1
1

Compare commits

..

30 Commits

Author SHA1 Message Date
a7910356b0 Mesh Batch Cache: Move index buffer range hack to be more local 2019-07-28 16:29:59 +02:00
b65b93f5d4 Mesh Batch Cache: Refactor: Again
- Use Extract naming convention to name extract functions that fill vbo/ibo
- Separate extract functions into separate file (for clarity)
- Make simpler iter loops to avoid as much overhead as possible
- Separate loose elements looping functions to avoid iteration complexity
  (unfortunately this makes the code more verbose).
- Some iter functions are threadable and tagged as such.
- Add multithreaded iteration for extract functions that supports them.
2019-07-28 15:23:41 +02:00
ef15a45037 GPU: Elements: Put back index tracking in index_buf_set_* functions
There is no threadsafe way of filling the IBOs. So keep filling them
simple and track used indices length.
2019-07-28 15:17:33 +02:00
c3002d51f5 Mesh Batch Cache: Fix threading issue with element buffer objects
Some elements indices can be written by multiple thread at once and
since setting an element is only garantee to be atomic for single verts,
we cannot reliably use GPU_indexbuf_set_line_* in this case.

To avoid this, we create another iteration for the problematic IBOs
2019-07-23 20:02:24 +02:00
c4b27eb46a Cleanup: Remove Printf 2019-07-23 00:10:48 +02:00
76963a7f64 Merge branch 'tmp-batch-cache-cleanup' of git.blender.org:blender into tmp-batch-cache-cleanup 2019-07-23 00:10:02 +02:00
a0ec3b7fd7 Mesh Batch Cache: Fix some threadsafety issue with indices buffers 2019-07-23 00:09:55 +02:00
c63e45c216 Mesh Batch Cache: Fix some threadsafety issue with indices buffers 2019-07-23 00:05:15 +02:00
04a11fa1ba GPU: Make small float normal compression functions inlined 2019-07-22 18:30:10 +02:00
a58548f6f7 Mesh Batch Cache: Fix bitmap test for loose verts 2019-07-22 18:29:31 +02:00
6e06b4f693 Mesh Batch Cache: Add debug timer 2019-07-22 12:48:02 +02:00
e27a478a52 Cleanup: Mesh Batch Cache: Rewrite iterations to prepare for multithreading 2019-07-21 21:27:09 +02:00
f0207be4df Mesh Batch Cache: Speedup: Move the prev edit edge hack for edit uv...
and move it to the only function that needs it: mesh_edituv_data_iter_edit.
2019-07-21 17:38:41 +02:00
c54463b9b3 Mesh Batch Cache: Speedup: Remove the need for memset in index buffer init
Instead of setting the whole IBO to restart index, we only set the restart
indices when we encounter a hidden elem.
2019-07-21 17:24:11 +02:00
7d5e1f61bc Cleanup: Mesh Batch Cache: Remove old unused code 2019-07-21 16:20:10 +02:00
baa34974ef UVEdit: Support Mesh eval cage selection
- Select Vert / Edge / Face support
- TODO : Rect / Lasso / Circle / Loop
2019-07-21 12:01:17 +02:00
711621cac4 Cleanup: Silence warnings 2019-07-21 12:01:17 +02:00
ac0a8fbe71 Mesh Batch Cache: Refactor: Fix subdiv UV edge highligh in vert select mode 2019-07-21 12:01:17 +02:00
f2842babc3 Mesh Batch Cache: Refactor: Fix lnor & vnor display 2019-07-19 18:50:33 +02:00
93f175f279 Mesh Batch Cache: Refactor Part 6
Add back subdiv facedot correct position.
2019-07-19 17:20:46 +02:00
3c95a0c122 Mesh Batch Cache: Refactor Part 5
- Add Vcol support
- Add UV/Tangent support
- Add Orco support
- Add Paint Line Mask support
- Add Adjacency Lines support
- Add EditUV face/line/point/facedot support
- Add EditUV data flag support
- Add EditUV StretchAngle/Area support
- Add Facedots select index support
- Add Weight support
- Add Mesh Analysis support
2019-07-19 17:19:05 +02:00
fcd7de8386 Mesh Batch Cache: Refactor part 4
- Add edge factor support (with less hack + multithread support)
- Add Facedots pos/nor/flag support
- Add Loop normal support
2019-07-19 14:38:32 +02:00
30a68e4d58 Mesh Batch Cache: Refactor part 3
- Add subrange usage for material triangles
- Add loose edges/verts support for Mesh
- Cleanup eval mesh selection
- Add use_hide support
- Add selection index Vbos
- Add edit data vbo
- Add dummy edgefac vbo
2019-07-19 14:38:32 +02:00
ac0d52ee4f Mesh Batch Cache: Refactor part 2
- Add extract_points indices
- Enable tri/line/point extract and pos_nor attrib.
2019-07-19 14:38:32 +02:00
73ca2f702f Mesh Batch Cache: Refactor part 1
- Start refactoring MeshRenderData and mesh_render_data_create_ex
- Add Iter functions
- Add dummy callbacks
- Add some Extract types (not enabled)
2019-07-19 14:38:32 +02:00
520a7ca2f3 Mesh Batch Cache: Refactor start
- Put placeholders vbos/ibos
- Restructure the buffers cache : One cache for final mesh and one for the
  edit mesh cage.
2019-07-19 14:38:32 +02:00
f9e3d7d7eb GPU: Batch: Reverse order of VBO binding
This is to ensure the vbo[0] always has predecence over other VBO.

This is important for overriding attributes by switching vbo binding order.
2019-07-19 14:38:32 +02:00
e02e140ef1 GPU: Vertex Format: Bump max name per attribute to 6
This is to add pos as an alias to UVs.
2019-07-19 14:38:32 +02:00
a97e5be2ae GPU: Add vertex format deinterleaving
This makes it possible to have each attrib use a contiguous portion of the
vertex buffer, making attribute filling much more easy and fast as this is
how they are store in blender Custom Data layers.
2019-07-19 14:38:32 +02:00
7d515f8c90 GPU: Add GPUIndexBuf subrange
This allows to render only a subset of an index buffer.
This is nice as we can render each material surfaces individually and the
whole mesh with the same index buffer.
2019-07-19 14:38:32 +02:00
1771 changed files with 59752 additions and 131294 deletions

View File

@@ -224,9 +224,7 @@ ForEachMacros:
- LISTBASE_CIRCULAR_BACKWARD_BEGIN
- LISTBASE_CIRCULAR_FORWARD_BEGIN
- LISTBASE_FOREACH
- LISTBASE_FOREACH_BACKWARD
- LISTBASE_FOREACH_MUTABLE
- LISTBASE_FOREACH_BACKWARD_MUTABLE
- MAN2D_ITER_AXES_BEGIN
- MAN_ITER_AXES_BEGIN
- NODE_INSTANCE_HASH_ITER
@@ -243,7 +241,7 @@ ForEachMacros:
- SEQ_BEGIN
- foreach
# Use once we bump the minimum version to version 8.
# Use once we bump the minimum verison to version 8.
# # Without this string literals that in-line 'STRINGIFY' behave strangely (a bug?).
# StatementMacros:
# - PyObject_VAR_HEAD

