "" FORCE)

View File

@@ -45,7 +45,6 @@ set(WITH_OPENMP ON CACHE BOOL "" FORCE)
set(WITH_OPENSUBDIV ON CACHE BOOL "" FORCE)
set(WITH_OPENVDB ON CACHE BOOL "" FORCE)
set(WITH_OPENVDB_BLOSC ON CACHE BOOL "" FORCE)
set(WITH_NANOVDB ON CACHE BOOL "" FORCE)
set(WITH_POTRACE ON CACHE BOOL "" FORCE)
set(WITH_PYTHON_INSTALL ON CACHE BOOL "" FORCE)
set(WITH_QUADRIFLOW ON CACHE BOOL "" FORCE)

View File

@@ -28,7 +28,6 @@ set(WITH_OPENCOLLADA OFF CACHE BOOL "" FORCE)
set(WITH_INTERNATIONAL OFF CACHE BOOL "" FORCE)
set(WITH_BULLET OFF CACHE BOOL "" FORCE)
set(WITH_OPENVDB OFF CACHE BOOL "" FORCE)
set(WITH_NANOVDB OFF CACHE BOOL "" FORCE)
set(WITH_ALEMBIC OFF CACHE BOOL "" FORCE)
# Depends on Python install, do this to quiet warning.

View File

@@ -121,10 +121,6 @@
* \ingroup editors
*/
/** \defgroup edasset asset
* \ingroup editors
*/
/** \defgroup edcurve curve
* \ingroup editors
*/

View File

@@ -2188,20 +2188,9 @@ def setup_blender():
# Remove handlers since the functions get included
# in the doc-string and don't have meaningful names.
lists_to_restore = []
for var in bpy.app.handlers:
if isinstance(var, list):
lists_to_restore.append((var[:], var))
var.clear()
return {
"lists_to_restore": lists_to_restore,
}
def teardown_blender(setup_data):
for var_src, var_dst in setup_data["lists_to_restore"]:
var_dst[:] = var_src
for ls in bpy.app.handlers:
if isinstance(ls, list):
ls.clear()
def main():
@@ -2210,7 +2199,7 @@ def main():
setup_monkey_patch()
# Perform changes to Blender it's self.
setup_data = setup_blender()
setup_blender()
# eventually, create the dirs
for dir_path in [ARGS.output_dir, SPHINX_IN]:
@@ -2316,8 +2305,6 @@ def main():
shutil.copy(os.path.join(SPHINX_OUT_PDF, "contents.pdf"),
os.path.join(REFERENCE_PATH, BLENDER_PDF_FILENAME))
teardown_blender(setup_data)
sys.exit()

1137
extern/ceres/ChangeLog vendored

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
Project: Ceres Solver
URL: http://ceres-solver.org/
Upstream version 2.0.0
Upstream version 1.11 (aef9c9563b08d5f39eee1576af133a84749d1b48)
Local modifications: None

View File

@@ -8,8 +8,8 @@ else
fi
repo="https://ceres-solver.googlesource.com/ceres-solver"
#branch="master"
tag="2.0.0"
branch="master"
tag=""
tmp=`mktemp -d`
checkout="$tmp/ceres"

View File

@@ -153,44 +153,28 @@ template <typename CostFunctor,
int... Ns> // Number of parameters in each parameter block.
class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> {
public:
// Takes ownership of functor by default. Uses the template-provided
// value for the number of residuals ("kNumResiduals").
explicit AutoDiffCostFunction(CostFunctor* functor,
Ownership ownership = TAKE_OWNERSHIP)
: functor_(functor), ownership_(ownership) {
// Takes ownership of functor. Uses the template-provided value for the
// number of residuals ("kNumResiduals").
explicit AutoDiffCostFunction(CostFunctor* functor) : functor_(functor) {
static_assert(kNumResiduals != DYNAMIC,
"Can't run the fixed-size constructor if the number of "
"residuals is set to ceres::DYNAMIC.");
}
// Takes ownership of functor by default. Ignores the template-provided
// Takes ownership of functor. Ignores the template-provided
// kNumResiduals in favor of the "num_residuals" argument provided.
//
// This allows for having autodiff cost functions which return varying
// numbers of residuals at runtime.
AutoDiffCostFunction(CostFunctor* functor,
int num_residuals,
Ownership ownership = TAKE_OWNERSHIP)
: functor_(functor), ownership_(ownership) {
AutoDiffCostFunction(CostFunctor* functor, int num_residuals)
: functor_(functor) {
static_assert(kNumResiduals == DYNAMIC,
"Can't run the dynamic-size constructor if the number of "
"residuals is not ceres::DYNAMIC.");
SizedCostFunction<kNumResiduals, Ns...>::set_num_residuals(num_residuals);
}
explicit AutoDiffCostFunction(AutoDiffCostFunction&& other)
: functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
virtual ~AutoDiffCostFunction() {
// Manually release pointer if configured to not take ownership rather than
// deleting only if ownership is taken.
// This is to stay maximally compatible to old user code which may have
// forgotten to implement a virtual destructor, from when the
// AutoDiffCostFunction always took ownership.
if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
functor_.release();
}
}
virtual ~AutoDiffCostFunction() {}
// Implementation details follow; clients of the autodiff cost function should
// not have to examine below here.
@@ -217,7 +201,6 @@ class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> {
private:
std::unique_ptr<CostFunctor> functor_;
Ownership ownership_;
};
} // namespace ceres

View File

@@ -38,10 +38,8 @@
#ifndef CERES_PUBLIC_C_API_H_
#define CERES_PUBLIC_C_API_H_
// clang-format off
#include "ceres/internal/port.h"
#include "ceres/internal/disable_warnings.h"
// clang-format on
#ifdef __cplusplus
extern "C" {

View File

@@ -144,7 +144,8 @@ class CostFunctionToFunctor {
// Extract parameter block pointers from params.
using Indices =
std::make_integer_sequence<int, ParameterDims::kNumParameterBlocks>;
std::make_integer_sequence<int,
ParameterDims::kNumParameterBlocks>;
std::array<const T*, ParameterDims::kNumParameterBlocks> parameter_blocks =
GetParameterPointers<T>(params, Indices());

View File

@@ -51,7 +51,7 @@ class CovarianceImpl;
// =======
// It is very easy to use this class incorrectly without understanding
// the underlying mathematics. Please read and understand the
// documentation completely before attempting to use it.
// documentation completely before attempting to use this class.
//
//
// This class allows the user to evaluate the covariance for a
@@ -73,7 +73,7 @@ class CovarianceImpl;
// the maximum likelihood estimate of x given observations y is the
// solution to the non-linear least squares problem:
//
// x* = arg min_x |f(x) - y|^2
// x* = arg min_x |f(x)|^2
//
// And the covariance of x* is given by
//
@@ -220,11 +220,11 @@ class CERES_EXPORT Covariance {
// 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
// computations. It computes the singular value decomposition
//
// U * D * V' = J
// U * S * V' = J
//
// and then uses it to compute the pseudo inverse of J'J as
//
// pseudoinverse[J'J] = V * pseudoinverse[D^2] * V'
// pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
//
// It is an accurate but slow method and should only be used
// for small to moderate sized problems. It can handle
@@ -235,7 +235,7 @@ class CERES_EXPORT Covariance {
//
// Q * R = J
//
// [J'J]^-1 = [R'*R]^-1
// [J'J]^-1 = [R*R']^-1
//
// SPARSE_QR is not capable of computing the covariance if the
// Jacobian is rank deficient. Depending on the value of

View File

@@ -40,7 +40,6 @@
#include "ceres/dynamic_cost_function.h"
#include "ceres/internal/fixed_array.h"
#include "ceres/jet.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
@@ -79,24 +78,10 @@ namespace ceres {
template <typename CostFunctor, int Stride = 4>
class DynamicAutoDiffCostFunction : public DynamicCostFunction {
public:
// Takes ownership by default.
DynamicAutoDiffCostFunction(CostFunctor* functor,
Ownership ownership = TAKE_OWNERSHIP)
: functor_(functor), ownership_(ownership) {}
explicit DynamicAutoDiffCostFunction(CostFunctor* functor)
: functor_(functor) {}
explicit DynamicAutoDiffCostFunction(DynamicAutoDiffCostFunction&& other)
: functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
virtual ~DynamicAutoDiffCostFunction() {
// Manually release pointer if configured to not take ownership
// rather than deleting only if ownership is taken. This is to
// stay maximally compatible to old user code which may have
// forgotten to implement a virtual destructor, from when the
// AutoDiffCostFunction always took ownership.
if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {
functor_.release();
}
}
virtual ~DynamicAutoDiffCostFunction() {}
bool Evaluate(double const* const* parameters,
double* residuals,
@@ -166,9 +151,6 @@ class DynamicAutoDiffCostFunction : public DynamicCostFunction {
}
}
if (num_active_parameters == 0) {
return (*functor_)(parameters, residuals);
}
// When `num_active_parameters % Stride != 0` then it can be the case
// that `active_parameter_count < Stride` while parameter_cursor is less
// than the total number of parameters and with no remaining non-constant
@@ -266,7 +248,6 @@ class DynamicAutoDiffCostFunction : public DynamicCostFunction {
private:
std::unique_ptr<CostFunctor> functor_;
Ownership ownership_;
};
} // namespace ceres

View File

@@ -44,7 +44,6 @@
#include "ceres/internal/numeric_diff.h"
#include "ceres/internal/parameter_dims.h"
#include "ceres/numeric_diff_options.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
@@ -85,10 +84,6 @@ class DynamicNumericDiffCostFunction : public DynamicCostFunction {
const NumericDiffOptions& options = NumericDiffOptions())
: functor_(functor), ownership_(ownership), options_(options) {}
explicit DynamicNumericDiffCostFunction(
DynamicNumericDiffCostFunction&& other)
: functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
virtual ~DynamicNumericDiffCostFunction() {
if (ownership_ != TAKE_OWNERSHIP) {
functor_.release();

View File

@@ -62,8 +62,7 @@ class CERES_EXPORT GradientProblemSolver {
// Minimizer options ----------------------------------------
LineSearchDirectionType line_search_direction_type = LBFGS;
LineSearchType line_search_type = WOLFE;
NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =
FLETCHER_REEVES;
NonlinearConjugateGradientType nonlinear_conjugate_gradient_type = FLETCHER_REEVES;
// The LBFGS hessian approximation is a low rank approximation to
// the inverse of the Hessian matrix. The rank of the

View File

@@ -198,7 +198,7 @@ struct Make1stOrderPerturbation {
template <int N, int Offset, typename T, typename JetT>
struct Make1stOrderPerturbation<N, N, Offset, T, JetT> {
public:
static void Apply(const T* src, JetT* dst) {}
static void Apply(const T* /*src*/, JetT* /*dst*/) {}
};
// Calls Make1stOrderPerturbation for every parameter block.
@@ -229,9 +229,7 @@ struct Make1stOrderPerturbations<std::integer_sequence<int, N, Ns...>,
// End of 'recursion'. Nothing more to do.
template <int ParameterIdx, int Total>
struct Make1stOrderPerturbations<std::integer_sequence<int>,
ParameterIdx,
Total> {
struct Make1stOrderPerturbations<std::integer_sequence<int>, ParameterIdx, Total> {
template <typename T, typename JetT>
static void Apply(T const* const* /* NOT USED */, JetT* /* NOT USED */) {}
};

View File

@@ -34,11 +34,11 @@
#define CERES_WARNINGS_DISABLED
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning( push )
// Disable the warning C4251 which is triggered by stl classes in
// Ceres' public interface. To quote MSDN: "C4251 can be ignored "
// "if you are deriving from a type in the Standard C++ Library"
#pragma warning(disable : 4251)
#pragma warning( disable : 4251 )
#endif
#endif // CERES_WARNINGS_DISABLED

View File

@@ -36,26 +36,31 @@
namespace ceres {
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> Vector;
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>
Matrix;
typedef Eigen::Matrix<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> Matrix;
typedef Eigen::Map<Vector> VectorRef;
typedef Eigen::Map<Matrix> MatrixRef;
typedef Eigen::Map<const Vector> ConstVectorRef;
typedef Eigen::Map<const Matrix> ConstMatrixRef;
// Column major matrices for DenseSparseMatrix/DenseQRSolver
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>
ColMajorMatrix;
typedef Eigen::Matrix<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::ColMajor> ColMajorMatrix;
typedef Eigen::Map<ColMajorMatrix, 0, Eigen::Stride<Eigen::Dynamic, 1>>
ColMajorMatrixRef;
typedef Eigen::Map<ColMajorMatrix, 0,
Eigen::Stride<Eigen::Dynamic, 1>> ColMajorMatrixRef;
typedef Eigen::Map<const ColMajorMatrix, 0, Eigen::Stride<Eigen::Dynamic, 1>>
ConstColMajorMatrixRef;
typedef Eigen::Map<const ColMajorMatrix,
0,
Eigen::Stride<Eigen::Dynamic, 1>> ConstColMajorMatrixRef;
// C++ does not support templated typdefs, thus the need for this
// struct so that we can support statically sized Matrix and Maps.
template <int num_rows = Eigen::Dynamic, int num_cols = Eigen::Dynamic>
template <int num_rows = Eigen::Dynamic, int num_cols = Eigen::Dynamic>
struct EigenTypes {
typedef Eigen::Matrix<double,
num_rows,

View File

@@ -30,7 +30,6 @@
#ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_
#define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_
#include <Eigen/Core> // For Eigen::aligned_allocator
#include <algorithm>
#include <array>
#include <cstddef>
@@ -38,6 +37,8 @@
#include <tuple>
#include <type_traits>
#include <Eigen/Core> // For Eigen::aligned_allocator
#include "ceres/internal/memory.h"
#include "glog/logging.h"

View File

@@ -62,8 +62,7 @@ struct SumImpl;
// Strip of and sum the first number.
template <typename T, T N, T... Ns>
struct SumImpl<std::integer_sequence<T, N, Ns...>> {
static constexpr T Value =
N + SumImpl<std::integer_sequence<T, Ns...>>::Value;
static constexpr T Value = N + SumImpl<std::integer_sequence<T, Ns...>>::Value;
};
// Strip of and sum the first two numbers.
@@ -130,14 +129,10 @@ template <typename T, T Sum, typename SeqIn, typename SeqOut>
struct ExclusiveScanImpl;
template <typename T, T Sum, T N, T... Ns, T... Rs>
struct ExclusiveScanImpl<T,
Sum,
std::integer_sequence<T, N, Ns...>,
struct ExclusiveScanImpl<T, Sum, std::integer_sequence<T, N, Ns...>,
std::integer_sequence<T, Rs...>> {
using Type =
typename ExclusiveScanImpl<T,
Sum + N,
std::integer_sequence<T, Ns...>,
typename ExclusiveScanImpl<T, Sum + N, std::integer_sequence<T, Ns...>,
std::integer_sequence<T, Rs..., Sum>>::Type;
};