View File

@@ -182,8 +182,6 @@ if(UNIX AND NOT APPLE)
set(_init_SDL OFF)
set(_init_FFTW3 OFF)
set(_init_OPENSUBDIV OFF)
set(_init_OPENVDB OFF)
set(_init_OPENIMAGEDENOISE OFF)
elseif(WIN32)
set(_init_JACK OFF)
elseif(APPLE)
@@ -236,16 +234,14 @@ option(WITH_BULLET "Enable Bullet (Physics Engine)" ON)
option(WITH_SYSTEM_BULLET "Use the systems bullet library (currently unsupported due to missing features in upstream!)" )
mark_as_advanced(WITH_SYSTEM_BULLET)
option(WITH_OPENCOLORIO "Enable OpenColorIO color management" ${_init_OPENCOLORIO})
option(WITH_OPENXR "Enable VR features through the OpenXR specification" ON)
# Compositor
option(WITH_COMPOSITOR "Enable the tile based nodal compositor" ON)
option(WITH_OPENIMAGEDENOISE "Enable the OpenImageDenoise compositing node" ${_init_OPENIMAGEDENOISE})
option(WITH_OPENSUBDIV "Enable OpenSubdiv for surface subdivision" ${_init_OPENSUBDIV})
option(WITH_OPENVDB "Enable features relying on OpenVDB" ${_init_OPENVDB})
option(WITH_OPENVDB_BLOSC "Enable blosc compression for OpenVDB, only enable if OpenVDB was built with blosc support" ${_init_OPENVDB})
option(WITH_OPENVDB "Enable features relying on OpenVDB" OFF)
option(WITH_OPENVDB_BLOSC "Enable blosc compression for OpenVDB, only enable if OpenVDB was built with blosc support" OFF)
option(WITH_OPENVDB_3_ABI_COMPATIBLE "Assume OpenVDB library has been compiled with version 3 ABI compatibility" OFF)
mark_as_advanced(WITH_OPENVDB_3_ABI_COMPATIBLE)
@@ -417,8 +413,6 @@ unset(PLATFORM_DEFAULT)
option(WITH_CYCLES_LOGGING "Build Cycles with logging support" ON)
option(WITH_CYCLES_DEBUG "Build Cycles with extra debug capabilities" OFF)
option(WITH_CYCLES_NATIVE_ONLY "Build Cycles with native kernel only (which fits current CPU, use for development only)" OFF)
option(WITH_CYCLES_KERNEL_ASAN "Build Cycles kernels with address sanitizer when WITH_COMPILER_ASAN is on, even if it's very slow" OFF)
mark_as_advanced(WITH_CYCLES_KERNEL_ASAN)
mark_as_advanced(WITH_CYCLES_CUBIN_COMPILER)
mark_as_advanced(WITH_CYCLES_LOGGING)
mark_as_advanced(WITH_CYCLES_DEBUG)
@@ -477,7 +471,7 @@ endif()
option(WITH_OPENGL "When off limits visibility of the opengl headers to just bf_gpu and gawain (temporary option for development purposes)" ON)
option(WITH_GLEW_ES "Switches to experimental copy of GLEW that has support for OpenGL ES. (temporary option for development purposes)" OFF)
option(WITH_GL_EGL "Use the EGL OpenGL system library instead of the platform specific OpenGL system library (CGL, glX, or WGL)" OFF)
option(WITH_GL_PROFILE_ES20 "Support using OpenGL ES 2.0. (through either EGL or the AGL/WGL/XGL 'es20' profile)" OFF)
option(WITH_GL_PROFILE_ES20 "Support using OpenGL ES 2.0. (thru either EGL or the AGL/WGL/XGL 'es20' profile)" OFF)
mark_as_advanced(
WITH_OPENGL
@@ -828,6 +822,12 @@ if(NOT CMAKE_BUILD_TYPE MATCHES "Release")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} ${COMPILER_ASAN_CXXFLAGS}")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} ${COMPILER_ASAN_CXXFLAGS}")
if(WITH_CYCLES_OSL)
# With OSL, Cycles disables rtti in some modules, wich then breaks at linking
# when trying to use vptr sanitizer (included into 'undefined' general option).
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -fno-sanitize=vptr")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -fno-sanitize=vptr")
endif()
if(MSVC)
set(COMPILER_ASAN_LINKER_FLAGS "/FUNCTIONPADMIN:6")
endif()
@@ -852,8 +852,7 @@ if(WITH_X11)
if(X11_Xinput_LIB)
list(APPEND PLATFORM_LINKLIBS ${X11_Xinput_LIB})
else()
message(FATAL_ERROR "LibXi not found. Disable WITH_X11_XINPUT if you
want to build without tablet support")
set(WITH_X11_XINPUT OFF)
endif()
endif()
@@ -864,8 +863,7 @@ if(WITH_X11)
if(X11_Xxf86vmode_LIB)
list(APPEND PLATFORM_LINKLIBS ${X11_Xxf86vmode_LIB})
else()
message(FATAL_ERROR "libXxf86vm not found. Disable WITH_X11_XF86VMODE if you
want to build without")
set(WITH_X11_XF86VMODE OFF)
endif()
endif()
@@ -873,8 +871,7 @@ if(WITH_X11)
if(X11_Xfixes_LIB)
list(APPEND PLATFORM_LINKLIBS ${X11_Xfixes_LIB})
else()
message(FATAL_ERROR "libXfixes not found. Disable WITH_X11_XFIXES if you
want to build without")
set(WITH_X11_XFIXES OFF)
endif()
endif()
@@ -884,8 +881,7 @@ if(WITH_X11)
if(X11_Xrender_LIB)
list(APPEND PLATFORM_LINKLIBS ${X11_Xrender_LIB})
else()
message(FATAL_ERROR "libXrender not found. Disable WITH_X11_ALPHA if you
want to build without")
set(WITH_X11_ALPHA OFF)
endif()
endif()
@@ -1431,6 +1427,7 @@ if(CMAKE_COMPILER_IS_GNUCC)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_WARNINGS CXX_WARN_NO_DIV_BY_ZERO -Wno-div-by-zero)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_WARNINGS CXX_WARN_TYPE_LIMITS -Wtype-limits)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_WARNINGS CXX_WARN_ERROR_RETURN_TYPE -Werror=return-type)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_WARNINGS CXX_WARN_ERROR_IMPLICIT_FUNCTION_DECLARATION -Werror=implicit-function-declaration)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_WARNINGS CXX_WARN_NO_CHAR_SUBSCRIPTS -Wno-char-subscripts)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_WARNINGS CXX_WARN_NO_UNKNOWN_PRAGMAS -Wno-unknown-pragmas)
ADD_CHECK_CXX_COMPILER_FLAG(CXX_WARNINGS CXX_WARN_POINTER_ARITH -Wpointer-arith)
@@ -1763,8 +1760,6 @@ if(FIRST_RUN)
info_cfg_option(WITH_CYCLES)
info_cfg_option(WITH_FREESTYLE)
info_cfg_option(WITH_OPENCOLORIO)
info_cfg_option(WITH_OPENXR)
info_cfg_option(WITH_OPENIMAGEDENOISE)
info_cfg_option(WITH_OPENVDB)
info_cfg_option(WITH_ALEMBIC)