View File

@@ -47,17 +47,15 @@
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
// This is split from the main class because C++ doesn't allow partial template
// specializations for member functions. The alternative is to repeat the main
// class for differing numbers of parameters, which is also unfortunate.
template <typename CostFunctor,
NumericDiffMethodType kMethod,
int kNumResiduals,
typename ParameterDims,
int kParameterBlock,
template <typename CostFunctor, NumericDiffMethodType kMethod,
int kNumResiduals, typename ParameterDims, int kParameterBlock,
int kParameterBlockSize>
struct NumericDiff {
// Mutates parameters but must restore them before return.
@@ -68,23 +66,23 @@ struct NumericDiff {
int num_residuals,
int parameter_block_index,
int parameter_block_size,
double** parameters,
double* jacobian) {
using Eigen::ColMajor;
double **parameters,
double *jacobian) {
using Eigen::Map;
using Eigen::Matrix;
using Eigen::RowMajor;
using Eigen::ColMajor;
DCHECK(jacobian);
const int num_residuals_internal =
(kNumResiduals != ceres::DYNAMIC ? kNumResiduals : num_residuals);
const int parameter_block_index_internal =
(kParameterBlock != ceres::DYNAMIC ? kParameterBlock
: parameter_block_index);
(kParameterBlock != ceres::DYNAMIC ? kParameterBlock :
parameter_block_index);
const int parameter_block_size_internal =
(kParameterBlockSize != ceres::DYNAMIC ? kParameterBlockSize
: parameter_block_size);
(kParameterBlockSize != ceres::DYNAMIC ? kParameterBlockSize :
parameter_block_size);
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
@@ -99,17 +97,17 @@ struct NumericDiff {
(kParameterBlockSize == 1) ? ColMajor : RowMajor>
JacobianMatrix;
Map<JacobianMatrix> parameter_jacobian(
jacobian, num_residuals_internal, parameter_block_size_internal);
Map<JacobianMatrix> parameter_jacobian(jacobian,
num_residuals_internal,
parameter_block_size_internal);
Map<ParameterVector> x_plus_delta(
parameters[parameter_block_index_internal],
parameter_block_size_internal);
ParameterVector x(x_plus_delta);
ParameterVector step_size =
x.array().abs() * ((kMethod == RIDDERS)
? options.ridders_relative_initial_step_size
: options.relative_step_size);
ParameterVector step_size = x.array().abs() *
((kMethod == RIDDERS) ? options.ridders_relative_initial_step_size :
options.relative_step_size);
// It is not a good idea to make the step size arbitrarily
// small. This will lead to problems with round off and numerical
@@ -120,8 +118,8 @@ struct NumericDiff {
// For Ridders' method, the initial step size is required to be large,
// thus ridders_relative_initial_step_size is used.
if (kMethod == RIDDERS) {
min_step_size =
std::max(min_step_size, options.ridders_relative_initial_step_size);
min_step_size = std::max(min_step_size,
options.ridders_relative_initial_step_size);
}
// For each parameter in the parameter block, use finite differences to
@@ -135,9 +133,7 @@ struct NumericDiff {
const double delta = std::max(min_step_size, step_size(j));
if (kMethod == RIDDERS) {
if (!EvaluateRiddersJacobianColumn(functor,
j,
delta,
if (!EvaluateRiddersJacobianColumn(functor, j, delta,
options,
num_residuals_internal,
parameter_block_size_internal,
@@ -150,9 +146,7 @@ struct NumericDiff {
return false;
}
} else {
if (!EvaluateJacobianColumn(functor,
j,
delta,
if (!EvaluateJacobianColumn(functor, j, delta,
num_residuals_internal,
parameter_block_size_internal,
x.data(),
@@ -188,7 +182,8 @@ struct NumericDiff {
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
Map<const ParameterVector> x(x_ptr, parameter_block_size);
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr, parameter_block_size);
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr,
parameter_block_size);
Map<ResidualVector> residuals(residuals_ptr, num_residuals);
Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals);
@@ -196,8 +191,9 @@ struct NumericDiff {
// Mutate 1 element at a time and then restore.
x_plus_delta(parameter_index) = x(parameter_index) + delta;
if (!VariadicEvaluate<ParameterDims>(
*functor, parameters, residuals.data())) {
if (!VariadicEvaluate<ParameterDims>(*functor,
parameters,
residuals.data())) {
return false;
}
@@ -210,8 +206,9 @@ struct NumericDiff {
// Compute the function on the other side of x(parameter_index).
x_plus_delta(parameter_index) = x(parameter_index) - delta;
if (!VariadicEvaluate<ParameterDims>(
*functor, parameters, temp_residuals.data())) {
if (!VariadicEvaluate<ParameterDims>(*functor,
parameters,
temp_residuals.data())) {
return false;
}
@@ -220,7 +217,8 @@ struct NumericDiff {
} else {
// Forward difference only; reuse existing residuals evaluation.
residuals -=
Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
Map<const ResidualVector>(residuals_at_eval_point,
num_residuals);
}
// Restore x_plus_delta.
@@ -256,17 +254,17 @@ struct NumericDiff {
double* x_plus_delta_ptr,
double* temp_residuals_ptr,
double* residuals_ptr) {
using Eigen::aligned_allocator;
using Eigen::Map;
using Eigen::Matrix;
using Eigen::aligned_allocator;
typedef Matrix<double, kNumResiduals, 1> ResidualVector;
typedef Matrix<double, kNumResiduals, Eigen::Dynamic>
ResidualCandidateMatrix;
typedef Matrix<double, kNumResiduals, Eigen::Dynamic> ResidualCandidateMatrix;
typedef Matrix<double, kParameterBlockSize, 1> ParameterVector;
Map<const ParameterVector> x(x_ptr, parameter_block_size);
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr, parameter_block_size);
Map<ParameterVector> x_plus_delta(x_plus_delta_ptr,
parameter_block_size);
Map<ResidualVector> residuals(residuals_ptr, num_residuals);
Map<ResidualVector> temp_residuals(temp_residuals_ptr, num_residuals);
@@ -277,16 +275,18 @@ struct NumericDiff {
// As the derivative is estimated, the step size decreases.
// By default, the step sizes are chosen so that the middle column
// of the Romberg tableau uses the input delta.
double current_step_size =
delta * pow(options.ridders_step_shrink_factor,
options.max_num_ridders_extrapolations / 2);
double current_step_size = delta *
pow(options.ridders_step_shrink_factor,
options.max_num_ridders_extrapolations / 2);
// Double-buffering temporary differential candidate vectors
// from previous step size.
ResidualCandidateMatrix stepsize_candidates_a(
num_residuals, options.max_num_ridders_extrapolations);
num_residuals,
options.max_num_ridders_extrapolations);
ResidualCandidateMatrix stepsize_candidates_b(
num_residuals, options.max_num_ridders_extrapolations);
num_residuals,
options.max_num_ridders_extrapolations);
ResidualCandidateMatrix* current_candidates = &stepsize_candidates_a;
ResidualCandidateMatrix* previous_candidates = &stepsize_candidates_b;
@@ -304,9 +304,7 @@ struct NumericDiff {
// 3. Extrapolation becomes numerically unstable.
for (int i = 0; i < options.max_num_ridders_extrapolations; ++i) {
// Compute the numerical derivative at this step size.
if (!EvaluateJacobianColumn(functor,
parameter_index,
current_step_size,
if (!EvaluateJacobianColumn(functor, parameter_index, current_step_size,
num_residuals,
parameter_block_size,
x.data(),
@@ -329,24 +327,23 @@ struct NumericDiff {
// Extrapolation factor for Richardson acceleration method (see below).
double richardson_factor = options.ridders_step_shrink_factor *
options.ridders_step_shrink_factor;
options.ridders_step_shrink_factor;
for (int k = 1; k <= i; ++k) {
// Extrapolate the various orders of finite differences using
// the Richardson acceleration method.
current_candidates->col(k) =
(richardson_factor * current_candidates->col(k - 1) -
previous_candidates->col(k - 1)) /
(richardson_factor - 1.0);
previous_candidates->col(k - 1)) / (richardson_factor - 1.0);
richardson_factor *= options.ridders_step_shrink_factor *
options.ridders_step_shrink_factor;
options.ridders_step_shrink_factor;
// Compute the difference between the previous value and the current.
double candidate_error = std::max(
(current_candidates->col(k) - current_candidates->col(k - 1))
.norm(),
(current_candidates->col(k) - previous_candidates->col(k - 1))
.norm());
(current_candidates->col(k) -
current_candidates->col(k - 1)).norm(),
(current_candidates->col(k) -
previous_candidates->col(k - 1)).norm());
// If the error has decreased, update results.
if (candidate_error <= norm_error) {
@@ -368,9 +365,8 @@ struct NumericDiff {
// Check to see if the current gradient estimate is numerically unstable.
// If so, bail out and return the last stable result.
if (i > 0) {
double tableau_error =
(current_candidates->col(i) - previous_candidates->col(i - 1))
.norm();
double tableau_error = (current_candidates->col(i) -
previous_candidates->col(i - 1)).norm();
// Compare current error to the chosen candidate's error.
if (tableau_error >= 2 * norm_error) {
@@ -486,18 +482,14 @@ struct EvaluateJacobianForParameterBlocks<ParameterDims,
// End of 'recursion'. Nothing more to do.
template <typename ParameterDims, int ParameterIdx>
struct EvaluateJacobianForParameterBlocks<ParameterDims,
std::integer_sequence<int>,
struct EvaluateJacobianForParameterBlocks<ParameterDims, std::integer_sequence<int>,
ParameterIdx> {
template <NumericDiffMethodType method,
int kNumResiduals,
template <NumericDiffMethodType method, int kNumResiduals,
typename CostFunctor>
static bool Apply(const CostFunctor* /* NOT USED*/,
const double* /* NOT USED*/,
const NumericDiffOptions& /* NOT USED*/,
int /* NOT USED*/,
double** /* NOT USED*/,
double** /* NOT USED*/) {
const NumericDiffOptions& /* NOT USED*/, int /* NOT USED*/,
double** /* NOT USED*/, double** /* NOT USED*/) {
return true;
}
};

View File

@@ -35,17 +35,17 @@
#include "ceres/internal/config.h"
#if defined(CERES_USE_OPENMP)
#if defined(CERES_USE_CXX_THREADS) || defined(CERES_NO_THREADS)
#error CERES_USE_OPENMP is mutually exclusive to CERES_USE_CXX_THREADS and CERES_NO_THREADS
#endif
# if defined(CERES_USE_CXX_THREADS) || defined(CERES_NO_THREADS)
# error CERES_USE_OPENMP is mutually exclusive to CERES_USE_CXX_THREADS and CERES_NO_THREADS
# endif
#elif defined(CERES_USE_CXX_THREADS)
#if defined(CERES_USE_OPENMP) || defined(CERES_NO_THREADS)
#error CERES_USE_CXX_THREADS is mutually exclusive to CERES_USE_OPENMP, CERES_USE_CXX_THREADS and CERES_NO_THREADS
#endif
# if defined(CERES_USE_OPENMP) || defined(CERES_NO_THREADS)
# error CERES_USE_CXX_THREADS is mutually exclusive to CERES_USE_OPENMP, CERES_USE_CXX_THREADS and CERES_NO_THREADS
# endif
#elif defined(CERES_NO_THREADS)
#if defined(CERES_USE_OPENMP) || defined(CERES_USE_CXX_THREADS)
#error CERES_NO_THREADS is mutually exclusive to CERES_USE_OPENMP and CERES_USE_CXX_THREADS
#endif
# if defined(CERES_USE_OPENMP) || defined(CERES_USE_CXX_THREADS)
# error CERES_NO_THREADS is mutually exclusive to CERES_USE_OPENMP and CERES_USE_CXX_THREADS
# endif
#else
# error One of CERES_USE_OPENMP, CERES_USE_CXX_THREADS or CERES_NO_THREADS must be defined.
#endif
@@ -54,57 +54,37 @@
// compiled without any sparse back-end. Verify that it has not subsequently
// been inconsistently redefined.
#if defined(CERES_NO_SPARSE)
#if !defined(CERES_NO_SUITESPARSE)
#error CERES_NO_SPARSE requires CERES_NO_SUITESPARSE.
#endif
#if !defined(CERES_NO_CXSPARSE)
#error CERES_NO_SPARSE requires CERES_NO_CXSPARSE
#endif
#if !defined(CERES_NO_ACCELERATE_SPARSE)
#error CERES_NO_SPARSE requires CERES_NO_ACCELERATE_SPARSE
#endif
#if defined(CERES_USE_EIGEN_SPARSE)
#error CERES_NO_SPARSE requires !CERES_USE_EIGEN_SPARSE
#endif
# if !defined(CERES_NO_SUITESPARSE)
# error CERES_NO_SPARSE requires CERES_NO_SUITESPARSE.
# endif
# if !defined(CERES_NO_CXSPARSE)
# error CERES_NO_SPARSE requires CERES_NO_CXSPARSE
# endif
# if !defined(CERES_NO_ACCELERATE_SPARSE)
# error CERES_NO_SPARSE requires CERES_NO_ACCELERATE_SPARSE
# endif
# if defined(CERES_USE_EIGEN_SPARSE)
# error CERES_NO_SPARSE requires !CERES_USE_EIGEN_SPARSE
# endif
#endif
// A macro to signal which functions and classes are exported when
// building a shared library.
#if defined(_MSC_VER)
#define CERES_API_SHARED_IMPORT __declspec(dllimport)
#define CERES_API_SHARED_EXPORT __declspec(dllexport)
#elif defined(__GNUC__)
#define CERES_API_SHARED_IMPORT __attribute__((visibility("default")))
#define CERES_API_SHARED_EXPORT __attribute__((visibility("default")))
// building a DLL with MSVC.
//
// Note that the ordering here is important, CERES_BUILDING_SHARED_LIBRARY
// is only defined locally when Ceres is compiled, it is never exported to
// users. However, in order that we do not have to configure config.h
// separately for building vs installing, if we are using MSVC and building
// a shared library, then both CERES_BUILDING_SHARED_LIBRARY and
// CERES_USING_SHARED_LIBRARY will be defined when Ceres is compiled.
// Hence it is important that the check for CERES_BUILDING_SHARED_LIBRARY
// happens first.
#if defined(_MSC_VER) && defined(CERES_BUILDING_SHARED_LIBRARY)
# define CERES_EXPORT __declspec(dllexport)
#elif defined(_MSC_VER) && defined(CERES_USING_SHARED_LIBRARY)
# define CERES_EXPORT __declspec(dllimport)
#else
#define CERES_API_SHARED_IMPORT
#define CERES_API_SHARED_EXPORT
#endif
// CERES_BUILDING_SHARED_LIBRARY is only defined locally when Ceres itself is
// compiled as a shared library, it is never exported to users. In order that
// we do not have to configure config.h separately when building Ceres as either
// a static or dynamic library, we define both CERES_USING_SHARED_LIBRARY and
// CERES_BUILDING_SHARED_LIBRARY when building as a shared library.
#if defined(CERES_USING_SHARED_LIBRARY)
#if defined(CERES_BUILDING_SHARED_LIBRARY)
// Compiling Ceres itself as a shared library.
#define CERES_EXPORT CERES_API_SHARED_EXPORT
#else
// Using Ceres as a shared library.
#define CERES_EXPORT CERES_API_SHARED_IMPORT
#endif
#else
// Ceres was compiled as a static library, export everything.
#define CERES_EXPORT
#endif
// Unit tests reach in and test internal functionality so we need a way to make
// those symbols visible
#ifdef CERES_EXPORT_INTERNAL_SYMBOLS
#define CERES_EXPORT_INTERNAL CERES_EXPORT
#else
#define CERES_EXPORT_INTERNAL
# define CERES_EXPORT
#endif
#endif // CERES_PUBLIC_INTERNAL_PORT_H_

View File

@@ -32,7 +32,7 @@
#undef CERES_WARNINGS_DISABLED
#ifdef _MSC_VER
#pragma warning(pop)
#pragma warning( pop )
#endif
#endif // CERES_WARNINGS_DISABLED

View File

@@ -46,10 +46,8 @@ namespace internal {
// For fixed size cost functors
template <typename Functor, typename T, int... Indices>
inline bool VariadicEvaluateImpl(const Functor& functor,
T const* const* input,
T* output,
std::false_type /*is_dynamic*/,
inline bool VariadicEvaluateImpl(const Functor& functor, T const* const* input,
T* output, std::false_type /*is_dynamic*/,
std::integer_sequence<int, Indices...>) {
static_assert(sizeof...(Indices),
"Invalid number of parameter blocks. At least one parameter "
@@ -59,31 +57,26 @@ inline bool VariadicEvaluateImpl(const Functor& functor,
// For dynamic sized cost functors
template <typename Functor, typename T>
inline bool VariadicEvaluateImpl(const Functor& functor,
T const* const* input,
T* output,
std::true_type /*is_dynamic*/,
inline bool VariadicEvaluateImpl(const Functor& functor, T const* const* input,
T* output, std::true_type /*is_dynamic*/,
std::integer_sequence<int>) {
return functor(input, output);
}
// For ceres cost functors (not ceres::CostFunction)
template <typename ParameterDims, typename Functor, typename T>
inline bool VariadicEvaluateImpl(const Functor& functor,
T const* const* input,
T* output,
const void* /* NOT USED */) {
inline bool VariadicEvaluateImpl(const Functor& functor, T const* const* input,
T* output, const void* /* NOT USED */) {
using ParameterBlockIndices =
std::make_integer_sequence<int, ParameterDims::kNumParameterBlocks>;
using IsDynamic = std::integral_constant<bool, ParameterDims::kIsDynamic>;
return VariadicEvaluateImpl(
functor, input, output, IsDynamic(), ParameterBlockIndices());
return VariadicEvaluateImpl(functor, input, output, IsDynamic(),
ParameterBlockIndices());
}
// For ceres::CostFunction
template <typename ParameterDims, typename Functor, typename T>
inline bool VariadicEvaluateImpl(const Functor& functor,
T const* const* input,
inline bool VariadicEvaluateImpl(const Functor& functor, T const* const* input,
T* output,
const CostFunction* /* NOT USED */) {
return functor.Evaluate(input, output, nullptr);
@@ -102,8 +95,7 @@ inline bool VariadicEvaluateImpl(const Functor& functor,
// blocks. The signature of the functor must have the following signature
// 'bool()(const T* i_1, const T* i_2, ... const T* i_n, T* output)'.
template <typename ParameterDims, typename Functor, typename T>
inline bool VariadicEvaluate(const Functor& functor,
T const* const* input,
inline bool VariadicEvaluate(const Functor& functor, T const* const* input,
T* output) {
return VariadicEvaluateImpl<ParameterDims>(functor, input, output, &functor);
}

View File

@@ -73,7 +73,7 @@ struct CERES_EXPORT IterationSummary {
bool step_is_successful = false;
// Value of the objective function.
double cost = 0.0;
double cost = 0.90;
// Change in the value of the objective function in this
// iteration. This can be positive or negative.

View File

@@ -388,8 +388,6 @@ using std::cbrt;
using std::ceil;
using std::cos;
using std::cosh;
using std::erf;
using std::erfc;
using std::exp;
using std::exp2;
using std::floor;
@@ -575,21 +573,6 @@ inline Jet<T, N> fmin(const Jet<T, N>& x, const Jet<T, N>& y) {
return y < x ? y : x;
}
// erf is defined as an integral that cannot be expressed analyticaly
// however, the derivative is trivial to compute
// erf(x + h) = erf(x) + h * 2*exp(-x^2)/sqrt(pi)
template <typename T, int N>
inline Jet<T, N> erf(const Jet<T, N>& x) {
return Jet<T, N>(erf(x.a), x.v * M_2_SQRTPI * exp(-x.a * x.a));
}
// erfc(x) = 1-erf(x)
// erfc(x + h) = erfc(x) + h * (-2*exp(-x^2)/sqrt(pi))
template <typename T, int N>
inline Jet<T, N> erfc(const Jet<T, N>& x) {
return Jet<T, N>(erfc(x.a), -x.v * M_2_SQRTPI * exp(-x.a * x.a));
}
// Bessel functions of the first kind with integer order equal to 0, 1, n.
//
// Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of

View File

@@ -90,8 +90,8 @@ namespace ceres {
//
// An example that occurs commonly in Structure from Motion problems
// is when camera rotations are parameterized using Quaternion. There,
// it is useful to only make updates orthogonal to that 4-vector
// defining the quaternion. One way to do this is to let delta be a 3
// it is useful only make updates orthogonal to that 4-vector defining
// the quaternion. One way to do this is to let delta be a 3
// dimensional vector and define Plus to be
//
// Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x
@@ -99,7 +99,7 @@ namespace ceres {
// The multiplication between the two 4-vectors on the RHS is the
// standard quaternion product.
//
// Given f and a point x, optimizing f can now be restated as
// Given g and a point x, optimizing f can now be restated as
//
// min f(Plus(x, delta))
// delta
@@ -306,7 +306,6 @@ class CERES_EXPORT ProductParameterization : public LocalParameterization {
public:
ProductParameterization(const ProductParameterization&) = delete;
ProductParameterization& operator=(const ProductParameterization&) = delete;
virtual ~ProductParameterization() {}
//
// NOTE: The constructor takes ownership of the input local
// parameterizations.
@@ -342,8 +341,7 @@ class CERES_EXPORT ProductParameterization : public LocalParameterization {
bool Plus(const double* x,
const double* delta,
double* x_plus_delta) const override;
bool ComputeJacobian(const double* x,
double* jacobian) const override;
bool ComputeJacobian(const double* x, double* jacobian) const override;
int GlobalSize() const override { return global_size_; }
int LocalSize() const override { return local_size_; }
@@ -356,8 +354,8 @@ class CERES_EXPORT ProductParameterization : public LocalParameterization {
} // namespace ceres
// clang-format off
#include "ceres/internal/reenable_warnings.h"
#include "ceres/internal/line_parameterization.h"
#endif // CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_

View File

@@ -192,10 +192,7 @@ class NumericDiffCostFunction : public SizedCostFunction<kNumResiduals, Ns...> {
}
}
explicit NumericDiffCostFunction(NumericDiffCostFunction&& other)
: functor_(std::move(other.functor_)), ownership_(other.ownership_) {}
virtual ~NumericDiffCostFunction() {
~NumericDiffCostFunction() {
if (ownership_ != TAKE_OWNERSHIP) {
functor_.release();
}