View File

@@ -37,16 +37,14 @@ Convenience Targets
* bpy: Build as a python module which can be loaded from python directly.
* deps: Build library dependencies (intended only for platform maintainers).
* developer: Enable faster builds, error checking and tests, recommended for developers.
* config: Run cmake configuration tool to set build options.
* ninja: Use ninja build tool for faster builds.
Note: passing the argument 'BUILD_DIR=path' when calling make will override the default build dir.
Note: passing the argument 'BUILD_CMAKE_ARGS=args' lets you add cmake arguments.
Project Files
Generate project files for development environments.
Generate poject files for development environments.
* project_qtcreator: QtCreator Project Files.
* project_netbeans: NetBeans Project Files.
@@ -223,23 +221,6 @@ ifneq "$(findstring bpy, $(MAKECMDGOALS))" ""
BUILD_CMAKE_ARGS:=$(BUILD_CMAKE_ARGS) -C"$(BLENDER_DIR)/build_files/cmake/config/bpy_module.cmake"
endif
ifneq "$(findstring developer, $(MAKECMDGOALS))" ""
BUILD_CMAKE_ARGS:=$(BUILD_CMAKE_ARGS) -C"$(BLENDER_DIR)/build_files/cmake/config/blender_developer.cmake"
endif
# -----------------------------------------------------------------------------
# build tool
ifneq "$(findstring ninja, $(MAKECMDGOALS))" ""
BUILD_CMAKE_ARGS:=$(BUILD_CMAKE_ARGS) -G Ninja
BUILD_COMMAND:=ninja
else
ifneq ("$(wildcard $(BUILD_DIR)/build.ninja)","")
BUILD_COMMAND:=ninja
else
BUILD_COMMAND:=make -s
endif
endif
# -----------------------------------------------------------------------------
# Blender binary path
@@ -301,7 +282,7 @@ all: .FORCE
@echo
@echo Building Blender ...
$(BUILD_COMMAND) -C "$(BUILD_DIR)" -j $(NPROCS) install
$(MAKE) -C "$(BUILD_DIR)" -s -j $(NPROCS) install
@echo
@echo edit build configuration with: "$(BUILD_DIR)/CMakeCache.txt" run make again to rebuild.
@echo Blender successfully built, run from: $(BLENDER_BIN)
@@ -313,8 +294,6 @@ lite: all
cycles: all
headless: all
bpy: all
developer: all
ninja: all
# -----------------------------------------------------------------------------
# Build dependencies
@@ -333,7 +312,7 @@ deps: .FORCE
@echo
@echo Building dependencies ...
$(BUILD_COMMAND) -C "$(DEPS_BUILD_DIR)" -j $(NPROCS) $(DEPS_TARGET)
$(MAKE) -C "$(DEPS_BUILD_DIR)" -s -j $(NPROCS) $(DEPS_TARGET)
@echo
@echo Dependencies successfully built and installed to $(DEPS_INSTALL_DIR).
@echo
@@ -569,7 +548,7 @@ help_features: .FORCE
@$(PYTHON) "$(BLENDER_DIR)/build_files/cmake/cmake_print_build_options.py" $(BLENDER_DIR)"/CMakeLists.txt"
clean: .FORCE
$(BUILD_COMMAND) -C "$(BUILD_DIR)" clean
$(MAKE) -C "$(BUILD_DIR)" clean
.PHONY: all

View File

@@ -43,7 +43,6 @@ project("BlenderDependencies")
cmake_minimum_required(VERSION 3.5)
include(ExternalProject)
include(cmake/check_software.cmake)
include(cmake/options.cmake)
include(cmake/versions.cmake)
@@ -91,15 +90,12 @@ include(cmake/tbb.cmake)
include(cmake/openvdb.cmake)
include(cmake/python.cmake)
include(cmake/python_site_packages.cmake)
include(cmake/package_python.cmake)
include(cmake/numpy.cmake)
if(UNIX AND NOT APPLE)
# Rely on PugiXML compiled with OpenImageIO
else()
include(cmake/pugixml.cmake)
endif()
include(cmake/openimagedenoise.cmake)
include(cmake/openxr.cmake)
if(WITH_WEBP)
include(cmake/webp.cmake)

View File

@@ -33,9 +33,19 @@ if(WIN32)
set(BOOST_TOOLSET toolset=msvc-14.0)
set(BOOST_COMPILER_STRING -vc140)
endif()
set(BOOST_CONFIGURE_COMMAND bootstrap.bat)
set(JAM_FILE ${BUILD_DIR}/boost/src/external_boost/user-config.jam)
set(semi_path "${PATCH_DIR}/semi.txt")
FILE(TO_NATIVE_PATH ${semi_path} semi_path)
set(BOOST_CONFIGURE_COMMAND bootstrap.bat &&
echo using python : ${PYTHON_OUTPUTDIR}\\python.exe > "${JAM_FILE}" &&
echo. : ${BUILD_DIR}/python/src/external_python/include ${BUILD_DIR}/python/src/external_python/pc >> "${JAM_FILE}" &&
echo. : ${BUILD_DIR}/python/src/external_python/pcbuild >> "${JAM_FILE}" &&
type ${semi_path} >> "${JAM_FILE}"
)
set(BOOST_BUILD_COMMAND bjam)
#--user-config=user-config.jam
set(BOOST_BUILD_OPTIONS runtime-link=static )
#set(BOOST_WITH_PYTHON --with-python)
set(BOOST_HARVEST_CMD ${CMAKE_COMMAND} -E copy_directory ${LIBDIR}/boost/lib/ ${HARVEST_TARGET}/boost/lib/ )
if(BUILD_MODE STREQUAL Release)
set(BOOST_HARVEST_CMD ${BOOST_HARVEST_CMD} && ${CMAKE_COMMAND} -E copy_directory ${LIBDIR}/boost/include/boost-1_68/ ${HARVEST_TARGET}/boost/include/)
@@ -72,6 +82,7 @@ set(BOOST_OPTIONS
--with-serialization
--with-program_options
--with-iostreams
${BOOST_WITH_PYTHON}
${BOOST_TOOLSET}
)
@@ -89,3 +100,10 @@ ExternalProject_Add(external_boost
BUILD_IN_SOURCE 1
INSTALL_COMMAND "${BOOST_HARVEST_CMD}"
)
if(WIN32)
add_dependencies(
external_boost
Make_Python_Environment
)
endif()

View File

@@ -1,53 +0,0 @@
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENSE BLOCK *****
if(UNIX)
set(_required_software
autoconf
automake
libtoolize
nasm
yasm
tclsh
)
foreach(_software ${_required_software})
find_program(_software_find NAMES ${_software})
if(NOT _software_find)
set(_software_missing "${_software_missing}${_software} ")
endif()
unset(_software_find CACHE)
endforeach()
if(_software_missing)
message(
"\n"
"Missing software for building Blender dependencies:\n"
" ${_software_missing}\n"
"\n"
"On Debian and Ubuntu:\n"
" apt install autoconf automake libtool yasm nasm tcl\n"
"\n"
"On macOS (with homebrew):\n"
" brew install cmake autoconf automake libtool yasm nasm\n"
"\n"
"Other platforms:\n"
" Install equivalent packages.\n")
message(FATAL_ERROR "Install missing software before continuing")
endif()
endif()