View File

@@ -453,15 +453,13 @@ class CERES_EXPORT Problem {
// problem.AddResidualBlock(new MyCostFunction, nullptr, &x);
//
// double cost = 0.0;
// problem.Evaluate(Problem::EvaluateOptions(), &cost,
// nullptr, nullptr, nullptr);
// problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr);
//
// The cost is evaluated at x = 1. If you wish to evaluate the
// problem at x = 2, then
//
// x = 2;
// problem.Evaluate(Problem::EvaluateOptions(), &cost,
// nullptr, nullptr, nullptr);
// problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr);
//
// is the way to do so.
//
@@ -477,7 +475,7 @@ class CERES_EXPORT Problem {
// at the end of an iteration during a solve.
//
// Note 4: If an EvaluationCallback is associated with the problem,
// then its PrepareForEvaluation method will be called every time
// then its PrepareForEvaluation method will be called everytime
// this method is called with new_point = true.
bool Evaluate(const EvaluateOptions& options,
double* cost,
@@ -511,41 +509,23 @@ class CERES_EXPORT Problem {
// apply_loss_function as the name implies allows the user to switch
// the application of the loss function on and off.
//
// If an EvaluationCallback is associated with the problem, then its
// PrepareForEvaluation method will be called every time this method
// is called with new_point = true. This conservatively assumes that
// the user may have changed the parameter values since the previous
// call to evaluate / solve. For improved efficiency, and only if
// you know that the parameter values have not changed between
// calls, see EvaluateResidualBlockAssumingParametersUnchanged().
// WARNING: If an EvaluationCallback is associated with the problem
// then it is the user's responsibility to call it before calling
// this method.
//
// This is because, if the user calls this method multiple times, we
// cannot tell if the underlying parameter blocks have changed
// between calls or not. So if EvaluateResidualBlock was responsible
// for calling the EvaluationCallback, it will have to do it
// everytime it is called. Which makes the common case where the
// parameter blocks do not change, inefficient. So we leave it to
// the user to call the EvaluationCallback as needed.
bool EvaluateResidualBlock(ResidualBlockId residual_block_id,
bool apply_loss_function,
double* cost,
double* residuals,
double** jacobians) const;
// Same as EvaluateResidualBlock except that if an
// EvaluationCallback is associated with the problem, then its
// PrepareForEvaluation method will be called every time this method
// is called with new_point = false.
//
// This means, if an EvaluationCallback is associated with the
// problem then it is the user's responsibility to call
// PrepareForEvaluation before calling this method if necessary,
// i.e. iff the parameter values have been changed since the last
// call to evaluate / solve.'
//
// This is because, as the name implies, we assume that the
// parameter blocks did not change since the last time
// PrepareForEvaluation was called (via Solve, Evaluate or
// EvaluateResidualBlock).
bool EvaluateResidualBlockAssumingParametersUnchanged(
ResidualBlockId residual_block_id,
bool apply_loss_function,
double* cost,
double* residuals,
double** jacobians) const;
private:
friend class Solver;
friend class Covariance;

View File

@@ -320,8 +320,8 @@ inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
}
template <typename T>
void RotationMatrixToQuaternion(const T* R, T* quaternion) {
RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), quaternion);
void RotationMatrixToQuaternion(const T* R, T* angle_axis) {
RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), angle_axis);
}
// This algorithm comes from "Quaternion Calculus and Fast Animation",

View File

@@ -360,8 +360,7 @@ class CERES_EXPORT Solver {
//
// If Solver::Options::preconditioner_type == SUBSET, then
// residual_blocks_for_subset_preconditioner must be non-empty.
std::unordered_set<ResidualBlockId>
residual_blocks_for_subset_preconditioner;
std::unordered_set<ResidualBlockId> residual_blocks_for_subset_preconditioner;
// Ceres supports using multiple dense linear algebra libraries
// for dense matrix factorizations. Currently EIGEN and LAPACK are
@@ -839,7 +838,7 @@ class CERES_EXPORT Solver {
int num_linear_solves = -1;
// Time (in seconds) spent evaluating the residual vector.
double residual_evaluation_time_in_seconds = -1.0;
double residual_evaluation_time_in_seconds = 1.0;
// Number of residual only evaluations.
int num_residual_evaluations = -1;

View File

@@ -50,7 +50,7 @@ namespace ceres {
// delete on it upon completion.
enum Ownership {
DO_NOT_TAKE_OWNERSHIP,
TAKE_OWNERSHIP,
TAKE_OWNERSHIP
};
// TODO(keir): Considerably expand the explanations of each solver type.
@@ -185,19 +185,19 @@ enum SparseLinearAlgebraLibraryType {
enum DenseLinearAlgebraLibraryType {
EIGEN,
LAPACK,
LAPACK
};
// Logging options
// The options get progressively noisier.
enum LoggingType {
SILENT,
PER_MINIMIZER_ITERATION,
PER_MINIMIZER_ITERATION
};
enum MinimizerType {
LINE_SEARCH,
TRUST_REGION,
TRUST_REGION
};
enum LineSearchDirectionType {
@@ -412,7 +412,7 @@ enum DumpFormatType {
// specified for the number of residuals. If specified, then the
// number of residuas for that cost function can vary at runtime.
enum DimensionType {
DYNAMIC = -1,
DYNAMIC = -1
};
// The differentiation method used to compute numerical derivatives in
@@ -433,7 +433,7 @@ enum NumericDiffMethodType {
enum LineSearchInterpolationType {
BISECTION,
QUADRATIC,
CUBIC,
CUBIC
};
enum CovarianceAlgorithmType {
@@ -448,7 +448,8 @@ enum CovarianceAlgorithmType {
// did not write to that memory location.
const double kImpossibleValue = 1e302;
CERES_EXPORT const char* LinearSolverTypeToString(LinearSolverType type);
CERES_EXPORT const char* LinearSolverTypeToString(
LinearSolverType type);
CERES_EXPORT bool StringToLinearSolverType(std::string value,
LinearSolverType* type);
@@ -458,23 +459,25 @@ CERES_EXPORT bool StringToPreconditionerType(std::string value,
CERES_EXPORT const char* VisibilityClusteringTypeToString(
VisibilityClusteringType type);
CERES_EXPORT bool StringToVisibilityClusteringType(
std::string value, VisibilityClusteringType* type);
CERES_EXPORT bool StringToVisibilityClusteringType(std::string value,
VisibilityClusteringType* type);
CERES_EXPORT const char* SparseLinearAlgebraLibraryTypeToString(
SparseLinearAlgebraLibraryType type);
CERES_EXPORT bool StringToSparseLinearAlgebraLibraryType(
std::string value, SparseLinearAlgebraLibraryType* type);
std::string value,
SparseLinearAlgebraLibraryType* type);
CERES_EXPORT const char* DenseLinearAlgebraLibraryTypeToString(
DenseLinearAlgebraLibraryType type);
CERES_EXPORT bool StringToDenseLinearAlgebraLibraryType(
std::string value, DenseLinearAlgebraLibraryType* type);
std::string value,
DenseLinearAlgebraLibraryType* type);
CERES_EXPORT const char* TrustRegionStrategyTypeToString(
TrustRegionStrategyType type);
CERES_EXPORT bool StringToTrustRegionStrategyType(
std::string value, TrustRegionStrategyType* type);
CERES_EXPORT bool StringToTrustRegionStrategyType(std::string value,
TrustRegionStrategyType* type);
CERES_EXPORT const char* DoglegTypeToString(DoglegType type);
CERES_EXPORT bool StringToDoglegType(std::string value, DoglegType* type);
@@ -484,39 +487,41 @@ CERES_EXPORT bool StringToMinimizerType(std::string value, MinimizerType* type);
CERES_EXPORT const char* LineSearchDirectionTypeToString(
LineSearchDirectionType type);
CERES_EXPORT bool StringToLineSearchDirectionType(
std::string value, LineSearchDirectionType* type);
CERES_EXPORT bool StringToLineSearchDirectionType(std::string value,
LineSearchDirectionType* type);
CERES_EXPORT const char* LineSearchTypeToString(LineSearchType type);
CERES_EXPORT bool StringToLineSearchType(std::string value,
LineSearchType* type);
CERES_EXPORT bool StringToLineSearchType(std::string value, LineSearchType* type);
CERES_EXPORT const char* NonlinearConjugateGradientTypeToString(
NonlinearConjugateGradientType type);
CERES_EXPORT bool StringToNonlinearConjugateGradientType(
std::string value, NonlinearConjugateGradientType* type);
std::string value,
NonlinearConjugateGradientType* type);
CERES_EXPORT const char* LineSearchInterpolationTypeToString(
LineSearchInterpolationType type);
CERES_EXPORT bool StringToLineSearchInterpolationType(
std::string value, LineSearchInterpolationType* type);
std::string value,
LineSearchInterpolationType* type);
CERES_EXPORT const char* CovarianceAlgorithmTypeToString(
CovarianceAlgorithmType type);
CERES_EXPORT bool StringToCovarianceAlgorithmType(
std::string value, CovarianceAlgorithmType* type);
std::string value,
CovarianceAlgorithmType* type);
CERES_EXPORT const char* NumericDiffMethodTypeToString(
NumericDiffMethodType type);
CERES_EXPORT bool StringToNumericDiffMethodType(std::string value,
NumericDiffMethodType* type);
CERES_EXPORT bool StringToNumericDiffMethodType(
std::string value,
NumericDiffMethodType* type);
CERES_EXPORT const char* LoggingTypeToString(LoggingType type);
CERES_EXPORT bool StringtoLoggingType(std::string value, LoggingType* type);
CERES_EXPORT const char* DumpFormatTypeToString(DumpFormatType type);
CERES_EXPORT bool StringtoDumpFormatType(std::string value,
DumpFormatType* type);
CERES_EXPORT bool StringtoDumpFormatType(std::string value, DumpFormatType* type);
CERES_EXPORT bool StringtoDumpFormatType(std::string value, LoggingType* type);
CERES_EXPORT const char* TerminationTypeToString(TerminationType type);

View File

@@ -41,9 +41,8 @@
#define CERES_TO_STRING(x) CERES_TO_STRING_HELPER(x)
// The Ceres version as a string; for example "1.9.0".
#define CERES_VERSION_STRING \
CERES_TO_STRING(CERES_VERSION_MAJOR) \
"." CERES_TO_STRING(CERES_VERSION_MINOR) "." CERES_TO_STRING( \
CERES_VERSION_REVISION)
#define CERES_VERSION_STRING CERES_TO_STRING(CERES_VERSION_MAJOR) "." \
CERES_TO_STRING(CERES_VERSION_MINOR) "." \
CERES_TO_STRING(CERES_VERSION_REVISION)
#endif // CERES_PUBLIC_VERSION_H_

View File

@@ -33,19 +33,18 @@
#ifndef CERES_NO_ACCELERATE_SPARSE
#include "ceres/accelerate_sparse.h"
#include <algorithm>
#include <string>
#include <vector>
#include "ceres/accelerate_sparse.h"
#include "ceres/compressed_col_sparse_matrix_utils.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
#define CASESTR(x) \
case x: \
return #x
#define CASESTR(x) case x: return #x
namespace ceres {
namespace internal {
@@ -69,7 +68,7 @@ const char* SparseStatusToString(SparseStatus_t status) {
// aligned to kAccelerateRequiredAlignment and returns a pointer to the
// aligned start.
void* ResizeForAccelerateAlignment(const size_t required_size,
std::vector<uint8_t>* workspace) {
std::vector<uint8_t> *workspace) {
// As per the Accelerate documentation, all workspace memory passed to the
// sparse solver functions must be 16-byte aligned.
constexpr int kAccelerateRequiredAlignment = 16;
@@ -81,28 +80,29 @@ void* ResizeForAccelerateAlignment(const size_t required_size,
size_t size_from_aligned_start = workspace->size();
void* aligned_solve_workspace_start =
reinterpret_cast<void*>(workspace->data());
aligned_solve_workspace_start = std::align(kAccelerateRequiredAlignment,
required_size,
aligned_solve_workspace_start,
size_from_aligned_start);
aligned_solve_workspace_start =
std::align(kAccelerateRequiredAlignment,
required_size,
aligned_solve_workspace_start,
size_from_aligned_start);
CHECK(aligned_solve_workspace_start != nullptr)
<< "required_size: " << required_size
<< ", workspace size: " << workspace->size();
return aligned_solve_workspace_start;
}
template <typename Scalar>
template<typename Scalar>
void AccelerateSparse<Scalar>::Solve(NumericFactorization* numeric_factor,
DenseVector* rhs_and_solution) {
// From SparseSolve() documentation in Solve.h
const int required_size = numeric_factor->solveWorkspaceRequiredStatic +
numeric_factor->solveWorkspaceRequiredPerRHS;
SparseSolve(*numeric_factor,
*rhs_and_solution,
const int required_size =
numeric_factor->solveWorkspaceRequiredStatic +
numeric_factor->solveWorkspaceRequiredPerRHS;
SparseSolve(*numeric_factor, *rhs_and_solution,
ResizeForAccelerateAlignment(required_size, &solve_workspace_));
}
template <typename Scalar>
template<typename Scalar>
typename AccelerateSparse<Scalar>::ASSparseMatrix
AccelerateSparse<Scalar>::CreateSparseMatrixTransposeView(
CompressedRowSparseMatrix* A) {
@@ -112,7 +112,7 @@ AccelerateSparse<Scalar>::CreateSparseMatrixTransposeView(
//
// Accelerate's columnStarts is a long*, not an int*. These types might be
// different (e.g. ARM on iOS) so always make a copy.
column_starts_.resize(A->num_rows() + 1); // +1 for final column length.
column_starts_.resize(A->num_rows() +1); // +1 for final column length.
std::copy_n(A->rows(), column_starts_.size(), &column_starts_[0]);
ASSparseMatrix At;
@@ -136,31 +136,29 @@ AccelerateSparse<Scalar>::CreateSparseMatrixTransposeView(
return At;
}
template <typename Scalar>
template<typename Scalar>
typename AccelerateSparse<Scalar>::SymbolicFactorization
AccelerateSparse<Scalar>::AnalyzeCholesky(ASSparseMatrix* A) {
return SparseFactor(SparseFactorizationCholesky, A->structure);
}
template <typename Scalar>
template<typename Scalar>
typename AccelerateSparse<Scalar>::NumericFactorization
AccelerateSparse<Scalar>::Cholesky(ASSparseMatrix* A,
SymbolicFactorization* symbolic_factor) {
return SparseFactor(*symbolic_factor, *A);
}
template <typename Scalar>
template<typename Scalar>
void AccelerateSparse<Scalar>::Cholesky(ASSparseMatrix* A,
NumericFactorization* numeric_factor) {
// From SparseRefactor() documentation in Solve.h
const int required_size =
std::is_same<Scalar, double>::value
? numeric_factor->symbolicFactorization.workspaceSize_Double
: numeric_factor->symbolicFactorization.workspaceSize_Float;
return SparseRefactor(
*A,
numeric_factor,
ResizeForAccelerateAlignment(required_size, &factorization_workspace_));
const int required_size = std::is_same<Scalar, double>::value
? numeric_factor->symbolicFactorization.workspaceSize_Double
: numeric_factor->symbolicFactorization.workspaceSize_Float;
return SparseRefactor(*A, numeric_factor,
ResizeForAccelerateAlignment(required_size,
&factorization_workspace_));
}
// Instantiate only for the specific template types required/supported s/t the
@@ -168,33 +166,34 @@ void AccelerateSparse<Scalar>::Cholesky(ASSparseMatrix* A,
template class AccelerateSparse<double>;
template class AccelerateSparse<float>;
template <typename Scalar>
std::unique_ptr<SparseCholesky> AppleAccelerateCholesky<Scalar>::Create(
OrderingType ordering_type) {
template<typename Scalar>
std::unique_ptr<SparseCholesky>
AppleAccelerateCholesky<Scalar>::Create(OrderingType ordering_type) {
return std::unique_ptr<SparseCholesky>(
new AppleAccelerateCholesky<Scalar>(ordering_type));
}
template <typename Scalar>
template<typename Scalar>
AppleAccelerateCholesky<Scalar>::AppleAccelerateCholesky(
const OrderingType ordering_type)
: ordering_type_(ordering_type) {}
template <typename Scalar>
template<typename Scalar>
AppleAccelerateCholesky<Scalar>::~AppleAccelerateCholesky() {
FreeSymbolicFactorization();
FreeNumericFactorization();
}
template <typename Scalar>
template<typename Scalar>
CompressedRowSparseMatrix::StorageType
AppleAccelerateCholesky<Scalar>::StorageType() const {
return CompressedRowSparseMatrix::LOWER_TRIANGULAR;
}
template <typename Scalar>
LinearSolverTerminationType AppleAccelerateCholesky<Scalar>::Factorize(
CompressedRowSparseMatrix* lhs, std::string* message) {
template<typename Scalar>
LinearSolverTerminationType
AppleAccelerateCholesky<Scalar>::Factorize(CompressedRowSparseMatrix* lhs,
std::string* message) {
CHECK_EQ(lhs->storage_type(), StorageType());
if (lhs == NULL) {
*message = "Failure: Input lhs is NULL.";
@@ -235,9 +234,11 @@ LinearSolverTerminationType AppleAccelerateCholesky<Scalar>::Factorize(
return LINEAR_SOLVER_SUCCESS;
}
template <typename Scalar>
LinearSolverTerminationType AppleAccelerateCholesky<Scalar>::Solve(
const double* rhs, double* solution, std::string* message) {
template<typename Scalar>
LinearSolverTerminationType
AppleAccelerateCholesky<Scalar>::Solve(const double* rhs,
double* solution,
std::string* message) {
CHECK_EQ(numeric_factor_->status, SparseStatusOK)
<< "Solve called without a call to Factorize first ("
<< SparseStatusToString(numeric_factor_->status) << ").";
@@ -261,7 +262,7 @@ LinearSolverTerminationType AppleAccelerateCholesky<Scalar>::Solve(
return LINEAR_SOLVER_SUCCESS;
}
template <typename Scalar>
template<typename Scalar>
void AppleAccelerateCholesky<Scalar>::FreeSymbolicFactorization() {
if (symbolic_factor_) {
SparseCleanup(*symbolic_factor_);
@@ -269,7 +270,7 @@ void AppleAccelerateCholesky<Scalar>::FreeSymbolicFactorization() {
}
}
template <typename Scalar>
template<typename Scalar>
void AppleAccelerateCholesky<Scalar>::FreeNumericFactorization() {
if (numeric_factor_) {
SparseCleanup(*numeric_factor_);
@@ -282,7 +283,7 @@ void AppleAccelerateCholesky<Scalar>::FreeNumericFactorization() {
template class AppleAccelerateCholesky<double>;
template class AppleAccelerateCholesky<float>;
} // namespace internal
} // namespace ceres
}
}
#endif // CERES_NO_ACCELERATE_SPARSE