View File

@@ -166,16 +166,12 @@ harvest(openimageio/bin openimageio/bin "maketx")
harvest(openimageio/bin openimageio/bin "oiiotool")
harvest(openimageio/include openimageio/include "*")
harvest(openimageio/lib openimageio/lib "*.a")
harvest(openimagedenoise/include openimagedenoise/include "*")
harvest(openimagedenoise/lib openimagedenoise/lib "*.a")
harvest(openjpeg/include/openjpeg-2.3 openjpeg/include "*.h")
harvest(openjpeg/lib openjpeg/lib "*.a")
harvest(opensubdiv/include opensubdiv/include "*.h")
harvest(opensubdiv/lib opensubdiv/lib "*.a")
harvest(openvdb/include/openvdb openvdb/include/openvdb "*.h")
harvest(openvdb/lib openvdb/lib "*.a")
harvest(openxr_sdk/include/openxr openxr_sdk/include/openxr "*.h")
harvest(openxr_sdk/lib openxr_sdk/src/loader "*.a")
harvest(osl/bin osl/bin "oslc")
harvest(osl/include osl/include "*.h")
harvest(osl/lib osl/lib "*.a")

View File

@@ -17,7 +17,6 @@
# ***** END GPL LICENSE BLOCK *****
if(MSVC)
message("BIN >${PYTHON_BINARY}<")
if(BUILD_MODE STREQUAL Debug)
set(NUMPY_DIR_POSTFIX -pydebug)
set(NUMPY_ARCHIVE_POSTFIX d)
@@ -31,6 +30,17 @@ endif()
set(NUMPY_POSTFIX)
if(WIN32)
set(NUMPY_INSTALL
${CMAKE_COMMAND} -E copy_directory "${BUILD_DIR}/python/src/external_python/run/lib/site-packages/numpy/core/include/numpy" "${LIBDIR}/python/include/python${PYTHON_SHORT_VERSION}/numpy" &&
${CMAKE_COMMAND} -E chdir "${BUILD_DIR}/numpy/src/external_numpy/build/lib.${PYTHON_ARCH2}-${PYTHON_SHORT_VERSION}${NUMPY_DIR_POSTFIX}"
${CMAKE_COMMAND} -E tar "cfvz" "${LIBDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}_numpy_${NUMPY_SHORT_VERSION}${NUMPY_ARCHIVE_POSTFIX}.tar.gz" "."
)
else()
set(NUMPY_INSTALL echo .)
set(NUMPY_PATCH echo .)
endif()
ExternalProject_Add(external_numpy
URL ${NUMPY_URI}
DOWNLOAD_DIR ${DOWNLOAD_DIR}
@@ -40,10 +50,17 @@ ExternalProject_Add(external_numpy
CONFIGURE_COMMAND ""
LOG_BUILD 1
BUILD_COMMAND ${PYTHON_BINARY} ${BUILD_DIR}/numpy/src/external_numpy/setup.py build ${NUMPY_BUILD_OPTION} install --old-and-unmanageable
INSTALL_COMMAND ""
INSTALL_COMMAND ${NUMPY_INSTALL}
)
if(WIN32)
ExternalProject_Add_Step(external_numpy after_install
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}_numpy_${NUMPY_SHORT_VERSION}${NUMPY_ARCHIVE_POSTFIX}.tar.gz ${HARVEST_TARGET}/Release/python${PYTHON_SHORT_VERSION_NO_DOTS}_numpy_${NUMPY_SHORT_VERSION}${NUMPY_ARCHIVE_POSTFIX}.tar.gz
DEPENDEES install
)
endif()
add_dependencies(
external_numpy
external_python
Make_Python_Environment
)

View File

@@ -1,61 +0,0 @@
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENSE BLOCK *****
set(OIDN_EXTRA_ARGS
-DWITH_EXAMPLE=OFF
-DWITH_TEST=OFF
-DTBB_ROOT=${LIBDIR}/tbb
-DTBB_STATIC_LIB=ON
-DOIDN_STATIC_LIB=ON
)
ExternalProject_Add(external_openimagedenoise
URL ${OIDN_URI}
DOWNLOAD_DIR ${DOWNLOAD_DIR}
URL_HASH MD5=${OIDN_HASH}
PREFIX ${BUILD_DIR}/openimagedenoise
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${LIBDIR}/openimagedenoise ${DEFAULT_CMAKE_FLAGS} ${OIDN_EXTRA_ARGS}
PATCH_COMMAND ${PATCH_CMD} --verbose -p 1 -N -d ${BUILD_DIR}/openimagedenoise/src/external_openimagedenoise < ${PATCH_DIR}/openimagedenoise.diff
INSTALL_DIR ${LIBDIR}/openimagedenoise
)
add_dependencies(
external_openimagedenoise
external_tbb
)
if(WIN32)
if(BUILD_MODE STREQUAL Release)
ExternalProject_Add_Step(external_openimagedenoise after_install
COMMAND ${CMAKE_COMMAND} -E copy_directory ${LIBDIR}/openimagedenoise/include ${HARVEST_TARGET}/openimagedenoise/include
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/openimagedenoise/lib/openimagedenoise.lib ${HARVEST_TARGET}/openimagedenoise/lib/openimagedenoise.lib
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/openimagedenoise/lib/common.lib ${HARVEST_TARGET}/openimagedenoise/lib/common.lib
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/openimagedenoise/lib/mkldnn.lib ${HARVEST_TARGET}/openimagedenoise/lib/mkldnn.lib
DEPENDEES install
)
endif()
if(BUILD_MODE STREQUAL Debug)
ExternalProject_Add_Step(external_openimagedenoise after_install
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/openimagedenoise/lib/openimagedenoise.lib ${HARVEST_TARGET}/openimagedenoise/lib/openimagedenoise_d.lib
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/openimagedenoise/lib/common.lib ${HARVEST_TARGET}/openimagedenoise/lib/common_d.lib
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/openimagedenoise/lib/mkldnn.lib ${HARVEST_TARGET}/openimagedenoise/lib/mkldnn_d.lib
DEPENDEES install
)
endif()
endif()

View File

@@ -1,53 +0,0 @@
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENSE BLOCK *****
set(OPENXR_SDK_EXTRA_ARGS
-DBUILD_API_LAYERS=ON
-DBUILD_FORCE_GENERATION=ON
-DBUILD_LOADER=ON
-DBUILD_SPECIFICATION=OFF
-DBUILD_TESTS=OFF
-DDYNAMIC_LOADER=OFF
)
ExternalProject_Add(external_openxr_sdk
URL ${OPENXR_SDK_URI}
DOWNLOAD_DIR ${DOWNLOAD_DIR}
URL_HASH MD5=${OPENXR_SDK_HASH}
PREFIX ${BUILD_DIR}/openxr_sdk
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${LIBDIR}/openxr_sdk ${DEFAULT_CMAKE_FLAGS} ${OPENXR_SDK_EXTRA_ARGS}
PATCH_COMMAND ${PATCH_CMD} --verbose -p 1 -N -d ${BUILD_DIR}/openxr_sdk/src/external_openxr_sdk < ${PATCH_DIR}/openxr_sdk.diff
INSTALL_DIR ${LIBDIR}/openxr_sdk
)
if(WIN32)
if(BUILD_MODE STREQUAL Release)
ExternalProject_Add_Step(external_openxr_sdk after_install
COMMAND ${CMAKE_COMMAND} -E copy_directory ${LIBDIR}/openxr_sdk/include/openxr ${HARVEST_TARGET}/openxr_sdk/include/openxr
COMMAND ${CMAKE_COMMAND} -E copy_directory ${LIBDIR}/openxr_sdk/lib ${HARVEST_TARGET}/openxr_sdk/lib
DEPENDEES install
)
endif()
if(BUILD_MODE STREQUAL Debug)
ExternalProject_Add_Step(external_openxr_sdk after_install
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/openxr_sdk/lib/openxr_loader-1_0.lib ${HARVEST_TARGET}/openxr_sdk/lib/openxr_loader-1_0_d.lib
DEPENDEES install
)
endif()
endif()