View File

@@ -40,9 +40,9 @@
#include <string>
#include <vector>
#include "Accelerate.h"
#include "ceres/linear_solver.h"
#include "ceres/sparse_cholesky.h"
#include "Accelerate.h"
namespace ceres {
namespace internal {
@@ -50,10 +50,11 @@ namespace internal {
class CompressedRowSparseMatrix;
class TripletSparseMatrix;
template <typename Scalar>
struct SparseTypesTrait {};
template<typename Scalar>
struct SparseTypesTrait {
};
template <>
template<>
struct SparseTypesTrait<double> {
typedef DenseVector_Double DenseVector;
typedef SparseMatrix_Double SparseMatrix;
@@ -61,7 +62,7 @@ struct SparseTypesTrait<double> {
typedef SparseOpaqueFactorization_Double NumericFactorization;
};
template <>
template<>
struct SparseTypesTrait<float> {
typedef DenseVector_Float DenseVector;
typedef SparseMatrix_Float SparseMatrix;
@@ -69,16 +70,14 @@ struct SparseTypesTrait<float> {
typedef SparseOpaqueFactorization_Float NumericFactorization;
};
template <typename Scalar>
template<typename Scalar>
class AccelerateSparse {
public:
using DenseVector = typename SparseTypesTrait<Scalar>::DenseVector;
// Use ASSparseMatrix to avoid collision with ceres::internal::SparseMatrix.
using ASSparseMatrix = typename SparseTypesTrait<Scalar>::SparseMatrix;
using SymbolicFactorization =
typename SparseTypesTrait<Scalar>::SymbolicFactorization;
using NumericFactorization =
typename SparseTypesTrait<Scalar>::NumericFactorization;
using SymbolicFactorization = typename SparseTypesTrait<Scalar>::SymbolicFactorization;
using NumericFactorization = typename SparseTypesTrait<Scalar>::NumericFactorization;
// Solves a linear system given its symbolic (reference counted within
// NumericFactorization) and numeric factorization.
@@ -110,7 +109,7 @@ class AccelerateSparse {
// An implementation of SparseCholesky interface using Apple's Accelerate
// framework.
template <typename Scalar>
template<typename Scalar>
class AppleAccelerateCholesky : public SparseCholesky {
public:
// Factory
@@ -123,7 +122,7 @@ class AppleAccelerateCholesky : public SparseCholesky {
std::string* message) final;
LinearSolverTerminationType Solve(const double* rhs,
double* solution,
std::string* message) final;
std::string* message) final ;
private:
AppleAccelerateCholesky(const OrderingType ordering_type);
@@ -133,15 +132,15 @@ class AppleAccelerateCholesky : public SparseCholesky {
const OrderingType ordering_type_;
AccelerateSparse<Scalar> as_;
std::unique_ptr<typename AccelerateSparse<Scalar>::SymbolicFactorization>
symbolic_factor_;
symbolic_factor_;
std::unique_ptr<typename AccelerateSparse<Scalar>::NumericFactorization>
numeric_factor_;
numeric_factor_;
// Copy of rhs/solution if Scalar != double (necessitating a copy).
Eigen::Matrix<Scalar, Eigen::Dynamic, 1> scalar_rhs_and_solution_;
};
} // namespace internal
} // namespace ceres
}
}
#endif // CERES_NO_ACCELERATE_SPARSE

View File

@@ -35,7 +35,6 @@
#include <cstddef>
#include <string>
#include <vector>
#include "ceres/stringprintf.h"
#include "ceres/types.h"
namespace ceres {
@@ -46,7 +45,7 @@ using std::string;
bool IsArrayValid(const int size, const double* x) {
if (x != NULL) {
for (int i = 0; i < size; ++i) {
if (!std::isfinite(x[i]) || (x[i] == kImpossibleValue)) {
if (!std::isfinite(x[i]) || (x[i] == kImpossibleValue)) {
return false;
}
}
@@ -60,7 +59,7 @@ int FindInvalidValue(const int size, const double* x) {
}
for (int i = 0; i < size; ++i) {
if (!std::isfinite(x[i]) || (x[i] == kImpossibleValue)) {
if (!std::isfinite(x[i]) || (x[i] == kImpossibleValue)) {
return i;
}
}
@@ -93,13 +92,14 @@ void AppendArrayToString(const int size, const double* x, string* result) {
void MapValuesToContiguousRange(const int size, int* array) {
std::vector<int> unique_values(array, array + size);
std::sort(unique_values.begin(), unique_values.end());
unique_values.erase(std::unique(unique_values.begin(), unique_values.end()),
unique_values.erase(std::unique(unique_values.begin(),
unique_values.end()),
unique_values.end());
for (int i = 0; i < size; ++i) {
array[i] =
std::lower_bound(unique_values.begin(), unique_values.end(), array[i]) -
unique_values.begin();
array[i] = std::lower_bound(unique_values.begin(),
unique_values.end(),
array[i]) - unique_values.begin();
}
}

View File

@@ -44,7 +44,6 @@
#define CERES_INTERNAL_ARRAY_UTILS_H_
#include <string>
#include "ceres/internal/port.h"
namespace ceres {
@@ -52,22 +51,20 @@ namespace internal {
// Fill the array x with an impossible value that the user code is
// never expected to compute.
CERES_EXPORT_INTERNAL void InvalidateArray(int size, double* x);
void InvalidateArray(int size, double* x);
// Check if all the entries of the array x are valid, i.e. all the
// values in the array should be finite and none of them should be
// equal to the "impossible" value used by InvalidateArray.
CERES_EXPORT_INTERNAL bool IsArrayValid(int size, const double* x);
bool IsArrayValid(int size, const double* x);
// If the array contains an invalid value, return the index for it,
// otherwise return size.
CERES_EXPORT_INTERNAL int FindInvalidValue(const int size, const double* x);
int FindInvalidValue(const int size, const double* x);
// Utility routine to print an array of doubles to a string. If the
// array pointer is NULL, it is treated as an array of zeros.
CERES_EXPORT_INTERNAL void AppendArrayToString(const int size,
const double* x,
std::string* result);
void AppendArrayToString(const int size, const double* x, std::string* result);
// This routine takes an array of integer values, sorts and uniques
// them and then maps each value in the array to its position in the
@@ -82,7 +79,7 @@ CERES_EXPORT_INTERNAL void AppendArrayToString(const int size,
// gets mapped to
//
// [1 0 2 3 0 1 3]
CERES_EXPORT_INTERNAL void MapValuesToContiguousRange(int size, int* array);
void MapValuesToContiguousRange(int size, int* array);
} // namespace internal
} // namespace ceres

View File

@@ -29,7 +29,6 @@
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/blas.h"
#include "ceres/internal/port.h"
#include "glog/logging.h"

View File

@@ -31,7 +31,6 @@
#include "ceres/block_evaluate_preparer.h"
#include <vector>
#include "ceres/block_sparse_matrix.h"
#include "ceres/casts.h"
#include "ceres/parameter_block.h"
@@ -54,8 +53,10 @@ void BlockEvaluatePreparer::Prepare(const ResidualBlock* residual_block,
double** jacobians) {
// If the overall jacobian is not available, use the scratch space.
if (jacobian == NULL) {
scratch_evaluate_preparer_.Prepare(
residual_block, residual_block_index, jacobian, jacobians);
scratch_evaluate_preparer_.Prepare(residual_block,
residual_block_index,
jacobian,
jacobians);
return;
}

View File

@@ -30,9 +30,9 @@
#include "ceres/block_jacobi_preconditioner.h"
#include "ceres/block_random_access_diagonal_matrix.h"
#include "ceres/block_sparse_matrix.h"
#include "ceres/block_structure.h"
#include "ceres/block_random_access_diagonal_matrix.h"
#include "ceres/casts.h"
#include "ceres/internal/eigen.h"
@@ -65,11 +65,13 @@ bool BlockJacobiPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
const int col_block_size = bs->cols[block_id].size;
int r, c, row_stride, col_stride;
CellInfo* cell_info =
m_->GetCell(block_id, block_id, &r, &c, &row_stride, &col_stride);
CellInfo* cell_info = m_->GetCell(block_id, block_id,
&r, &c,
&row_stride, &col_stride);
MatrixRef m(cell_info->values, row_stride, col_stride);
ConstMatrixRef b(
values + cells[j].position, row_block_size, col_block_size);
ConstMatrixRef b(values + cells[j].position,
row_block_size,
col_block_size);
m.block(r, c, col_block_size, col_block_size) += b.transpose() * b;
}
}
@@ -80,7 +82,9 @@ bool BlockJacobiPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
for (int i = 0; i < bs->cols.size(); ++i) {
const int block_size = bs->cols[i].size;
int r, c, row_stride, col_stride;
CellInfo* cell_info = m_->GetCell(i, i, &r, &c, &row_stride, &col_stride);
CellInfo* cell_info = m_->GetCell(i, i,
&r, &c,
&row_stride, &col_stride);
MatrixRef m(cell_info->values, row_stride, col_stride);
m.block(r, c, block_size, block_size).diagonal() +=
ConstVectorRef(D + position, block_size).array().square().matrix();

View File

@@ -32,9 +32,7 @@
#define CERES_INTERNAL_BLOCK_JACOBI_PRECONDITIONER_H_
#include <memory>
#include "ceres/block_random_access_diagonal_matrix.h"
#include "ceres/internal/port.h"
#include "ceres/preconditioner.h"
namespace ceres {
@@ -53,8 +51,7 @@ struct CompressedRowBlockStructure;
// update the matrix by running Update(A, D). The values of the matrix A are
// inspected to construct the preconditioner. The vector D is applied as the
// D^TD diagonal term.
class CERES_EXPORT_INTERNAL BlockJacobiPreconditioner
: public BlockSparseMatrixPreconditioner {
class BlockJacobiPreconditioner : public BlockSparseMatrixPreconditioner {
public:
// A must remain valid while the BlockJacobiPreconditioner is.
explicit BlockJacobiPreconditioner(const BlockSparseMatrix& A);

View File

@@ -32,11 +32,11 @@
#include "ceres/block_evaluate_preparer.h"
#include "ceres/block_sparse_matrix.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
namespace ceres {
namespace internal {

View File

@@ -39,7 +39,6 @@
#define CERES_INTERNAL_BLOCK_JACOBIAN_WRITER_H_
#include <vector>
#include "ceres/evaluator.h"
#include "ceres/internal/port.h"
@@ -53,7 +52,8 @@ class SparseMatrix;
// TODO(sameeragarwal): This class needs documemtation.
class BlockJacobianWriter {
public:
BlockJacobianWriter(const Evaluator::Options& options, Program* program);
BlockJacobianWriter(const Evaluator::Options& options,
Program* program);
// JacobianWriter interface.

View File

@@ -31,7 +31,6 @@
#include "ceres/block_random_access_dense_matrix.h"
#include <vector>
#include "ceres/internal/eigen.h"
#include "glog/logging.h"
@@ -60,7 +59,8 @@ BlockRandomAccessDenseMatrix::BlockRandomAccessDenseMatrix(
// Assume that the user does not hold any locks on any cell blocks
// when they are calling SetZero.
BlockRandomAccessDenseMatrix::~BlockRandomAccessDenseMatrix() {}
BlockRandomAccessDenseMatrix::~BlockRandomAccessDenseMatrix() {
}
CellInfo* BlockRandomAccessDenseMatrix::GetCell(const int row_block_id,
const int col_block_id,

View File

@@ -31,10 +31,11 @@
#ifndef CERES_INTERNAL_BLOCK_RANDOM_ACCESS_DENSE_MATRIX_H_
#define CERES_INTERNAL_BLOCK_RANDOM_ACCESS_DENSE_MATRIX_H_
#include "ceres/block_random_access_matrix.h"
#include <memory>
#include <vector>
#include "ceres/block_random_access_matrix.h"
#include "ceres/internal/port.h"
namespace ceres {
@@ -50,8 +51,7 @@ namespace internal {
// pair.
//
// ReturnCell is a nop.
class CERES_EXPORT_INTERNAL BlockRandomAccessDenseMatrix
: public BlockRandomAccessMatrix {
class BlockRandomAccessDenseMatrix : public BlockRandomAccessMatrix {
public:
// blocks is a vector of block sizes. The resulting matrix has
// blocks.size() * blocks.size() cells.

View File

@@ -63,8 +63,9 @@ BlockRandomAccessDiagonalMatrix::BlockRandomAccessDiagonalMatrix(
num_nonzeros += blocks_[i] * blocks_[i];
}
VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] "
<< num_nonzeros;
VLOG(1) << "Matrix Size [" << num_cols
<< "," << num_cols
<< "] " << num_nonzeros;
tsm_.reset(new TripletSparseMatrix(num_cols, num_cols, num_nonzeros));
tsm_->set_num_nonzeros(num_nonzeros);
@@ -115,7 +116,8 @@ CellInfo* BlockRandomAccessDiagonalMatrix::GetCell(int row_block_id,
// when they are calling SetZero.
void BlockRandomAccessDiagonalMatrix::SetZero() {
if (tsm_->num_nonzeros()) {
VectorRef(tsm_->mutable_values(), tsm_->num_nonzeros()).setZero();
VectorRef(tsm_->mutable_values(),
tsm_->num_nonzeros()).setZero();
}
}
@@ -124,8 +126,11 @@ void BlockRandomAccessDiagonalMatrix::Invert() {
for (int i = 0; i < blocks_.size(); ++i) {
const int block_size = blocks_[i];
MatrixRef block(values, block_size, block_size);
block = block.selfadjointView<Eigen::Upper>().llt().solve(
Matrix::Identity(block_size, block_size));
block =
block
.selfadjointView<Eigen::Upper>()
.llt()
.solve(Matrix::Identity(block_size, block_size));
values += block_size * block_size;
}
}

View File

@@ -46,13 +46,11 @@ namespace internal {
// A thread safe block diagonal matrix implementation of
// BlockRandomAccessMatrix.
class CERES_EXPORT_INTERNAL BlockRandomAccessDiagonalMatrix
: public BlockRandomAccessMatrix {
class BlockRandomAccessDiagonalMatrix : public BlockRandomAccessMatrix {
public:
// blocks is an array of block sizes.
explicit BlockRandomAccessDiagonalMatrix(const std::vector<int>& blocks);
BlockRandomAccessDiagonalMatrix(const BlockRandomAccessDiagonalMatrix&) =
delete;
BlockRandomAccessDiagonalMatrix(const BlockRandomAccessDiagonalMatrix&) = delete;
void operator=(const BlockRandomAccessDiagonalMatrix&) = delete;
// The destructor is not thread safe. It assumes that no one is

View File

@@ -33,7 +33,8 @@
namespace ceres {
namespace internal {
BlockRandomAccessMatrix::~BlockRandomAccessMatrix() {}
BlockRandomAccessMatrix::~BlockRandomAccessMatrix() {
}
} // namespace internal
} // namespace ceres

View File

@@ -35,8 +35,6 @@
#include <mutex>
#include "ceres/internal/port.h"
namespace ceres {
namespace internal {
@@ -93,7 +91,7 @@ struct CellInfo {
std::mutex m;
};
class CERES_EXPORT_INTERNAL BlockRandomAccessMatrix {
class BlockRandomAccessMatrix {
public:
virtual ~BlockRandomAccessMatrix();

View File

@@ -50,8 +50,10 @@ using std::set;
using std::vector;
BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix(
const vector<int>& blocks, const set<pair<int, int>>& block_pairs)
: kMaxRowBlocks(10 * 1000 * 1000), blocks_(blocks) {
const vector<int>& blocks,
const set<pair<int, int>>& block_pairs)
: kMaxRowBlocks(10 * 1000 * 1000),
blocks_(blocks) {
CHECK_LT(blocks.size(), kMaxRowBlocks);
// Build the row/column layout vector and count the number of scalar
@@ -73,8 +75,9 @@ BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix(
num_nonzeros += row_block_size * col_block_size;
}
VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] "
<< num_nonzeros;
VLOG(1) << "Matrix Size [" << num_cols
<< "," << num_cols
<< "] " << num_nonzeros;
tsm_.reset(new TripletSparseMatrix(num_cols, num_cols, num_nonzeros));
tsm_->set_num_nonzeros(num_nonzeros);
@@ -102,11 +105,11 @@ BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix(
layout_[IntPairToLong(row_block_id, col_block_id)]->values - values;
for (int r = 0; r < row_block_size; ++r) {
for (int c = 0; c < col_block_size; ++c, ++pos) {
rows[pos] = block_positions_[row_block_id] + r;
cols[pos] = block_positions_[col_block_id] + c;
values[pos] = 1.0;
DCHECK_LT(rows[pos], tsm_->num_rows());
DCHECK_LT(cols[pos], tsm_->num_rows());
rows[pos] = block_positions_[row_block_id] + r;
cols[pos] = block_positions_[col_block_id] + c;
values[pos] = 1.0;
DCHECK_LT(rows[pos], tsm_->num_rows());
DCHECK_LT(cols[pos], tsm_->num_rows());
}
}
}
@@ -126,7 +129,7 @@ CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id,
int* col,
int* row_stride,
int* col_stride) {
const LayoutType::iterator it =
const LayoutType::iterator it =
layout_.find(IntPairToLong(row_block_id, col_block_id));
if (it == layout_.end()) {
return NULL;
@@ -144,7 +147,8 @@ CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id,
// when they are calling SetZero.
void BlockRandomAccessSparseMatrix::SetZero() {
if (tsm_->num_nonzeros()) {
VectorRef(tsm_->mutable_values(), tsm_->num_nonzeros()).setZero();
VectorRef(tsm_->mutable_values(),
tsm_->num_nonzeros()).setZero();
}
}
@@ -160,9 +164,7 @@ void BlockRandomAccessSparseMatrix::SymmetricRightMultiply(const double* x,
const int col_block_pos = block_positions_[col];
MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
cell_position_and_data.second,
row_block_size,
col_block_size,
cell_position_and_data.second, row_block_size, col_block_size,
x + col_block_pos,
y + row_block_pos);
@@ -172,9 +174,7 @@ void BlockRandomAccessSparseMatrix::SymmetricRightMultiply(const double* x,
// triangular multiply also.
if (row != col) {
MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
cell_position_and_data.second,
row_block_size,
col_block_size,
cell_position_and_data.second, row_block_size, col_block_size,
x + row_block_pos,
y + col_block_pos);
}

View File

@@ -39,10 +39,10 @@
#include <vector>
#include "ceres/block_random_access_matrix.h"
#include "ceres/internal/port.h"
#include "ceres/small_blas.h"
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/internal/port.h"
#include "ceres/types.h"
#include "ceres/small_blas.h"
namespace ceres {
namespace internal {
@@ -51,8 +51,7 @@ namespace internal {
// BlockRandomAccessMatrix. Internally a TripletSparseMatrix is used
// for doing the actual storage. This class augments this matrix with
// an unordered_map that allows random read/write access.
class CERES_EXPORT_INTERNAL BlockRandomAccessSparseMatrix
: public BlockRandomAccessMatrix {
class BlockRandomAccessSparseMatrix : public BlockRandomAccessMatrix {
public:
// blocks is an array of block sizes. block_pairs is a set of
// <row_block_id, col_block_id> pairs to identify the non-zero cells
@@ -111,7 +110,7 @@ class CERES_EXPORT_INTERNAL BlockRandomAccessSparseMatrix
// A mapping from <row_block_id, col_block_id> to the position in
// the values array of tsm_ where the block is stored.
typedef std::unordered_map<long int, CellInfo*> LayoutType;
typedef std::unordered_map<long int, CellInfo* > LayoutType;
LayoutType layout_;
// In order traversal of contents of the matrix. This allows us to

View File

@@ -30,10 +30,9 @@
#include "ceres/block_sparse_matrix.h"
#include <algorithm>
#include <cstddef>
#include <algorithm>
#include <vector>
#include "ceres/block_structure.h"
#include "ceres/internal/eigen.h"
#include "ceres/random.h"
@@ -78,8 +77,8 @@ BlockSparseMatrix::BlockSparseMatrix(
CHECK_GE(num_rows_, 0);
CHECK_GE(num_cols_, 0);
CHECK_GE(num_nonzeros_, 0);
VLOG(2) << "Allocating values array with " << num_nonzeros_ * sizeof(double)
<< " bytes."; // NOLINT
VLOG(2) << "Allocating values array with "
<< num_nonzeros_ * sizeof(double) << " bytes."; // NOLINT
values_.reset(new double[num_nonzeros_]);
max_num_nonzeros_ = num_nonzeros_;
CHECK(values_ != nullptr);
@@ -89,7 +88,7 @@ void BlockSparseMatrix::SetZero() {
std::fill(values_.get(), values_.get() + num_nonzeros_, 0.0);
}
void BlockSparseMatrix::RightMultiply(const double* x, double* y) const {
void BlockSparseMatrix::RightMultiply(const double* x, double* y) const {
CHECK(x != nullptr);
CHECK(y != nullptr);
@@ -102,9 +101,7 @@ void BlockSparseMatrix::RightMultiply(const double* x, double* y) const {
int col_block_size = block_structure_->cols[col_block_id].size;
int col_block_pos = block_structure_->cols[col_block_id].position;
MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
values_.get() + cells[j].position,
row_block_size,
col_block_size,
values_.get() + cells[j].position, row_block_size, col_block_size,
x + col_block_pos,
y + row_block_pos);
}
@@ -124,9 +121,7 @@ void BlockSparseMatrix::LeftMultiply(const double* x, double* y) const {
int col_block_size = block_structure_->cols[col_block_id].size;
int col_block_pos = block_structure_->cols[col_block_id].position;
MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
values_.get() + cells[j].position,
row_block_size,
col_block_size,
values_.get() + cells[j].position, row_block_size, col_block_size,
x + row_block_pos,
y + col_block_pos);
}
@@ -143,8 +138,8 @@ void BlockSparseMatrix::SquaredColumnNorm(double* x) const {
int col_block_id = cells[j].block_id;
int col_block_size = block_structure_->cols[col_block_id].size;
int col_block_pos = block_structure_->cols[col_block_id].position;
const MatrixRef m(
values_.get() + cells[j].position, row_block_size, col_block_size);
const MatrixRef m(values_.get() + cells[j].position,
row_block_size, col_block_size);
VectorRef(x + col_block_pos, col_block_size) += m.colwise().squaredNorm();
}
}
@@ -160,8 +155,8 @@ void BlockSparseMatrix::ScaleColumns(const double* scale) {
int col_block_id = cells[j].block_id;
int col_block_size = block_structure_->cols[col_block_id].size;
int col_block_pos = block_structure_->cols[col_block_id].position;
MatrixRef m(
values_.get() + cells[j].position, row_block_size, col_block_size);
MatrixRef m(values_.get() + cells[j].position,
row_block_size, col_block_size);
m *= ConstVectorRef(scale + col_block_pos, col_block_size).asDiagonal();
}
}
@@ -183,8 +178,8 @@ void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
int col_block_size = block_structure_->cols[col_block_id].size;
int col_block_pos = block_structure_->cols[col_block_id].position;
int jac_pos = cells[j].position;
m.block(row_block_pos, col_block_pos, row_block_size, col_block_size) +=
MatrixRef(values_.get() + jac_pos, row_block_size, col_block_size);
m.block(row_block_pos, col_block_pos, row_block_size, col_block_size)
+= MatrixRef(values_.get() + jac_pos, row_block_size, col_block_size);
}
}
}
@@ -206,7 +201,7 @@ void BlockSparseMatrix::ToTripletSparseMatrix(
int col_block_size = block_structure_->cols[col_block_id].size;
int col_block_pos = block_structure_->cols[col_block_id].position;
int jac_pos = cells[j].position;
for (int r = 0; r < row_block_size; ++r) {
for (int r = 0; r < row_block_size; ++r) {
for (int c = 0; c < col_block_size; ++c, ++jac_pos) {
matrix->mutable_rows()[jac_pos] = row_block_pos + r;
matrix->mutable_cols()[jac_pos] = col_block_pos + c;
@@ -220,7 +215,8 @@ void BlockSparseMatrix::ToTripletSparseMatrix(
// Return a pointer to the block structure. We continue to hold
// ownership of the object though.
const CompressedRowBlockStructure* BlockSparseMatrix::block_structure() const {
const CompressedRowBlockStructure* BlockSparseMatrix::block_structure()
const {
return block_structure_.get();
}
@@ -237,8 +233,7 @@ void BlockSparseMatrix::ToTextFile(FILE* file) const {
int jac_pos = cells[j].position;
for (int r = 0; r < row_block_size; ++r) {
for (int c = 0; c < col_block_size; ++c) {
fprintf(file,
"% 10d % 10d %17f\n",
fprintf(file, "% 10d % 10d %17f\n",
row_block_pos + r,
col_block_pos + c,
values_[jac_pos++]);
@@ -374,6 +369,7 @@ BlockSparseMatrix* BlockSparseMatrix::CreateRandomMatrix(
int row_block_position = 0;
int value_position = 0;
for (int r = 0; r < options.num_row_blocks; ++r) {
const int delta_block_size =
Uniform(options.max_row_block_size - options.min_row_block_size);
const int row_block_size = options.min_row_block_size + delta_block_size;

View File

@@ -35,11 +35,9 @@
#define CERES_INTERNAL_BLOCK_SPARSE_MATRIX_H_
#include <memory>
#include "ceres/block_structure.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/sparse_matrix.h"
#include "ceres/internal/eigen.h"
namespace ceres {
namespace internal {
@@ -54,7 +52,7 @@ class TripletSparseMatrix;
//
// internal/ceres/block_structure.h
//
class CERES_EXPORT_INTERNAL BlockSparseMatrix : public SparseMatrix {
class BlockSparseMatrix : public SparseMatrix {
public:
// Construct a block sparse matrix with a fully initialized
// CompressedRowBlockStructure objected. The matrix takes over
@@ -79,13 +77,11 @@ class CERES_EXPORT_INTERNAL BlockSparseMatrix : public SparseMatrix {
void ToDenseMatrix(Matrix* dense_matrix) const final;
void ToTextFile(FILE* file) const final;
// clang-format off
int num_rows() const final { return num_rows_; }
int num_cols() const final { return num_cols_; }
int num_nonzeros() const final { return num_nonzeros_; }
const double* values() const final { return values_.get(); }
double* mutable_values() final { return values_.get(); }
// clang-format on
void ToTripletSparseMatrix(TripletSparseMatrix* matrix) const;
const CompressedRowBlockStructure* block_structure() const;
@@ -98,7 +94,8 @@ class CERES_EXPORT_INTERNAL BlockSparseMatrix : public SparseMatrix {
void DeleteRowBlocks(int delta_row_blocks);
static BlockSparseMatrix* CreateDiagonalMatrix(
const double* diagonal, const std::vector<Block>& column_blocks);
const double* diagonal,
const std::vector<Block>& column_blocks);
struct RandomMatrixOptions {
int num_row_blocks = 0;

View File

@@ -35,7 +35,7 @@ namespace internal {
bool CellLessThan(const Cell& lhs, const Cell& rhs) {
if (lhs.block_id == rhs.block_id) {
return (lhs.position < rhs.position);
return (lhs.position < rhs.position);
}
return (lhs.block_id < rhs.block_id);
}

View File

@@ -40,7 +40,6 @@
#include <cstdint>
#include <vector>
#include "ceres/internal/port.h"
namespace ceres {

View File

@@ -34,10 +34,9 @@
#include "ceres/c_api.h"
#include <vector>
#include <iostream>
#include <string>
#include <vector>
#include "ceres/cost_function.h"
#include "ceres/loss_function.h"
#include "ceres/problem.h"
@@ -71,7 +70,8 @@ class CallbackCostFunction : public ceres::CostFunction {
int num_residuals,
int num_parameter_blocks,
int* parameter_block_sizes)
: cost_function_(cost_function), user_data_(user_data) {
: cost_function_(cost_function),
user_data_(user_data) {
set_num_residuals(num_residuals);
for (int i = 0; i < num_parameter_blocks; ++i) {
mutable_parameter_block_sizes()->push_back(parameter_block_sizes[i]);
@@ -81,10 +81,12 @@ class CallbackCostFunction : public ceres::CostFunction {
virtual ~CallbackCostFunction() {}
bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const final {
return (*cost_function_)(
user_data_, const_cast<double**>(parameters), residuals, jacobians);
double* residuals,
double** jacobians) const final {
return (*cost_function_)(user_data_,
const_cast<double**>(parameters),
residuals,
jacobians);
}
private:
@@ -98,7 +100,7 @@ class CallbackLossFunction : public ceres::LossFunction {
public:
explicit CallbackLossFunction(ceres_loss_function_t loss_function,
void* user_data)
: loss_function_(loss_function), user_data_(user_data) {}
: loss_function_(loss_function), user_data_(user_data) {}
void Evaluate(double sq_norm, double* rho) const final {
(*loss_function_)(user_data_, sq_norm, rho);
}
@@ -132,8 +134,8 @@ void ceres_free_stock_loss_function_data(void* loss_function_data) {
void ceres_stock_loss_function(void* user_data,
double squared_norm,
double out[3]) {
reinterpret_cast<ceres::LossFunction*>(user_data)->Evaluate(squared_norm,
out);
reinterpret_cast<ceres::LossFunction*>(user_data)
->Evaluate(squared_norm, out);
}
ceres_residual_block_id_t* ceres_problem_add_residual_block(
@@ -157,15 +159,16 @@ ceres_residual_block_id_t* ceres_problem_add_residual_block(
ceres::LossFunction* callback_loss_function = NULL;
if (loss_function != NULL) {
callback_loss_function =
new CallbackLossFunction(loss_function, loss_function_data);
callback_loss_function = new CallbackLossFunction(loss_function,
loss_function_data);
}
std::vector<double*> parameter_blocks(parameters,
parameters + num_parameter_blocks);
return reinterpret_cast<ceres_residual_block_id_t*>(
ceres_problem->AddResidualBlock(
callback_cost_function, callback_loss_function, parameter_blocks));
ceres_problem->AddResidualBlock(callback_cost_function,
callback_loss_function,
parameter_blocks));
}
void ceres_solve(ceres_problem_t* c_problem) {

View File

@@ -28,10 +28,8 @@
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/callbacks.h"
#include <iostream> // NO LINT
#include "ceres/callbacks.h"
#include "ceres/program.h"
#include "ceres/stringprintf.h"
#include "glog/logging.h"
@@ -78,7 +76,8 @@ CallbackReturnType GradientProblemSolverStateUpdatingCallback::operator()(
LoggingCallback::LoggingCallback(const MinimizerType minimizer_type,
const bool log_to_stdout)
: minimizer_type(minimizer_type), log_to_stdout_(log_to_stdout) {}
: minimizer_type(minimizer_type),
log_to_stdout_(log_to_stdout) {}
LoggingCallback::~LoggingCallback() {}
@@ -100,13 +99,11 @@ CallbackReturnType LoggingCallback::operator()(
summary.iteration_time_in_seconds,
summary.cumulative_time_in_seconds);
} else if (minimizer_type == TRUST_REGION) {
// clang-format off
if (summary.iteration == 0) {
output = "iter cost cost_change |gradient| |step| tr_ratio tr_radius ls_iter iter_time total_time\n"; // NOLINT
}
const char* kReportRowFormat =
"% 4d % 8e % 3.2e % 3.2e % 3.2e % 3.2e % 3.2e % 4d % 3.2e % 3.2e"; // NOLINT
// clang-format on
output += StringPrintf(kReportRowFormat,
summary.iteration,
summary.cost,

View File

@@ -32,9 +32,8 @@
#define CERES_INTERNAL_CALLBACKS_H_
#include <string>
#include "ceres/internal/port.h"
#include "ceres/iteration_callback.h"
#include "ceres/internal/port.h"
namespace ceres {
namespace internal {
@@ -48,7 +47,6 @@ class StateUpdatingCallback : public IterationCallback {
StateUpdatingCallback(Program* program, double* parameters);
virtual ~StateUpdatingCallback();
CallbackReturnType operator()(const IterationSummary& summary) final;
private:
Program* program_;
double* parameters_;
@@ -63,7 +61,6 @@ class GradientProblemSolverStateUpdatingCallback : public IterationCallback {
double* user_parameters);
virtual ~GradientProblemSolverStateUpdatingCallback();
CallbackReturnType operator()(const IterationSummary& summary) final;
private:
int num_parameters_;
const double* internal_parameters_;

View File

@@ -31,8 +31,8 @@
#include "ceres/canonical_views_clustering.h"
#include <unordered_map>
#include <unordered_set>
#include <unordered_map>
#include "ceres/graph.h"
#include "ceres/map_util.h"
@@ -126,7 +126,8 @@ void CanonicalViewsClustering::ComputeClustering(
// Add canonical view if quality improves, or if minimum is not
// yet met, otherwise break.
if ((best_difference <= 0) && (centers->size() >= options_.min_views)) {
if ((best_difference <= 0) &&
(centers->size() >= options_.min_views)) {
break;
}
@@ -140,7 +141,8 @@ void CanonicalViewsClustering::ComputeClustering(
// Return the set of vertices of the graph which have valid vertex
// weights.
void CanonicalViewsClustering::FindValidViews(IntSet* valid_views) const {
void CanonicalViewsClustering::FindValidViews(
IntSet* valid_views) const {
const IntSet& views = graph_->vertices();
for (const auto& view : views) {
if (graph_->VertexWeight(view) != WeightedGraph<int>::InvalidWeight()) {
@@ -152,7 +154,8 @@ void CanonicalViewsClustering::FindValidViews(IntSet* valid_views) const {
// Computes the difference in the quality score if 'candidate' were
// added to the set of canonical views.
double CanonicalViewsClustering::ComputeClusteringQualityDifference(
const int candidate, const vector<int>& centers) const {
const int candidate,
const vector<int>& centers) const {
// View score.
double difference =
options_.view_score_weight * graph_->VertexWeight(candidate);
@@ -176,7 +179,7 @@ double CanonicalViewsClustering::ComputeClusteringQualityDifference(
// Orthogonality.
for (int i = 0; i < centers.size(); ++i) {
difference -= options_.similarity_penalty_weight *
graph_->EdgeWeight(centers[i], candidate);
graph_->EdgeWeight(centers[i], candidate);
}
return difference;
@@ -189,7 +192,8 @@ void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
for (const auto& neighbor : neighbors) {
const double old_similarity =
FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0);
const double new_similarity = graph_->EdgeWeight(neighbor, canonical_view);
const double new_similarity =
graph_->EdgeWeight(neighbor, canonical_view);
if (new_similarity > old_similarity) {
view_to_canonical_view_[neighbor] = canonical_view;
view_to_canonical_view_similarity_[neighbor] = new_similarity;
@@ -199,7 +203,8 @@ void CanonicalViewsClustering::UpdateCanonicalViewAssignments(
// Assign a cluster id to each view.
void CanonicalViewsClustering::ComputeClusterMembership(
const vector<int>& centers, IntMap* membership) const {
const vector<int>& centers,
IntMap* membership) const {
CHECK(membership != nullptr);
membership->clear();

View File

@@ -45,7 +45,6 @@
#include <vector>
#include "ceres/graph.h"
#include "ceres/internal/port.h"
namespace ceres {
namespace internal {
@@ -95,13 +94,13 @@ struct CanonicalViewsClusteringOptions;
// It is possible depending on the configuration of the clustering
// algorithm that some of the vertices may not be assigned to any
// cluster. In this case they are assigned to a cluster with id = -1;
CERES_EXPORT_INTERNAL void ComputeCanonicalViewsClustering(
void ComputeCanonicalViewsClustering(
const CanonicalViewsClusteringOptions& options,
const WeightedGraph<int>& graph,
std::vector<int>* centers,
std::unordered_map<int, int>* membership);
struct CERES_EXPORT_INTERNAL CanonicalViewsClusteringOptions {
struct CanonicalViewsClusteringOptions {
// The minimum number of canonical views to compute.
int min_views = 3;

View File

@@ -56,15 +56,15 @@ struct identity_ {
//
// base::identity_ is used to make a non-deduced context, which
// forces all callers to explicitly specify the template argument.
template <typename To>
template<typename To>
inline To implicit_cast(typename identity_<To>::type to) {
return to;
}
// This version of implicit_cast is used when two template arguments
// are specified. It's obsolete and should not be used.
template <typename To, typename From>
inline To implicit_cast(typename identity_<From>::type const& f) {
template<typename To, typename From>
inline To implicit_cast(typename identity_<From>::type const &f) {
return f;
}
@@ -86,8 +86,8 @@ inline To implicit_cast(typename identity_<From>::type const& f) {
// if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo);
// You should design the code some other way not to need this.
template <typename To, typename From> // use like this: down_cast<T*>(foo);
inline To down_cast(From* f) { // so we only accept pointers
template<typename To, typename From> // use like this: down_cast<T*>(foo);
inline To down_cast(From* f) { // so we only accept pointers
// Ensures that To is a sub-type of From *. This test is here only
// for compile-time type checking, and has no overhead in an
// optimized build at run-time, as it will be optimized away