View File

@@ -87,7 +87,6 @@ elseif(APPLE)
set(OSL_EXTRA_ARGS
${OSL_EXTRA_ARGS}
-DHIDE_SYMBOLS=OFF
-DPUGIXML_HOME=${LIBDIR}/pugixml
)
endif()

View File

@@ -1,58 +0,0 @@
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENSE BLOCK *****
if(MSVC)
set(PYTARGET ${HARVEST_TARGET}/python/${PYTHON_SHORT_VERSION_NO_DOTS})
set(PYSRC ${LIBDIR}/python/)
if(BUILD_MODE STREQUAL Release)
add_custom_command(
OUTPUT ${PYTARGET}/bin/python${PYTHON_POSTFIX}.exe
COMMAND echo packaging python
COMMAND echo this should ouput at ${PYTARGET}/bin/python${PYTHON_POSTFIX}.exe
COMMAND ${CMAKE_COMMAND} -E make_directory ${PYTARGET}/libs
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}.lib ${PYTARGET}/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}.lib
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/python.exe ${PYTARGET}/bin/python.exe
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/python${PYTHON_SHORT_VERSION_NO_DOTS}.dll ${PYTARGET}/bin/python${PYTHON_SHORT_VERSION_NO_DOTS}.dll
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/python${PYTHON_SHORT_VERSION_NO_DOTS}.pdb ${PYTARGET}/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}.pdb
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PYSRC}/include/ ${PYTARGET}/include/
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PYSRC}/lib/ ${PYTARGET}/lib/
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PYSRC}/DLLs/ ${PYTARGET}/DLLs/
COMMAND cd ${PYTARGET}/lib/ && for /d /r . %%d in (__pycache__) do @if exist "%%d" echo "%%d" && rd /s/q "%%d"
)
add_custom_target(Package_Python ALL DEPENDS external_python external_numpy external_python_site_packages OUTPUT ${HARVEST_TARGET}/python/${PYTHON_SHORT_VERSION_NO_DOTS}/bin/python${PYTHON_POSTFIX}.exe)
endif()
if(BUILD_MODE STREQUAL Debug)
add_custom_command(
OUTPUT ${PYTARGET}/bin/python${PYTHON_POSTFIX}.exe
COMMAND echo packaging python
COMMAND echo this should ouput at ${PYTARGET}/bin/python${PYTHON_POSTFIX}.exe
COMMAND ${CMAKE_COMMAND} -E make_directory ${PYTARGET}/libs
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.lib ${PYTARGET}/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.lib
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/python${PYTHON_POSTFIX}.exe ${PYTARGET}/bin/python${PYTHON_POSTFIX}.exe
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.dll ${PYTARGET}/bin/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.dll
COMMAND ${CMAKE_COMMAND} -E copy ${PYSRC}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.pdb ${PYTARGET}/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.pdb
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PYSRC}/include/ ${PYTARGET}/include/
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PYSRC}/lib/ ${PYTARGET}/lib/
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PYSRC}/DLLs/ ${PYTARGET}/DLLs/
COMMAND cd ${PYTARGET}/lib/ && for /d /r . %%d in (__pycache__) do @if exist "%%d" echo "%%d" && rd /s/q "%%d"
)
add_custom_target(Package_Python ALL DEPENDS external_python external_numpy external_python_site_packages OUTPUT ${PYTARGET}/bin/python${PYTHON_POSTFIX}.exe)
endif()
endif()