View File

@@ -33,9 +33,8 @@
#include <algorithm>
#include <memory>
#include "ceres/internal/eigen.h"
#include "ceres/linear_operator.h"
#include "ceres/internal/eigen.h"
namespace ceres {
namespace internal {
@@ -80,8 +79,9 @@ class SparseMatrix;
// Note: This class is not thread safe, since it uses some temporary storage.
class CgnrLinearOperator : public LinearOperator {
public:
CgnrLinearOperator(const LinearOperator& A, const double* D)
: A_(A), D_(D), z_(new double[A.num_rows()]) {}
CgnrLinearOperator(const LinearOperator& A, const double *D)
: A_(A), D_(D), z_(new double[A.num_rows()]) {
}
virtual ~CgnrLinearOperator() {}
void RightMultiply(const double* x, double* y) const final {
@@ -96,8 +96,8 @@ class CgnrLinearOperator : public LinearOperator {
// y = y + DtDx
if (D_ != NULL) {
int n = A_.num_cols();
VectorRef(y, n).array() +=
ConstVectorRef(D_, n).array().square() * ConstVectorRef(x, n).array();
VectorRef(y, n).array() += ConstVectorRef(D_, n).array().square() *
ConstVectorRef(x, n).array();
}
}

View File

@@ -32,7 +32,6 @@
#define CERES_INTERNAL_CGNR_SOLVER_H_
#include <memory>
#include "ceres/linear_solver.h"
namespace ceres {
@@ -56,10 +55,11 @@ class CgnrSolver : public BlockSparseMatrixSolver {
void operator=(const CgnrSolver&) = delete;
virtual ~CgnrSolver();
Summary SolveImpl(BlockSparseMatrix* A,
const double* b,
const LinearSolver::PerSolveOptions& per_solve_options,
double* x) final;
Summary SolveImpl(
BlockSparseMatrix* A,
const double* b,
const LinearSolver::PerSolveOptions& per_solve_options,
double* x) final;
private:
const LinearSolver::Options options_;

View File

@@ -30,9 +30,8 @@
#include "ceres/compressed_col_sparse_matrix_utils.h"
#include <algorithm>
#include <vector>
#include <algorithm>
#include "ceres/internal/port.h"
#include "glog/logging.h"
@@ -41,12 +40,13 @@ namespace internal {
using std::vector;
void CompressedColumnScalarMatrixToBlockMatrix(const int* scalar_rows,
const int* scalar_cols,
const vector<int>& row_blocks,
const vector<int>& col_blocks,
vector<int>* block_rows,
vector<int>* block_cols) {
void CompressedColumnScalarMatrixToBlockMatrix(
const int* scalar_rows,
const int* scalar_cols,
const vector<int>& row_blocks,
const vector<int>& col_blocks,
vector<int>* block_rows,
vector<int>* block_cols) {
CHECK(block_rows != nullptr);
CHECK(block_cols != nullptr);
block_rows->clear();
@@ -71,8 +71,10 @@ void CompressedColumnScalarMatrixToBlockMatrix(const int* scalar_rows,
for (int col_block = 0; col_block < num_col_blocks; ++col_block) {
int column_size = 0;
for (int idx = scalar_cols[c]; idx < scalar_cols[c + 1]; ++idx) {
vector<int>::const_iterator it = std::lower_bound(
row_block_starts.begin(), row_block_starts.end(), scalar_rows[idx]);
vector<int>::const_iterator it =
std::lower_bound(row_block_starts.begin(),
row_block_starts.end(),
scalar_rows[idx]);
// Since we are using lower_bound, it will return the row id
// where the row block starts. For everything but the first row
// of the block, where these values will be the same, we can
@@ -102,7 +104,7 @@ void BlockOrderingToScalarOrdering(const vector<int>& blocks,
// block_starts = [0, block1, block1 + block2 ..]
vector<int> block_starts(num_blocks);
for (int i = 0, cursor = 0; i < num_blocks; ++i) {
for (int i = 0, cursor = 0; i < num_blocks ; ++i) {
block_starts[i] = cursor;
cursor += blocks[i];
}

View File

@@ -32,7 +32,6 @@
#define CERES_INTERNAL_COMPRESSED_COL_SPARSE_MATRIX_UTILS_H_
#include <vector>
#include "ceres/internal/port.h"
namespace ceres {
@@ -48,7 +47,7 @@ namespace internal {
// and column block j, then it is expected that A contains at least
// one non-zero entry corresponding to the top left entry of c_ij,
// as that entry is used to detect the presence of a non-zero c_ij.
CERES_EXPORT_INTERNAL void CompressedColumnScalarMatrixToBlockMatrix(
void CompressedColumnScalarMatrixToBlockMatrix(
const int* scalar_rows,
const int* scalar_cols,
const std::vector<int>& row_blocks,
@@ -59,7 +58,7 @@ CERES_EXPORT_INTERNAL void CompressedColumnScalarMatrixToBlockMatrix(
// Given a set of blocks and a permutation of these blocks, compute
// the corresponding "scalar" ordering, where the scalar ordering of
// size sum(blocks).
CERES_EXPORT_INTERNAL void BlockOrderingToScalarOrdering(
void BlockOrderingToScalarOrdering(
const std::vector<int>& blocks,
const std::vector<int>& block_ordering,
std::vector<int>* scalar_ordering);
@@ -102,7 +101,7 @@ void SolveUpperTriangularTransposeInPlace(IntegerType num_cols,
const double v = values[idx];
rhs_and_solution[c] -= v * rhs_and_solution[r];
}
rhs_and_solution[c] = rhs_and_solution[c] / values[cols[c + 1] - 1];
rhs_and_solution[c] = rhs_and_solution[c] / values[cols[c + 1] - 1];
}
}
@@ -133,7 +132,7 @@ void SolveRTRWithSparseRHS(IntegerType num_cols,
const double v = values[idx];
solution[c] -= v * solution[r];
}
solution[c] = solution[c] / values[cols[c + 1] - 1];
solution[c] = solution[c] / values[cols[c + 1] - 1];
}
SolveUpperTriangularInPlace(num_cols, rows, cols, values, solution);

View File

@@ -44,21 +44,23 @@
namespace ceres {
namespace internal {
using std::adjacent_find;
using std::make_pair;
using std::pair;
using std::vector;
using std::adjacent_find;
void CompressedRowJacobianWriter::PopulateJacobianRowAndColumnBlockVectors(
const Program* program, CompressedRowSparseMatrix* jacobian) {
const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
const vector<ParameterBlock*>& parameter_blocks =
program->parameter_blocks();
vector<int>& col_blocks = *(jacobian->mutable_col_blocks());
col_blocks.resize(parameter_blocks.size());
for (int i = 0; i < parameter_blocks.size(); ++i) {
col_blocks[i] = parameter_blocks[i]->LocalSize();
}
const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
const vector<ResidualBlock*>& residual_blocks =
program->residual_blocks();
vector<int>& row_blocks = *(jacobian->mutable_row_blocks());
row_blocks.resize(residual_blocks.size());
for (int i = 0; i < residual_blocks.size(); ++i) {
@@ -67,10 +69,11 @@ void CompressedRowJacobianWriter::PopulateJacobianRowAndColumnBlockVectors(
}
void CompressedRowJacobianWriter::GetOrderedParameterBlocks(
const Program* program,
int residual_id,
vector<pair<int, int>>* evaluated_jacobian_blocks) {
const ResidualBlock* residual_block = program->residual_blocks()[residual_id];
const Program* program,
int residual_id,
vector<pair<int, int>>* evaluated_jacobian_blocks) {
const ResidualBlock* residual_block =
program->residual_blocks()[residual_id];
const int num_parameter_blocks = residual_block->NumParameterBlocks();
for (int j = 0; j < num_parameter_blocks; ++j) {
@@ -85,7 +88,8 @@ void CompressedRowJacobianWriter::GetOrderedParameterBlocks(
}
SparseMatrix* CompressedRowJacobianWriter::CreateJacobian() const {
const vector<ResidualBlock*>& residual_blocks = program_->residual_blocks();
const vector<ResidualBlock*>& residual_blocks =
program_->residual_blocks();
int total_num_residuals = program_->NumResiduals();
int total_num_effective_parameters = program_->NumEffectiveParameters();
@@ -108,10 +112,11 @@ SparseMatrix* CompressedRowJacobianWriter::CreateJacobian() const {
// Allocate more space than needed to store the jacobian so that when the LM
// algorithm adds the diagonal, no reallocation is necessary. This reduces
// peak memory usage significantly.
CompressedRowSparseMatrix* jacobian = new CompressedRowSparseMatrix(
total_num_residuals,
total_num_effective_parameters,
num_jacobian_nonzeros + total_num_effective_parameters);
CompressedRowSparseMatrix* jacobian =
new CompressedRowSparseMatrix(
total_num_residuals,
total_num_effective_parameters,
num_jacobian_nonzeros + total_num_effective_parameters);
// At this stage, the CompressedRowSparseMatrix is an invalid state. But this
// seems to be the only way to construct it without doing a memory copy.
@@ -143,7 +148,8 @@ SparseMatrix* CompressedRowJacobianWriter::CreateJacobian() const {
std::string parameter_block_description;
for (int j = 0; j < num_parameter_blocks; ++j) {
ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
parameter_block_description += parameter_block->ToString() + "\n";
parameter_block_description +=
parameter_block->ToString() + "\n";
}
LOG(FATAL) << "Ceres internal error: "
<< "Duplicate parameter blocks detected in a cost function. "
@@ -190,7 +196,7 @@ SparseMatrix* CompressedRowJacobianWriter::CreateJacobian() const {
void CompressedRowJacobianWriter::Write(int residual_id,
int residual_offset,
double** jacobians,
double **jacobians,
SparseMatrix* base_jacobian) {
CompressedRowSparseMatrix* jacobian =
down_cast<CompressedRowSparseMatrix*>(base_jacobian);

View File

@@ -50,7 +50,8 @@ class CompressedRowJacobianWriter {
public:
CompressedRowJacobianWriter(Evaluator::Options /* ignored */,
Program* program)
: program_(program) {}
: program_(program) {
}
// PopulateJacobianRowAndColumnBlockVectors sets col_blocks and
// row_blocks for a CompressedRowSparseMatrix, based on the
@@ -63,7 +64,8 @@ class CompressedRowJacobianWriter {
// (Jacobian writers do not fall under any type hierarchy; they only
// have to provide an interface as specified in program_evaluator.h).
static void PopulateJacobianRowAndColumnBlockVectors(
const Program* program, CompressedRowSparseMatrix* jacobian);
const Program* program,
CompressedRowSparseMatrix* jacobian);
// It is necessary to determine the order of the jacobian blocks
// before copying them into a CompressedRowSparseMatrix (or derived
@@ -97,7 +99,7 @@ class CompressedRowJacobianWriter {
void Write(int residual_id,
int residual_offset,
double** jacobians,
double **jacobians,
SparseMatrix* base_jacobian);
private:

View File

@@ -33,7 +33,6 @@
#include <algorithm>
#include <numeric>
#include <vector>
#include "ceres/crs_matrix.h"
#include "ceres/internal/port.h"
#include "ceres/random.h"

View File

@@ -32,7 +32,6 @@
#define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
#include <vector>
#include "ceres/internal/port.h"
#include "ceres/sparse_matrix.h"
#include "ceres/types.h"
@@ -46,7 +45,7 @@ namespace internal {
class TripletSparseMatrix;
class CERES_EXPORT_INTERNAL CompressedRowSparseMatrix : public SparseMatrix {
class CompressedRowSparseMatrix : public SparseMatrix {
public:
enum StorageType {
UNSYMMETRIC,

View File

@@ -152,6 +152,7 @@ class ConcurrentQueue {
bool wait_;
};
} // namespace internal
} // namespace ceres

View File

@@ -68,8 +68,7 @@ ConditionedCostFunction::ConditionedCostFunction(
ConditionedCostFunction::~ConditionedCostFunction() {
if (ownership_ == TAKE_OWNERSHIP) {
STLDeleteUniqueContainerPointers(conditioners_.begin(),
conditioners_.end());
STLDeleteUniqueContainerPointers(conditioners_.begin(), conditioners_.end());
} else {
wrapped_cost_function_.release();
}
@@ -78,8 +77,8 @@ ConditionedCostFunction::~ConditionedCostFunction() {
bool ConditionedCostFunction::Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
bool success =
wrapped_cost_function_->Evaluate(parameters, residuals, jacobians);
bool success = wrapped_cost_function_->Evaluate(parameters, residuals,
jacobians);
if (!success) {
return false;
}
@@ -103,8 +102,9 @@ bool ConditionedCostFunction::Evaluate(double const* const* parameters,
double unconditioned_residual = residuals[r];
double* parameter_pointer = &unconditioned_residual;
success = conditioners_[r]->Evaluate(
&parameter_pointer, &residuals[r], conditioner_derivative_pointer2);
success = conditioners_[r]->Evaluate(&parameter_pointer,
&residuals[r],
conditioner_derivative_pointer2);
if (!success) {
return false;
}
@@ -117,8 +117,7 @@ bool ConditionedCostFunction::Evaluate(double const* const* parameters,
int parameter_block_size =
wrapped_cost_function_->parameter_block_sizes()[i];
VectorRef jacobian_row(jacobians[i] + r * parameter_block_size,
parameter_block_size,
1);
parameter_block_size, 1);
jacobian_row *= conditioner_derivative;
}
}

View File

@@ -41,7 +41,6 @@
#include <cmath>
#include <cstddef>
#include "ceres/internal/eigen.h"
#include "ceres/linear_operator.h"
#include "ceres/stringprintf.h"
@@ -52,13 +51,16 @@ namespace ceres {
namespace internal {
namespace {
bool IsZeroOrInfinity(double x) { return ((x == 0.0) || std::isinf(x)); }
bool IsZeroOrInfinity(double x) {
return ((x == 0.0) || std::isinf(x));
}
} // namespace
ConjugateGradientsSolver::ConjugateGradientsSolver(
const LinearSolver::Options& options)
: options_(options) {}
: options_(options) {
}
LinearSolver::Summary ConjugateGradientsSolver::Solve(
LinearOperator* A,
@@ -135,10 +137,7 @@ LinearSolver::Summary ConjugateGradientsSolver::Solve(
summary.termination_type = LINEAR_SOLVER_FAILURE;
summary.message = StringPrintf(
"Numerical failure. beta = rho_n / rho_{n-1} = %e, "
"rho_n = %e, rho_{n-1} = %e",
beta,
rho,
last_rho);
"rho_n = %e, rho_{n-1} = %e", beta, rho, last_rho);
break;
}
p = z + beta * p;
@@ -153,20 +152,16 @@ LinearSolver::Summary ConjugateGradientsSolver::Solve(
summary.message = StringPrintf(
"Matrix is indefinite, no more progress can be made. "
"p'q = %e. |p| = %e, |q| = %e",
pq,
p.norm(),
q.norm());
pq, p.norm(), q.norm());
break;
}
const double alpha = rho / pq;
if (std::isinf(alpha)) {
summary.termination_type = LINEAR_SOLVER_FAILURE;
summary.message = StringPrintf(
"Numerical failure. alpha = rho / pq = %e, rho = %e, pq = %e.",
alpha,
rho,
pq);
summary.message =
StringPrintf("Numerical failure. alpha = rho / pq = %e, "
"rho = %e, pq = %e.", alpha, rho, pq);
break;
}
@@ -228,7 +223,7 @@ LinearSolver::Summary ConjugateGradientsSolver::Solve(
Q0 = Q1;
// Residual based termination.
norm_r = r.norm();
norm_r = r. norm();
if (norm_r <= tol_r &&
summary.num_iterations >= options_.min_num_iterations) {
summary.termination_type = LINEAR_SOLVER_SUCCESS;

View File

@@ -34,7 +34,6 @@
#ifndef CERES_INTERNAL_CONJUGATE_GRADIENTS_SOLVER_H_
#define CERES_INTERNAL_CONJUGATE_GRADIENTS_SOLVER_H_
#include "ceres/internal/port.h"
#include "ceres/linear_solver.h"
namespace ceres {
@@ -55,7 +54,7 @@ class LinearOperator;
// For more details see the documentation for
// LinearSolver::PerSolveOptions::r_tolerance and
// LinearSolver::PerSolveOptions::q_tolerance in linear_solver.h.
class CERES_EXPORT_INTERNAL ConjugateGradientsSolver : public LinearSolver {
class ConjugateGradientsSolver : public LinearSolver {
public:
explicit ConjugateGradientsSolver(const LinearSolver::Options& options);
Summary Solve(LinearOperator* A,

View File

@@ -34,6 +34,8 @@
namespace ceres {
Context* Context::Create() { return new internal::ContextImpl(); }
Context* Context::Create() {
return new internal::ContextImpl();
}
} // namespace ceres

View File

@@ -37,6 +37,7 @@ void ContextImpl::EnsureMinimumThreads(int num_threads) {
#ifdef CERES_USE_CXX_THREADS
thread_pool.Resize(num_threads);
#endif // CERES_USE_CXX_THREADS
}
} // namespace internal
} // namespace ceres

View File

@@ -32,9 +32,7 @@
#define CERES_INTERNAL_CONTEXT_IMPL_H_
// This include must come before any #ifndef check on Ceres compile options.
// clang-format off
#include "ceres/internal/port.h"
// clanf-format on
#include "ceres/context.h"
@@ -45,7 +43,7 @@
namespace ceres {
namespace internal {
class CERES_EXPORT_INTERNAL ContextImpl : public Context {
class ContextImpl : public Context {
public:
ContextImpl() {}
ContextImpl(const ContextImpl&) = delete;

View File

@@ -64,7 +64,8 @@ CoordinateDescentMinimizer::CoordinateDescentMinimizer(ContextImpl* context)
CHECK(context_ != nullptr);
}
CoordinateDescentMinimizer::~CoordinateDescentMinimizer() {}
CoordinateDescentMinimizer::~CoordinateDescentMinimizer() {
}
bool CoordinateDescentMinimizer::Init(
const Program& program,
@@ -81,13 +82,13 @@ bool CoordinateDescentMinimizer::Init(
map<int, set<double*>> group_to_elements = ordering.group_to_elements();
for (const auto& g_t_e : group_to_elements) {
const auto& elements = g_t_e.second;
for (double* parameter_block : elements) {
for (double* parameter_block: elements) {
parameter_blocks_.push_back(parameter_map.find(parameter_block)->second);
parameter_block_index[parameter_blocks_.back()] =
parameter_blocks_.size() - 1;
}
independent_set_offsets_.push_back(independent_set_offsets_.back() +
elements.size());
independent_set_offsets_.push_back(
independent_set_offsets_.back() + elements.size());
}
// The ordering does not have to contain all parameter blocks, so
@@ -125,9 +126,10 @@ bool CoordinateDescentMinimizer::Init(
return true;
}
void CoordinateDescentMinimizer::Minimize(const Minimizer::Options& options,
double* parameters,
Solver::Summary* summary) {
void CoordinateDescentMinimizer::Minimize(
const Minimizer::Options& options,
double* parameters,
Solver::Summary* summary) {
// Set the state and mark all parameter blocks constant.
for (int i = 0; i < parameter_blocks_.size(); ++i) {
ParameterBlock* parameter_block = parameter_blocks_[i];
@@ -200,7 +202,7 @@ void CoordinateDescentMinimizer::Minimize(const Minimizer::Options& options,
});
}
for (int i = 0; i < parameter_blocks_.size(); ++i) {
for (int i = 0; i < parameter_blocks_.size(); ++i) {
parameter_blocks_[i]->SetVarying();
}
@@ -249,10 +251,10 @@ bool CoordinateDescentMinimizer::IsOrderingValid(
// Verify that each group is an independent set
for (const auto& g_t_e : group_to_elements) {
if (!program.IsParameterBlockSetIndependent(g_t_e.second)) {
*message = StringPrintf(
"The user-provided parameter_blocks_for_inner_iterations does not "
"form an independent set. Group Id: %d",
g_t_e.first);
*message =
StringPrintf("The user-provided "
"parameter_blocks_for_inner_iterations does not "
"form an independent set. Group Id: %d", g_t_e.first);
return false;
}
}

View File

@@ -30,9 +30,8 @@
#include "ceres/corrector.h"
#include <cmath>
#include <cstddef>
#include <cmath>
#include "ceres/internal/eigen.h"
#include "glog/logging.h"
@@ -148,9 +147,9 @@ void Corrector::CorrectJacobian(const int num_rows,
}
for (int r = 0; r < num_rows; ++r) {
jacobian[r * num_cols + c] =
sqrt_rho1_ * (jacobian[r * num_cols + c] -
alpha_sq_norm_ * residuals[r] * r_transpose_j);
jacobian[r * num_cols + c] = sqrt_rho1_ *
(jacobian[r * num_cols + c] -
alpha_sq_norm_ * residuals[r] * r_transpose_j);
}
}
}

View File

@@ -35,8 +35,6 @@
#ifndef CERES_INTERNAL_CORRECTOR_H_
#define CERES_INTERNAL_CORRECTOR_H_
#include "ceres/internal/port.h"
namespace ceres {
namespace internal {
@@ -48,7 +46,7 @@ namespace internal {
// gauss newton approximation and then take its square root to get the
// corresponding corrections to the residual and jacobian. For the
// full expressions see Eq. 10 and 11 in BANS by Triggs et al.
class CERES_EXPORT_INTERNAL Corrector {
class Corrector {
public:
// The constructor takes the squared norm, the value, the first and
// second derivatives of the LossFunction. It precalculates some of

View File

@@ -32,7 +32,6 @@
#include <utility>
#include <vector>
#include "ceres/covariance_impl.h"
#include "ceres/problem.h"
#include "ceres/problem_impl.h"
@@ -47,7 +46,8 @@ Covariance::Covariance(const Covariance::Options& options) {
impl_.reset(new internal::CovarianceImpl(options));
}
Covariance::~Covariance() {}
Covariance::~Covariance() {
}
bool Covariance::Compute(
const vector<pair<const double*, const double*>>& covariance_blocks,
@@ -55,8 +55,9 @@ bool Covariance::Compute(
return impl_->Compute(covariance_blocks, problem->impl_.get());
}
bool Covariance::Compute(const vector<const double*>& parameter_blocks,
Problem* problem) {
bool Covariance::Compute(
const vector<const double*>& parameter_blocks,
Problem* problem) {
return impl_->Compute(parameter_blocks, problem->impl_.get());
}
@@ -88,8 +89,8 @@ bool Covariance::GetCovarianceMatrix(
}
bool Covariance::GetCovarianceMatrixInTangentSpace(
const std::vector<const double*>& parameter_blocks,
double* covariance_matrix) const {
const std::vector<const double *>& parameter_blocks,
double *covariance_matrix) const {
return impl_->GetCovarianceMatrixInTangentOrAmbientSpace(parameter_blocks,
false, // tangent
covariance_matrix);

View File

@@ -39,9 +39,10 @@
#include <utility>
#include <vector>
#include "Eigen/SVD"
#include "Eigen/SparseCore"
#include "Eigen/SparseQR"
#include "Eigen/SVD"
#include "ceres/compressed_col_sparse_matrix_utils.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/covariance.h"
@@ -60,17 +61,25 @@
namespace ceres {
namespace internal {
using std::make_pair;
using std::map;
using std::pair;
using std::sort;
using std::swap;
using std::vector;
using CovarianceBlocks = std::vector<std::pair<const double*, const double*>>;
typedef vector<pair<const double*, const double*>> CovarianceBlocks;
CovarianceImpl::CovarianceImpl(const Covariance::Options& options)
: options_(options), is_computed_(false), is_valid_(false) {
: options_(options),
is_computed_(false),
is_valid_(false) {
#ifdef CERES_NO_THREADS
if (options_.num_threads > 1) {
LOG(WARNING) << "No threading support is compiled into this binary; "
<< "only options.num_threads = 1 is supported. Switching "
<< "to single threaded mode.";
LOG(WARNING)
<< "No threading support is compiled into this binary; "
<< "only options.num_threads = 1 is supported. Switching "
<< "to single threaded mode.";
options_.num_threads = 1;
}
#endif
@@ -79,16 +88,16 @@ CovarianceImpl::CovarianceImpl(const Covariance::Options& options)
evaluate_options_.apply_loss_function = options_.apply_loss_function;
}
CovarianceImpl::~CovarianceImpl() {}
CovarianceImpl::~CovarianceImpl() {
}
template <typename T>
void CheckForDuplicates(std::vector<T> blocks) {
template <typename T> void CheckForDuplicates(vector<T> blocks) {
sort(blocks.begin(), blocks.end());
typename std::vector<T>::iterator it =
typename vector<T>::iterator it =
std::adjacent_find(blocks.begin(), blocks.end());
if (it != blocks.end()) {
// In case there are duplicates, we search for their location.
std::map<T, std::vector<int>> blocks_map;
map<T, vector<int>> blocks_map;
for (int i = 0; i < blocks.size(); ++i) {
blocks_map[blocks[i]].push_back(i);
}
@@ -113,8 +122,7 @@ void CheckForDuplicates(std::vector<T> blocks) {
bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks,
ProblemImpl* problem) {
CheckForDuplicates<std::pair<const double*, const double*>>(
covariance_blocks);
CheckForDuplicates<pair<const double*, const double*>>(covariance_blocks);
problem_ = problem;
parameter_block_to_row_index_.clear();
covariance_matrix_.reset(NULL);
@@ -124,14 +132,14 @@ bool CovarianceImpl::Compute(const CovarianceBlocks& covariance_blocks,
return is_valid_;
}
bool CovarianceImpl::Compute(const std::vector<const double*>& parameter_blocks,
bool CovarianceImpl::Compute(const vector<const double*>& parameter_blocks,
ProblemImpl* problem) {
CheckForDuplicates<const double*>(parameter_blocks);
CovarianceBlocks covariance_blocks;
for (int i = 0; i < parameter_blocks.size(); ++i) {
for (int j = i; j < parameter_blocks.size(); ++j) {
covariance_blocks.push_back(
std::make_pair(parameter_blocks[i], parameter_blocks[j]));
covariance_blocks.push_back(make_pair(parameter_blocks[i],
parameter_blocks[j]));
}
}
@@ -154,11 +162,13 @@ bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace(
if (constant_parameter_blocks_.count(original_parameter_block1) > 0 ||
constant_parameter_blocks_.count(original_parameter_block2) > 0) {
const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
ParameterBlock* block1 = FindOrDie(
parameter_map, const_cast<double*>(original_parameter_block1));
ParameterBlock* block1 =
FindOrDie(parameter_map,
const_cast<double*>(original_parameter_block1));
ParameterBlock* block2 = FindOrDie(
parameter_map, const_cast<double*>(original_parameter_block2));
ParameterBlock* block2 =
FindOrDie(parameter_map,
const_cast<double*>(original_parameter_block2));
const int block1_size = block1->Size();
const int block2_size = block2->Size();
@@ -200,7 +210,8 @@ bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace(
if (offset == row_size) {
LOG(ERROR) << "Unable to find covariance block for "
<< original_parameter_block1 << " " << original_parameter_block2;
<< original_parameter_block1 << " "
<< original_parameter_block2;
return false;
}
@@ -216,8 +227,9 @@ bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace(
const int block2_size = block2->Size();
const int block2_local_size = block2->LocalSize();
ConstMatrixRef cov(
covariance_matrix_->values() + rows[row_begin], block1_size, row_size);
ConstMatrixRef cov(covariance_matrix_->values() + rows[row_begin],
block1_size,
row_size);
// Fast path when there are no local parameterizations or if the
// user does not want it lifted to the ambient space.
@@ -225,8 +237,8 @@ bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace(
!lift_covariance_to_ambient_space) {
if (transpose) {
MatrixRef(covariance_block, block2_local_size, block1_local_size) =
cov.block(0, offset, block1_local_size, block2_local_size)
.transpose();
cov.block(0, offset, block1_local_size,
block2_local_size).transpose();
} else {
MatrixRef(covariance_block, block1_local_size, block2_local_size) =
cov.block(0, offset, block1_local_size, block2_local_size);
@@ -286,7 +298,7 @@ bool CovarianceImpl::GetCovarianceBlockInTangentOrAmbientSpace(
}
bool CovarianceImpl::GetCovarianceMatrixInTangentOrAmbientSpace(
const std::vector<const double*>& parameters,
const vector<const double*>& parameters,
bool lift_covariance_to_ambient_space,
double* covariance_matrix) const {
CHECK(is_computed_)
@@ -298,8 +310,8 @@ bool CovarianceImpl::GetCovarianceMatrixInTangentOrAmbientSpace(
const ProblemImpl::ParameterMap& parameter_map = problem_->parameter_map();
// For OpenMP compatibility we need to define these vectors in advance
const int num_parameters = parameters.size();
std::vector<int> parameter_sizes;
std::vector<int> cum_parameter_size;
vector<int> parameter_sizes;
vector<int> cum_parameter_size;
parameter_sizes.reserve(num_parameters);
cum_parameter_size.resize(num_parameters + 1);
cum_parameter_size[0] = 0;
@@ -312,8 +324,7 @@ bool CovarianceImpl::GetCovarianceMatrixInTangentOrAmbientSpace(
parameter_sizes.push_back(block->LocalSize());
}
}
std::partial_sum(parameter_sizes.begin(),
parameter_sizes.end(),
std::partial_sum(parameter_sizes.begin(), parameter_sizes.end(),
cum_parameter_size.begin() + 1);
const int max_covariance_block_size =
*std::max_element(parameter_sizes.begin(), parameter_sizes.end());
@@ -332,66 +343,65 @@ bool CovarianceImpl::GetCovarianceMatrixInTangentOrAmbientSpace(
// i = 1:n, j = i:n.
int iteration_count = (num_parameters * (num_parameters + 1)) / 2;
problem_->context()->EnsureMinimumThreads(num_threads);
ParallelFor(problem_->context(),
0,
iteration_count,
num_threads,
[&](int thread_id, int k) {
int i, j;
LinearIndexToUpperTriangularIndex(k, num_parameters, &i, &j);
ParallelFor(
problem_->context(),
0,
iteration_count,
num_threads,
[&](int thread_id, int k) {
int i, j;
LinearIndexToUpperTriangularIndex(k, num_parameters, &i, &j);
int covariance_row_idx = cum_parameter_size[i];
int covariance_col_idx = cum_parameter_size[j];
int size_i = parameter_sizes[i];
int size_j = parameter_sizes[j];
double* covariance_block =
workspace.get() + thread_id * max_covariance_block_size *
max_covariance_block_size;
if (!GetCovarianceBlockInTangentOrAmbientSpace(
parameters[i],
parameters[j],
lift_covariance_to_ambient_space,
covariance_block)) {
success = false;
}
int covariance_row_idx = cum_parameter_size[i];
int covariance_col_idx = cum_parameter_size[j];
int size_i = parameter_sizes[i];
int size_j = parameter_sizes[j];
double* covariance_block =
workspace.get() + thread_id * max_covariance_block_size *
max_covariance_block_size;
if (!GetCovarianceBlockInTangentOrAmbientSpace(
parameters[i], parameters[j],
lift_covariance_to_ambient_space, covariance_block)) {
success = false;
}
covariance.block(
covariance_row_idx, covariance_col_idx, size_i, size_j) =
MatrixRef(covariance_block, size_i, size_j);
covariance.block(covariance_row_idx, covariance_col_idx, size_i,
size_j) = MatrixRef(covariance_block, size_i, size_j);
if (i != j) {
covariance.block(
covariance_col_idx, covariance_row_idx, size_j, size_i) =
MatrixRef(covariance_block, size_i, size_j).transpose();
}
});
if (i != j) {
covariance.block(covariance_col_idx, covariance_row_idx,
size_j, size_i) =
MatrixRef(covariance_block, size_i, size_j).transpose();
}
});
return success;
}
// Determine the sparsity pattern of the covariance matrix based on
// the block pairs requested by the user.
bool CovarianceImpl::ComputeCovarianceSparsity(
const CovarianceBlocks& original_covariance_blocks, ProblemImpl* problem) {
const CovarianceBlocks& original_covariance_blocks,
ProblemImpl* problem) {
EventLogger event_logger("CovarianceImpl::ComputeCovarianceSparsity");
// Determine an ordering for the parameter block, by sorting the
// parameter blocks by their pointers.
std::vector<double*> all_parameter_blocks;
vector<double*> all_parameter_blocks;
problem->GetParameterBlocks(&all_parameter_blocks);
const ProblemImpl::ParameterMap& parameter_map = problem->parameter_map();
std::unordered_set<ParameterBlock*> parameter_blocks_in_use;
std::vector<ResidualBlock*> residual_blocks;
vector<ResidualBlock*> residual_blocks;
problem->GetResidualBlocks(&residual_blocks);
for (int i = 0; i < residual_blocks.size(); ++i) {
ResidualBlock* residual_block = residual_blocks[i];
parameter_blocks_in_use.insert(residual_block->parameter_blocks(),
residual_block->parameter_blocks() +
residual_block->NumParameterBlocks());
residual_block->NumParameterBlocks());
}
constant_parameter_blocks_.clear();
std::vector<double*>& active_parameter_blocks =
vector<double*>& active_parameter_blocks =
evaluate_options_.parameter_blocks;
active_parameter_blocks.clear();
for (int i = 0; i < all_parameter_blocks.size(); ++i) {
@@ -424,8 +434,8 @@ bool CovarianceImpl::ComputeCovarianceSparsity(
// triangular part of the matrix.
int num_nonzeros = 0;
CovarianceBlocks covariance_blocks;
for (int i = 0; i < original_covariance_blocks.size(); ++i) {
const std::pair<const double*, const double*>& block_pair =
for (int i = 0; i < original_covariance_blocks.size(); ++i) {
const pair<const double*, const double*>& block_pair =
original_covariance_blocks[i];
if (constant_parameter_blocks_.count(block_pair.first) > 0 ||
constant_parameter_blocks_.count(block_pair.second) > 0) {
@@ -440,8 +450,8 @@ bool CovarianceImpl::ComputeCovarianceSparsity(
// Make sure we are constructing a block upper triangular matrix.
if (index1 > index2) {
covariance_blocks.push_back(
std::make_pair(block_pair.second, block_pair.first));
covariance_blocks.push_back(make_pair(block_pair.second,
block_pair.first));
} else {
covariance_blocks.push_back(block_pair);
}
@@ -456,7 +466,7 @@ bool CovarianceImpl::ComputeCovarianceSparsity(
// Sort the block pairs. As a consequence we get the covariance
// blocks as they will occur in the CompressedRowSparseMatrix that
// will store the covariance.
std::sort(covariance_blocks.begin(), covariance_blocks.end());
sort(covariance_blocks.begin(), covariance_blocks.end());
// Fill the sparsity pattern of the covariance matrix.
covariance_matrix_.reset(
@@ -476,10 +486,10 @@ bool CovarianceImpl::ComputeCovarianceSparsity(
// values of the parameter blocks. Thus iterating over the keys of
// parameter_block_to_row_index_ corresponds to iterating over the
// rows of the covariance matrix in order.
int i = 0; // index into covariance_blocks.
int i = 0; // index into covariance_blocks.
int cursor = 0; // index into the covariance matrix.
for (const auto& entry : parameter_block_to_row_index_) {
const double* row_block = entry.first;
const double* row_block = entry.first;
const int row_block_size = problem->ParameterBlockLocalSize(row_block);
int row_begin = entry.second;
@@ -488,7 +498,7 @@ bool CovarianceImpl::ComputeCovarianceSparsity(
int num_col_blocks = 0;
int num_columns = 0;
for (int j = i; j < covariance_blocks.size(); ++j, ++num_col_blocks) {
const std::pair<const double*, const double*>& block_pair =
const pair<const double*, const double*>& block_pair =
covariance_blocks[j];
if (block_pair.first != row_block) {
break;
@@ -509,7 +519,7 @@ bool CovarianceImpl::ComputeCovarianceSparsity(
}
}
i += num_col_blocks;
i+= num_col_blocks;
}
rows[num_rows] = cursor;
@@ -570,9 +580,9 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() {
const int num_cols = jacobian.num_cols;
const int num_nonzeros = jacobian.values.size();
std::vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0);
std::vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0);
std::vector<double> transpose_values(num_nonzeros, 0);
vector<SuiteSparse_long> transpose_rows(num_cols + 1, 0);
vector<SuiteSparse_long> transpose_cols(num_nonzeros, 0);
vector<double> transpose_values(num_nonzeros, 0);
for (int idx = 0; idx < num_nonzeros; ++idx) {
transpose_rows[jacobian.cols[idx] + 1] += 1;
@@ -592,7 +602,7 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() {
}
}
for (int i = transpose_rows.size() - 1; i > 0; --i) {
for (int i = transpose_rows.size() - 1; i > 0 ; --i) {
transpose_rows[i] = transpose_rows[i - 1];
}
transpose_rows[0] = 0;
@@ -632,13 +642,14 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() {
// more efficient, both in runtime as well as the quality of
// ordering computed. So, it maybe worth doing that analysis
// separately.
const SuiteSparse_long rank = SuiteSparseQR<double>(SPQR_ORDERING_BESTAMD,
SPQR_DEFAULT_TOL,
cholmod_jacobian.ncol,
&cholmod_jacobian,
&R,
&permutation,
&cc);
const SuiteSparse_long rank =
SuiteSparseQR<double>(SPQR_ORDERING_BESTAMD,
SPQR_DEFAULT_TOL,
cholmod_jacobian.ncol,
&cholmod_jacobian,
&R,
&permutation,
&cc);
event_logger.AddEvent("Numeric Factorization");
if (R == nullptr) {
LOG(ERROR) << "Something is wrong. SuiteSparseQR returned R = nullptr.";
@@ -657,7 +668,7 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() {
return false;
}
std::vector<int> inverse_permutation(num_cols);
vector<int> inverse_permutation(num_cols);
if (permutation) {
for (SuiteSparse_long i = 0; i < num_cols; ++i) {
inverse_permutation[permutation[i]] = i;
@@ -686,18 +697,19 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingSuiteSparseQR() {
problem_->context()->EnsureMinimumThreads(num_threads);
ParallelFor(
problem_->context(), 0, num_cols, num_threads, [&](int thread_id, int r) {
problem_->context(),
0,
num_cols,
num_threads,
[&](int thread_id, int r) {
const int row_begin = rows[r];
const int row_end = rows[r + 1];
if (row_end != row_begin) {
double* solution = workspace.get() + thread_id * num_cols;
SolveRTRWithSparseRHS<SuiteSparse_long>(
num_cols,
static_cast<SuiteSparse_long*>(R->i),
static_cast<SuiteSparse_long*>(R->p),
static_cast<double*>(R->x),
inverse_permutation[r],
solution);
num_cols, static_cast<SuiteSparse_long*>(R->i),
static_cast<SuiteSparse_long*>(R->p), static_cast<double*>(R->x),
inverse_permutation[r], solution);
for (int idx = row_begin; idx < row_end; ++idx) {
const int c = cols[idx];
values[idx] = solution[inverse_permutation[c]];
@@ -789,9 +801,10 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingDenseSVD() {
1.0 / (singular_values[i] * singular_values[i]);
}
Matrix dense_covariance = svd.matrixV() *
inverse_squared_singular_values.asDiagonal() *
svd.matrixV().transpose();
Matrix dense_covariance =
svd.matrixV() *
inverse_squared_singular_values.asDiagonal() *
svd.matrixV().transpose();
event_logger.AddEvent("PseudoInverse");
const int num_rows = covariance_matrix_->num_rows();
@@ -826,16 +839,13 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR() {
// Convert the matrix to column major order as required by SparseQR.
EigenSparseMatrix sparse_jacobian =
Eigen::MappedSparseMatrix<double, Eigen::RowMajor>(
jacobian.num_rows,
jacobian.num_cols,
jacobian.num_rows, jacobian.num_cols,
static_cast<int>(jacobian.values.size()),
jacobian.rows.data(),
jacobian.cols.data(),
jacobian.values.data());
jacobian.rows.data(), jacobian.cols.data(), jacobian.values.data());
event_logger.AddEvent("ConvertToSparseMatrix");
Eigen::SparseQR<EigenSparseMatrix, Eigen::COLAMDOrdering<int>> qr_solver(
sparse_jacobian);
Eigen::SparseQR<EigenSparseMatrix, Eigen::COLAMDOrdering<int>>
qr_solver(sparse_jacobian);
event_logger.AddEvent("QRDecomposition");
if (qr_solver.info() != Eigen::Success) {
@@ -873,17 +883,22 @@ bool CovarianceImpl::ComputeCovarianceValuesUsingEigenSparseQR() {
problem_->context()->EnsureMinimumThreads(num_threads);
ParallelFor(
problem_->context(), 0, num_cols, num_threads, [&](int thread_id, int r) {
problem_->context(),
0,
num_cols,
num_threads,
[&](int thread_id, int r) {
const int row_begin = rows[r];
const int row_end = rows[r + 1];
if (row_end != row_begin) {
double* solution = workspace.get() + thread_id * num_cols;
SolveRTRWithSparseRHS<int>(num_cols,
qr_solver.matrixR().innerIndexPtr(),
qr_solver.matrixR().outerIndexPtr(),
&qr_solver.matrixR().data().value(0),
inverse_permutation.indices().coeff(r),
solution);
SolveRTRWithSparseRHS<int>(
num_cols,
qr_solver.matrixR().innerIndexPtr(),
qr_solver.matrixR().outerIndexPtr(),
&qr_solver.matrixR().data().value(0),
inverse_permutation.indices().coeff(r),
solution);
// Assign the values of the computed covariance using the
// inverse permutation used in the QR factorization.