View File

@@ -19,13 +19,17 @@
set(PYTHON_POSTFIX)
if(BUILD_MODE STREQUAL Debug)
set(PYTHON_POSTFIX _d)
set(PYTHON_EXTRA_INSTLAL_FLAGS -d)
endif()
if(WIN32)
set(PYTHON_BINARY_INTERNAL ${BUILD_DIR}/python/src/external_python/PCBuild/amd64/python${PYTHON_POSTFIX}.exe)
set(PYTHON_BINARY ${LIBDIR}/python/python${PYTHON_POSTFIX}.exe)
set(PYTHON_SRC ${BUILD_DIR}/python/src/external_python/)
if("${CMAKE_SIZEOF_VOID_P}" EQUAL "8")
set(SSL_POSTFIX -x64)
else()
set(SSL_POSTFIX)
endif()
set(PYTHON_BINARY ${BUILD_DIR}/python/src/external_python/run/python${PYTHON_POSTFIX}.exe)
macro(cmake_to_dos_path MsysPath ResultingPath)
string(REPLACE "/" "\\" ${ResultingPath} "${MsysPath}")
endmacro()
@@ -36,16 +40,31 @@ if(WIN32)
cmake_to_dos_path(${PYTHON_EXTERNALS_FOLDER} PYTHON_EXTERNALS_FOLDER_DOS)
cmake_to_dos_path(${DOWNLOADS_EXTERNALS_FOLDER} DOWNLOADS_EXTERNALS_FOLDER_DOS)
message("Python externals = ${PYTHON_EXTERNALS_FOLDER}")
message("Python externals_dos = ${PYTHON_EXTERNALS_FOLDER_DOS}")
message("Python DOWNLOADS_EXTERNALS_FOLDER = ${DOWNLOADS_EXTERNALS_FOLDER}")
message("Python DOWNLOADS_EXTERNALS_FOLDER_DOS = ${DOWNLOADS_EXTERNALS_FOLDER_DOS}")
ExternalProject_Add(external_python
URL ${PYTHON_URI}
DOWNLOAD_DIR ${DOWNLOAD_DIR}
URL_HASH MD5=${PYTHON_HASH}
PREFIX ${BUILD_DIR}/python
PATCH_COMMAND
echo mklink /D "${PYTHON_EXTERNALS_FOLDER_DOS}" "${DOWNLOADS_EXTERNALS_FOLDER_DOS}" &&
mklink /D "${PYTHON_EXTERNALS_FOLDER_DOS}" "${DOWNLOADS_EXTERNALS_FOLDER_DOS}"
CONFIGURE_COMMAND ""
BUILD_COMMAND cd ${BUILD_DIR}/python/src/external_python/pcbuild/ && set IncludeTkinter=false && call build.bat -e -p ${PYTHON_ARCH} -c ${BUILD_MODE}
INSTALL_COMMAND ${PYTHON_BINARY_INTERNAL} ${PYTHON_SRC}/PC/layout/main.py -b ${PYTHON_SRC}/PCbuild/amd64 -s ${PYTHON_SRC} -t ${PYTHON_SRC}/tmp/ --include-underpth --include-stable --include-pip --include-dev --include-launchers --include-symbols ${PYTHON_EXTRA_INSTLAL_FLAGS} --copy ${LIBDIR}/python
INSTALL_COMMAND COMMAND
${CMAKE_COMMAND} -E copy ${PYTHON_OUTPUTDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.dll ${LIBDIR}/python/lib/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.dll &&
${CMAKE_COMMAND} -E copy ${PYTHON_OUTPUTDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.pdb ${LIBDIR}/python/lib/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.pdb &&
${CMAKE_COMMAND} -E copy ${PYTHON_OUTPUTDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.lib ${LIBDIR}/python/lib/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.lib &&
${CMAKE_COMMAND} -E copy ${PYTHON_OUTPUTDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.exp ${LIBDIR}/python/lib/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.exp &&
${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/include ${LIBDIR}/python/include/Python${PYTHON_SHORT_VERSION} &&
${CMAKE_COMMAND} -E copy "${BUILD_DIR}/python/src/external_python/PC/pyconfig.h" ${LIBDIR}/python/include/Python${PYTHON_SHORT_VERSION}/pyconfig.h
)
message("PythinRedist = ${BUILD_DIR}/python/src/external_python/redist")
message("POutput = ${PYTHON_OUTPUTDIR}")
else()
if(APPLE)
# disable functions that can be in 10.13 sdk but aren't available on 10.9 target
@@ -88,6 +107,65 @@ else()
BUILD_COMMAND ${PYTHON_CONFIGURE_ENV} && cd ${BUILD_DIR}/python/src/external_python/ && make -j${MAKE_THREADS}
INSTALL_COMMAND ${PYTHON_CONFIGURE_ENV} && cd ${BUILD_DIR}/python/src/external_python/ && make install
INSTALL_DIR ${LIBDIR}/python)
add_custom_target(Make_Python_Environment ALL DEPENDS external_python)
endif()
if(MSVC)
add_custom_command(
OUTPUT ${LIBDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.tar.gz
OUTPUT ${BUILD_DIR}/python/src/external_python/redist/bin/python${PYTHON_POSTFIX}.exe
COMMAND ${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/lib ${BUILD_DIR}/python/src/external_python/redist/lib
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_asyncio${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_asyncio${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_bz2${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_bz2${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_contextvars${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_contextvars${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_ctypes${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_ctypes${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_ctypes_test${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_ctypes_test${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_decimal${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_decimal${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_distutils_findvs${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_distutils_findvs${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_elementtree${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_elementtree${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_hashlib${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_hashlib${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_lzma${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_lzma${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_msi${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_msi${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_multiprocessing${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_multiprocessing${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_overlapped${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_overlapped${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_queue${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_queue${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_socket${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_socket${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_sqlite3${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_sqlite3${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_ssl${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_ssl${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_testbuffer${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_testbuffer${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_testcapi${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_testcapi${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_testimportmultiple${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_testimportmultiple${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/_testmultiphase${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/_testmultiphase${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/pyexpat${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/pyexpat${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/python${PYTHON_POSTFIX}.exe" ${BUILD_DIR}/python/src/external_python/redist/bin/python${PYTHON_POSTFIX}.exe
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/select${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/select${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/unicodedata${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/unicodedata${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/winsound${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/winsound${PYTHON_POSTFIX}.pyd
#xxlimited is an example extension module, we don't need to ship it and debug doesn't build it
#leaving it commented out, so I won't get confused again with the next update.
#COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/xxlimited${PYTHON_POSTFIX}.pyd" ${BUILD_DIR}/python/src/external_python/redist/lib/xxlimited${PYTHON_POSTFIX}.pyd
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/libssl-1_1${SSL_POSTFIX}.dll" ${BUILD_DIR}/python/src/external_python/redist/lib/libssl-1_1${SSL_POSTFIX}.dll
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/libcrypto-1_1${SSL_POSTFIX}.dll" ${BUILD_DIR}/python/src/external_python/redist/lib/libcrypto-1_1${SSL_POSTFIX}.dll
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/sqlite3${PYTHON_POSTFIX}.dll" ${BUILD_DIR}/python/src/external_python/redist/lib/sqlite3${PYTHON_POSTFIX}.dll
COMMAND ${CMAKE_COMMAND} -E chdir "${BUILD_DIR}/python/src/external_python/redist" ${CMAKE_COMMAND} -E tar "cfvz" "${LIBDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.tar.gz" "."
COMMAND ${CMAKE_COMMAND} -E copy_directory ${LIBDIR}/python/ ${HARVEST_TARGET}/python/
COMMAND ${CMAKE_COMMAND} -E copy ${LIBDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.tar.gz ${HARVEST_TARGET}/Release/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.tar.gz
)
add_custom_target(Package_Python ALL DEPENDS external_python ${LIBDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.tar.gz ${BUILD_DIR}/python/src/external_python/redist/bin/python${PYTHON_POSTFIX}.exe)
add_custom_command(OUTPUT ${BUILD_DIR}/python/src/external_python/run/python${PYTHON_POSTFIX}.exe
COMMAND ${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/redist ${BUILD_DIR}/python/src/external_python/run
COMMAND ${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/include ${BUILD_DIR}/python/src/external_python/run/include
COMMAND ${CMAKE_COMMAND} -E copy "${BUILD_DIR}/python/src/external_python/PC/pyconfig.h" ${BUILD_DIR}/python/src/external_python/run/include/pyconfig.h
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.dll" ${BUILD_DIR}/python/src/external_python/run/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.dll
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.lib" ${BUILD_DIR}/python/src/external_python/run/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}.lib #missing postfix on purpose, distutils is not expecting it
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.lib" ${BUILD_DIR}/python/src/external_python/run/libs/python${PYTHON_SHORT_VERSION_NO_DOTS}${PYTHON_POSTFIX}.lib #other things like numpy still want it though.
COMMAND ${CMAKE_COMMAND} -E copy "${PYTHON_OUTPUTDIR}/python${PYTHON_POSTFIX}.exe" ${BUILD_DIR}/python/src/external_python/run/python${PYTHON_POSTFIX}.exe
COMMAND ${BUILD_DIR}/python/src/external_python/run/python${PYTHON_POSTFIX}.exe -m ensurepip --upgrade
)
add_custom_target(Make_Python_Environment ALL DEPENDS ${BUILD_DIR}/python/src/external_python/run/python${PYTHON_POSTFIX}.exe Package_Python)
endif()
if(UNIX)