View File

@@ -36,9 +36,7 @@
#include <set>
#include <utility>
#include <vector>
#include "ceres/covariance.h"
#include "ceres/internal/port.h"
#include "ceres/problem_impl.h"
#include "ceres/suitesparse.h"
@@ -47,17 +45,19 @@ namespace internal {
class CompressedRowSparseMatrix;
class CERES_EXPORT_INTERNAL CovarianceImpl {
class CovarianceImpl {
public:
explicit CovarianceImpl(const Covariance::Options& options);
~CovarianceImpl();
bool Compute(const std::vector<std::pair<const double*, const double*>>&
covariance_blocks,
ProblemImpl* problem);
bool Compute(
const std::vector<std::pair<const double*,
const double*>>& covariance_blocks,
ProblemImpl* problem);
bool Compute(const std::vector<const double*>& parameter_blocks,
ProblemImpl* problem);
bool Compute(
const std::vector<const double*>& parameter_blocks,
ProblemImpl* problem);
bool GetCovarianceBlockInTangentOrAmbientSpace(
const double* parameter_block1,
@@ -68,11 +68,11 @@ class CERES_EXPORT_INTERNAL CovarianceImpl {
bool GetCovarianceMatrixInTangentOrAmbientSpace(
const std::vector<const double*>& parameters,
bool lift_covariance_to_ambient_space,
double* covariance_matrix) const;
double *covariance_matrix) const;
bool ComputeCovarianceSparsity(
const std::vector<std::pair<const double*, const double*>>&
covariance_blocks,
const std::vector<std::pair<const double*,
const double*>>& covariance_blocks,
ProblemImpl* problem);
bool ComputeCovarianceValues();

View File

@@ -33,12 +33,13 @@
#ifndef CERES_NO_CXSPARSE
#include "ceres/cxsparse.h"
#include <string>
#include <vector>
#include "ceres/compressed_col_sparse_matrix_utils.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/cxsparse.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"

View File

@@ -166,7 +166,7 @@ class CXSparseCholesky : public SparseCholesky {
} // namespace internal
} // namespace ceres
#else
#else // CERES_NO_CXSPARSE
typedef void cs_dis;

View File

@@ -35,19 +35,21 @@
#include "ceres/casts.h"
#include "ceres/dense_sparse_matrix.h"
#include "ceres/internal/eigen.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/scratch_evaluate_preparer.h"
#include "ceres/internal/eigen.h"
namespace ceres {
namespace internal {
class DenseJacobianWriter {
public:
DenseJacobianWriter(Evaluator::Options /* ignored */, Program* program)
: program_(program) {}
DenseJacobianWriter(Evaluator::Options /* ignored */,
Program* program)
: program_(program) {
}
// JacobianWriter interface.
@@ -59,13 +61,14 @@ class DenseJacobianWriter {
}
SparseMatrix* CreateJacobian() const {
return new DenseSparseMatrix(
program_->NumResiduals(), program_->NumEffectiveParameters(), true);
return new DenseSparseMatrix(program_->NumResiduals(),
program_->NumEffectiveParameters(),
true);
}
void Write(int residual_id,
int residual_offset,
double** jacobians,
double **jacobians,
SparseMatrix* jacobian) {
DenseSparseMatrix* dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian);
const ResidualBlock* residual_block =
@@ -83,14 +86,15 @@ class DenseJacobianWriter {
}
const int parameter_block_size = parameter_block->LocalSize();
ConstMatrixRef parameter_jacobian(
jacobians[j], num_residuals, parameter_block_size);
ConstMatrixRef parameter_jacobian(jacobians[j],
num_residuals,
parameter_block_size);
dense_jacobian->mutable_matrix().block(residual_offset,
parameter_block->delta_offset(),
num_residuals,
parameter_block_size) =
parameter_jacobian;
dense_jacobian->mutable_matrix().block(
residual_offset,
parameter_block->delta_offset(),
num_residuals,
parameter_block_size) = parameter_jacobian;
}
}

View File

@@ -132,8 +132,13 @@ LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK(
//
// Note: This is a bit delicate, it assumes that the stride on this
// matrix is the same as the number of rows.
BLAS::SymmetricRankKUpdate(
A->num_rows(), num_cols, A->values(), true, 1.0, 0.0, lhs.data());
BLAS::SymmetricRankKUpdate(A->num_rows(),
num_cols,
A->values(),
true,
1.0,
0.0,
lhs.data());
if (per_solve_options.D != NULL) {
// Undo the modifications to the matrix A.
@@ -148,10 +153,13 @@ LinearSolver::Summary DenseNormalCholeskySolver::SolveUsingLAPACK(
LinearSolver::Summary summary;
summary.num_iterations = 1;
summary.termination_type = LAPACK::SolveInPlaceUsingCholesky(
num_cols, lhs.data(), x, &summary.message);
summary.termination_type =
LAPACK::SolveInPlaceUsingCholesky(num_cols,
lhs.data(),
x,
&summary.message);
event_logger.AddEvent("Solve");
return summary;
}
} // namespace internal
} // namespace ceres
} // namespace internal
} // namespace ceres

View File

@@ -73,7 +73,7 @@ class DenseSparseMatrix;
// library. This solver always returns a solution, it is the user's
// responsibility to judge if the solution is good enough for their
// purposes.
class DenseNormalCholeskySolver : public DenseSparseMatrixSolver {
class DenseNormalCholeskySolver: public DenseSparseMatrixSolver {
public:
explicit DenseNormalCholeskySolver(const LinearSolver::Options& options);

View File

@@ -31,7 +31,6 @@
#include "ceres/dense_qr_solver.h"
#include <cstddef>
#include "Eigen/Dense"
#include "ceres/dense_sparse_matrix.h"
#include "ceres/internal/eigen.h"
@@ -78,7 +77,7 @@ LinearSolver::Summary DenseQRSolver::SolveUsingLAPACK(
// TODO(sameeragarwal): Since we are copying anyways, the diagonal
// can be appended to the matrix instead of doing it on A.
lhs_ = A->matrix();
lhs_ = A->matrix();
if (per_solve_options.D != NULL) {
// Undo the modifications to the matrix A.
@@ -165,5 +164,5 @@ LinearSolver::Summary DenseQRSolver::SolveUsingEigen(
return summary;
}
} // namespace internal
} // namespace ceres
} // namespace internal
} // namespace ceres

View File

@@ -32,9 +32,8 @@
#ifndef CERES_INTERNAL_DENSE_QR_SOLVER_H_
#define CERES_INTERNAL_DENSE_QR_SOLVER_H_
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/linear_solver.h"
#include "ceres/internal/eigen.h"
namespace ceres {
namespace internal {
@@ -79,7 +78,7 @@ class DenseSparseMatrix;
// library. This solver always returns a solution, it is the user's
// responsibility to judge if the solution is good enough for their
// purposes.
class CERES_EXPORT_INTERNAL DenseQRSolver : public DenseSparseMatrixSolver {
class DenseQRSolver: public DenseSparseMatrixSolver {
public:
explicit DenseQRSolver(const LinearSolver::Options& options);

View File

@@ -31,17 +31,17 @@
#include "ceres/dense_sparse_matrix.h"
#include <algorithm>
#include "ceres/triplet_sparse_matrix.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/triplet_sparse_matrix.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
DenseSparseMatrix::DenseSparseMatrix(int num_rows, int num_cols)
: has_diagonal_appended_(false), has_diagonal_reserved_(false) {
: has_diagonal_appended_(false),
has_diagonal_reserved_(false) {
m_.resize(num_rows, num_cols);
m_.setZero();
}
@@ -49,10 +49,11 @@ DenseSparseMatrix::DenseSparseMatrix(int num_rows, int num_cols)
DenseSparseMatrix::DenseSparseMatrix(int num_rows,
int num_cols,
bool reserve_diagonal)
: has_diagonal_appended_(false), has_diagonal_reserved_(reserve_diagonal) {
: has_diagonal_appended_(false),
has_diagonal_reserved_(reserve_diagonal) {
if (reserve_diagonal) {
// Allocate enough space for the diagonal.
m_.resize(num_rows + num_cols, num_cols);
m_.resize(num_rows + num_cols, num_cols);
} else {
m_.resize(num_rows, num_cols);
}
@@ -63,9 +64,9 @@ DenseSparseMatrix::DenseSparseMatrix(const TripletSparseMatrix& m)
: m_(Eigen::MatrixXd::Zero(m.num_rows(), m.num_cols())),
has_diagonal_appended_(false),
has_diagonal_reserved_(false) {
const double* values = m.values();
const int* rows = m.rows();
const int* cols = m.cols();
const double *values = m.values();
const int *rows = m.rows();
const int *cols = m.cols();
int num_nonzeros = m.num_nonzeros();
for (int i = 0; i < num_nonzeros; ++i) {
@@ -74,9 +75,14 @@ DenseSparseMatrix::DenseSparseMatrix(const TripletSparseMatrix& m)
}
DenseSparseMatrix::DenseSparseMatrix(const ColMajorMatrix& m)
: m_(m), has_diagonal_appended_(false), has_diagonal_reserved_(false) {}
: m_(m),
has_diagonal_appended_(false),
has_diagonal_reserved_(false) {
}
void DenseSparseMatrix::SetZero() { m_.setZero(); }
void DenseSparseMatrix::SetZero() {
m_.setZero();
}
void DenseSparseMatrix::RightMultiply(const double* x, double* y) const {
VectorRef(y, num_rows()) += matrix() * ConstVectorRef(x, num_cols());
@@ -99,7 +105,7 @@ void DenseSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
*dense_matrix = m_.block(0, 0, num_rows(), num_cols());
}
void DenseSparseMatrix::AppendDiagonal(double* d) {
void DenseSparseMatrix::AppendDiagonal(double *d) {
CHECK(!has_diagonal_appended_);
if (!has_diagonal_reserved_) {
ColMajorMatrix tmp = m_;
@@ -127,7 +133,9 @@ int DenseSparseMatrix::num_rows() const {
return m_.rows();
}
int DenseSparseMatrix::num_cols() const { return m_.cols(); }
int DenseSparseMatrix::num_cols() const {
return m_.cols();
}
int DenseSparseMatrix::num_nonzeros() const {
if (has_diagonal_reserved_ && !has_diagonal_appended_) {
@@ -140,30 +148,33 @@ ConstColMajorMatrixRef DenseSparseMatrix::matrix() const {
return ConstColMajorMatrixRef(
m_.data(),
((has_diagonal_reserved_ && !has_diagonal_appended_)
? m_.rows() - m_.cols()
: m_.rows()),
? m_.rows() - m_.cols()
: m_.rows()),
m_.cols(),
Eigen::Stride<Eigen::Dynamic, 1>(m_.rows(), 1));
}
ColMajorMatrixRef DenseSparseMatrix::mutable_matrix() {
return ColMajorMatrixRef(m_.data(),
((has_diagonal_reserved_ && !has_diagonal_appended_)
? m_.rows() - m_.cols()
: m_.rows()),
m_.cols(),
Eigen::Stride<Eigen::Dynamic, 1>(m_.rows(), 1));
return ColMajorMatrixRef(
m_.data(),
((has_diagonal_reserved_ && !has_diagonal_appended_)
? m_.rows() - m_.cols()
: m_.rows()),
m_.cols(),
Eigen::Stride<Eigen::Dynamic, 1>(m_.rows(), 1));
}
void DenseSparseMatrix::ToTextFile(FILE* file) const {
CHECK(file != nullptr);
const int active_rows = (has_diagonal_reserved_ && !has_diagonal_appended_)
? (m_.rows() - m_.cols())
: m_.rows();
const int active_rows =
(has_diagonal_reserved_ && !has_diagonal_appended_)
? (m_.rows() - m_.cols())
: m_.rows();
for (int r = 0; r < active_rows; ++r) {
for (int c = 0; c < m_.cols(); ++c) {
fprintf(file, "% 10d % 10d %17f\n", r, c, m_(r, c));
fprintf(file, "% 10d % 10d %17f\n", r, c, m_(r, c));
}
}
}

View File

@@ -34,7 +34,6 @@
#define CERES_INTERNAL_DENSE_SPARSE_MATRIX_H_
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/sparse_matrix.h"
#include "ceres/types.h"
@@ -43,7 +42,7 @@ namespace internal {
class TripletSparseMatrix;
class CERES_EXPORT_INTERNAL DenseSparseMatrix : public SparseMatrix {
class DenseSparseMatrix : public SparseMatrix {
public:
// Build a matrix with the same content as the TripletSparseMatrix
// m. This assumes that m does not have any repeated entries.
@@ -93,7 +92,7 @@ class CERES_EXPORT_INTERNAL DenseSparseMatrix : public SparseMatrix {
// Calling RemoveDiagonal removes the block. It is a fatal error to append a
// diagonal to a matrix that already has an appended diagonal, and it is also
// a fatal error to remove a diagonal from a matrix that has none.
void AppendDiagonal(double* d);
void AppendDiagonal(double *d);
void RemoveDiagonal();
private:

View File

@@ -29,7 +29,6 @@
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/detect_structure.h"
#include "ceres/internal/eigen.h"
#include "glog/logging.h"
@@ -62,7 +61,8 @@ void DetectStructure(const CompressedRowBlockStructure& bs,
} else if (*row_block_size != Eigen::Dynamic &&
*row_block_size != row.block.size) {
VLOG(2) << "Dynamic row block size because the block size changed from "
<< *row_block_size << " to " << row.block.size;
<< *row_block_size << " to "
<< row.block.size;
*row_block_size = Eigen::Dynamic;
}
@@ -73,7 +73,8 @@ void DetectStructure(const CompressedRowBlockStructure& bs,
} else if (*e_block_size != Eigen::Dynamic &&
*e_block_size != bs.cols[e_block_id].size) {
VLOG(2) << "Dynamic e block size because the block size changed from "
<< *e_block_size << " to " << bs.cols[e_block_id].size;
<< *e_block_size << " to "
<< bs.cols[e_block_id].size;
*e_block_size = Eigen::Dynamic;
}
@@ -99,11 +100,9 @@ void DetectStructure(const CompressedRowBlockStructure& bs,
}
}
// clang-format off
const bool is_everything_dynamic = (*row_block_size == Eigen::Dynamic &&
*e_block_size == Eigen::Dynamic &&
*f_block_size == Eigen::Dynamic);
// clang-format on
if (is_everything_dynamic) {
break;
}
@@ -111,12 +110,10 @@ void DetectStructure(const CompressedRowBlockStructure& bs,
CHECK_NE(*row_block_size, 0) << "No rows found";
CHECK_NE(*e_block_size, 0) << "No e type blocks found";
// clang-format off
VLOG(1) << "Schur complement static structure <"
<< *row_block_size << ","
<< *e_block_size << ","
<< *f_block_size << ">.";
// clang-format on
}
} // namespace internal

Some files were not shown because too many files have changed in this diff Show More