View File

@@ -15,16 +15,27 @@
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ***** END GPL LICENSE BLOCK *****
if(WIN32)
set(HARVEST_CMD cmd /C FOR /d /r ${BUILD_DIR}/python/src/external_python/run/lib/site-packages %d IN (__pycache__) DO @IF EXIST "%d" rd /s /q "%d" &&
${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/run/lib/site-packages/idna ${HARVEST_TARGET}/Release/site-packages/idna &&
${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/run/lib/site-packages/chardet ${HARVEST_TARGET}/Release/site-packages/chardet &&
${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/run/lib/site-packages/urllib3 ${HARVEST_TARGET}/Release/site-packages/urllib3 &&
${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/run/lib/site-packages/certifi ${HARVEST_TARGET}/Release/site-packages/certifi &&
${CMAKE_COMMAND} -E copy_directory ${BUILD_DIR}/python/src/external_python/run/lib/site-packages/requests ${HARVEST_TARGET}/Release/site-packages/requests
)
else()
set(HARVEST_CMD echo .)
endif()
ExternalProject_Add(external_python_site_packages
DOWNLOAD_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
PREFIX ${BUILD_DIR}/site_packages
INSTALL_COMMAND ${PYTHON_BINARY} -m pip install idna==${IDNA_VERSION} chardet==${CHARDET_VERSION} urllib3==${URLLIB3_VERSION} certifi==${CERTIFI_VERSION} requests==${REQUESTS_VERSION} --no-binary :all:
INSTALL_COMMAND ${PYTHON_BINARY} -m pip install idna==${IDNA_VERSION} chardet==${CHARDET_VERSION} urllib3==${URLLIB3_VERSION} certifi==${CERTIFI_VERSION} requests==${REQUESTS_VERSION} --no-binary :all: && ${HARVEST_CMD}
)
add_dependencies(
external_python_site_packages
external_python
Make_Python_Environment
)

View File

@@ -18,7 +18,7 @@
set(TBB_EXTRA_ARGS
-DTBB_BUILD_SHARED=Off
-DTBB_BUILD_TBBMALLOC=On
-DTBB_BUILD_TBBMALLOC=Off
-DTBB_BUILD_TBBMALLOC_PROXY=Off
-DTBB_BUILD_STATIC=On
)

View File

@@ -16,26 +16,20 @@
#
# ***** END GPL LICENSE BLOCK *****
if (UNIX)
set(THEORA_CONFIGURE_ENV ${CONFIGURE_ENV} && export HAVE_PDFLATEX=no)
else()
set(THEORA_CONFIGURE_ENV ${CONFIGURE_ENV})
endif()
ExternalProject_Add(external_theora
URL ${THEORA_URI}
DOWNLOAD_DIR ${DOWNLOAD_DIR}
URL_HASH SHA256=${THEORA_HASH}
PREFIX ${BUILD_DIR}/theora
CONFIGURE_COMMAND ${THEORA_CONFIGURE_ENV} && cd ${BUILD_DIR}/theora/src/external_theora/ && ${CONFIGURE_COMMAND} --prefix=${LIBDIR}/theora
CONFIGURE_COMMAND ${CONFIGURE_ENV} && cd ${BUILD_DIR}/theora/src/external_theora/ && ${CONFIGURE_COMMAND} --prefix=${LIBDIR}/theora
--disable-shared
--enable-static
--with-pic
--with-ogg=${LIBDIR}/ogg
--with-vorbis=${LIBDIR}/vorbis
--disable-examples
BUILD_COMMAND ${THEORA_CONFIGURE_ENV} && cd ${BUILD_DIR}/theora/src/external_theora/ && make -j${MAKE_THREADS}
INSTALL_COMMAND ${THEORA_CONFIGURE_ENV} && cd ${BUILD_DIR}/theora/src/external_theora/ && make install
BUILD_COMMAND ${CONFIGURE_ENV} && cd ${BUILD_DIR}/theora/src/external_theora/ && make -j${MAKE_THREADS}
INSTALL_COMMAND ${CONFIGURE_ENV} && cd ${BUILD_DIR}/theora/src/external_theora/ && make install
INSTALL_DIR ${LIBDIR}/theora
)

View File

@@ -143,11 +143,11 @@ set(OSL_VERSION 1.9.9)
set(OSL_URI https://github.com/imageworks/OpenShadingLanguage/archive/Release-${OSL_VERSION}.tar.gz)
set(OSL_HASH 44ad511e424965a10fce051a053b0605)
set(PYTHON_VERSION 3.7.4)
set(PYTHON_VERSION 3.7.0)
set(PYTHON_SHORT_VERSION 3.7)
set(PYTHON_SHORT_VERSION_NO_DOTS 37)
set(PYTHON_URI https://www.python.org/ftp/python/${PYTHON_VERSION}/Python-${PYTHON_VERSION}.tar.xz)
set(PYTHON_HASH d33e4aae66097051c2eca45ee3604803)
set(PYTHON_HASH eb8c2a6b1447d50813c02714af4681f3)
set(TBB_VERSION 2018_U5)
set(TBB_URI https://github.com/01org/tbb/archive/${TBB_VERSION}.tar.gz)
@@ -157,16 +157,16 @@ set(OPENVDB_VERSION 5.1.0)
set(OPENVDB_URI https://github.com/dreamworksanimation/openvdb/archive/v${OPENVDB_VERSION}.tar.gz)
set(OPENVDB_HASH 5310101f874dcfd2165f9cee68c22624)
set(IDNA_VERSION 2.8)
set(IDNA_VERSION 2.7)
set(CHARDET_VERSION 3.0.4)
set(URLLIB3_VERSION 1.25.3)
set(CERTIFI_VERSION 2019.6.16)
set(REQUESTS_VERSION 2.22.0)
set(URLLIB3_VERSION 1.23)
set(CERTIFI_VERSION 2018.8.13)
set(REQUESTS_VERSION 2.19.1)
set(NUMPY_VERSION v1.17.0)
set(NUMPY_SHORT_VERSION 1.17)
set(NUMPY_URI https://files.pythonhosted.org/packages/da/32/1b8f2bb5fb50e4db68543eb85ce37b9fa6660cd05b58bddfafafa7ed62da/numpy-1.17.0.zip)
set(NUMPY_HASH aed49b31bcb44ec73b8155be78566135)
set(NUMPY_VERSION v1.15.0)
set(NUMPY_SHORT_VERSION 1.15)
set(NUMPY_URI https://files.pythonhosted.org/packages/3a/20/c81632328b1a4e1db65f45c0a1350a9c5341fd4bbb8ea66cdd98da56fe2e/numpy-1.15.0.zip)
set(NUMPY_HASH 20e13185089011116a98e11c9bf8aa07)
set(LAME_VERSION 3.100)
set(LAME_URI http://downloads.sourceforge.net/project/lame/lame/3.100/lame-${LAME_VERSION}.tar.gz)
@@ -302,11 +302,3 @@ set(SQLITE_HASH fb558c49ee21a837713c4f1e7e413309aabdd9c7)
set(EMBREE_VERSION 3.2.4)
set(EMBREE_URI https://github.com/embree/embree/archive/v${EMBREE_VERSION}.zip)
set(EMBREE_HASH 3d4a1147002ff43939d45140aa9d6fb8)
set(OIDN_VERSION 1.0.0)
set(OIDN_URI https://github.com/OpenImageDenoise/oidn/releases/download/v${OIDN_VERSION}/oidn-${OIDN_VERSION}.src.zip)
set(OIDN_HASH 19fe67b0164e8f020ac8a4f520defe60)
set(OPENXR_SDK_VERSION 1.0.0)
set(OPENXR_SDK_URI https://github.com/KhronosGroup/OpenXR-SDK-Source/archive/release-${OPENXR_SDK_VERSION}.tar.gz)
set(OPENXR_SDK_HASH 260bdc87b5a9b7ef35a540e39f875d79)

View File

@@ -26,17 +26,17 @@ ARGS=$( \
getopt \
-o s:i:t:h \
--long source:,install:,tmp:,info:,threads:,help,show-deps,no-sudo,no-build,no-confirm,\
with-all,with-opencollada,with-jack,with-embree,with-oidn,\
ver-ocio:,ver-oiio:,ver-llvm:,ver-osl:,ver-osd:,ver-openvdb:,ver-openxr\
with-all,with-opencollada,with-jack,with-embree,\
ver-ocio:,ver-oiio:,ver-llvm:,ver-osl:,ver-osd:,ver-openvdb:,\
force-all,force-python,force-numpy,force-boost,\
force-ocio,force-openexr,force-oiio,force-llvm,force-osl,force-osd,force-openvdb,\
force-ffmpeg,force-opencollada,force-alembic,force-embree,force-oidn,foce-openxr\
force-ffmpeg,force-opencollada,force-alembic,force-embree,\
build-all,build-python,build-numpy,build-boost,\
build-ocio,build-openexr,build-oiio,build-llvm,build-osl,build-osd,build-openvdb,\
build-ffmpeg,build-opencollada,build-alembic,build-embree,build-oidn,build-openxr\
build-ffmpeg,build-opencollada,build-alembic,build-embree,\
skip-python,skip-numpy,skip-boost,\
skip-ocio,skip-openexr,skip-oiio,skip-llvm,skip-osl,skip-osd,skip-openvdb,\
skip-ffmpeg,skip-opencollada,skip-alembic,skip-embree,skip-oidn,skip-openxr \
skip-ffmpeg,skip-opencollada,skip-alembic,skip-embree \
-- "$@" \
)
@@ -57,7 +57,6 @@ WITH_ALL=false
# Do not yet enable opencollada or embree, use --with-opencollada/--with-embree (or --with-all) option to try it.
WITH_OPENCOLLADA=false
WITH_EMBREE=false
WITH_OIDN=false
THREADS=$(nproc)
@@ -70,7 +69,6 @@ Number of threads for building: \$THREADS (automatically detected, use --threads
Full install: \$WITH_ALL (use --with-all option to enable it).
Building OpenCOLLADA: \$WITH_OPENCOLLADA (use --with-opencollada option to enable it).
Building Embree: \$WITH_EMBREE (use --with-embree option to enable it).
Building OpenImageDenoise: \$WITH_OIDN (use --with-oidn option to enable it).
Example:
Full install without OpenCOLLADA: --with-all --skip-opencollada
@@ -120,9 +118,6 @@ ARGUMENTS_INFO="\"COMMAND LINE ARGUMENTS:
--with-embree
Build and install the Embree libraries.
--with-oidn
Build and install the OpenImageDenoise libraries.
--with-jack
Install the jack libraries.
@@ -144,9 +139,6 @@ ARGUMENTS_INFO="\"COMMAND LINE ARGUMENTS:
--ver-openvdb=<ver>
Force version of OpenVDB library.
--ver-openxr=<ver>
Force version of OpenXR-SDK.
Note about the --ver-foo options:
It may not always work as expected (some libs are actually checked out from a git rev...), yet it might help
to fix some build issues (like LLVM mismatch with the version used by your graphic system).
@@ -193,15 +185,9 @@ ARGUMENTS_INFO="\"COMMAND LINE ARGUMENTS:
--build-embree
Force the build of Embree.
--build-oidn
Force the build of OpenImageDenoise.
--build-ffmpeg
Force the build of FFMpeg.
--build-openxr
Force the build of OpenXR-SDK.
Note about the --build-foo options:
* They force the script to prefer building dependencies rather than using available packages.
This may make things simpler and allow working around some distribution bugs, but on the other hand it will
@@ -254,15 +240,9 @@ ARGUMENTS_INFO="\"COMMAND LINE ARGUMENTS:
--force-embree
Force the rebuild of Embree.
--force-oidn
Force the rebuild of OpenImageDenoise.
--force-ffmpeg
Force the rebuild of FFMpeg.
--force-openxr
Force the rebuild of OpenXR-SDK.
Note about the --force-foo options:
* They obviously only have an effect if those libraries are built by this script
(i.e. if there is no available and satisfactory package)!
@@ -308,14 +288,8 @@ ARGUMENTS_INFO="\"COMMAND LINE ARGUMENTS:
--skip-Embree
Unconditionally skip Embree installation/building.
--skip-oidn
Unconditionally skip OpenImageDenoise installation/building.
--skip-ffmpeg
Unconditionally skip FFMpeg installation/building.
--skip-openxr
Unconditionally skip OpenXR-SDK installation/building.\""
Unconditionally skip FFMpeg installation/building.\""
##### Main Vars #####
@@ -329,13 +303,13 @@ USE_CXX11=true
CLANG_FORMAT_VERSION_MIN="6.0"
PYTHON_VERSION="3.7.4"
PYTHON_VERSION="3.7.0"
PYTHON_VERSION_MIN="3.7"
PYTHON_FORCE_BUILD=false
PYTHON_FORCE_REBUILD=false
PYTHON_SKIP=false
NUMPY_VERSION="1.17.0"
NUMPY_VERSION="1.15.0"
NUMPY_VERSION_MIN="1.8"
NUMPY_FORCE_BUILD=false
NUMPY_FORCE_REBUILD=false
@@ -416,11 +390,6 @@ EMBREE_FORCE_BUILD=false
EMBREE_FORCE_REBUILD=false
EMBREE_SKIP=false
OIDN_VERSION="1.0.0"
OIDN_FORCE_BUILD=false
OIDN_FORCE_REBUILD=false
OIDN_SKIP=false
FFMPEG_VERSION="4.0.2"
FFMPEG_VERSION_MIN="2.8.4"
FFMPEG_FORCE_BUILD=false
@@ -428,11 +397,6 @@ FFMPEG_FORCE_REBUILD=false
FFMPEG_SKIP=false
_ffmpeg_list_sep=";"
OPENXR_VERSION="1.0.0"
OPENXR_FORCE_BUILD=false
OPENXR_FORCE_REBUILD=false
OPENXR_SKIP=false
# FFMPEG optional libs.
VORBIS_USE=false
VORBIS_DEV=""
@@ -562,9 +526,6 @@ while true; do
--with-embree)
WITH_EMBREE=true; shift; continue
;;
--with-oidn)
WITH_OIDN=true; shift; continue
;;
--with-jack)
WITH_JACK=true; shift; continue;
;;
@@ -598,11 +559,6 @@ while true; do
OPENVDB_VERSION_MIN=$OPENVDB_VERSION
shift; shift; continue
;;
--ver-openxr)
OPENXR_VERSION="$2"
OPENXR_VERSION_MIN=$OPENXR_VERSION
shift; shift; continue
;;
--build-all)
PYTHON_FORCE_BUILD=true
NUMPY_FORCE_BUILD=true
@@ -616,10 +572,8 @@ while true; do
OPENVDB_FORCE_BUILD=true
OPENCOLLADA_FORCE_BUILD=true
EMBREE_FORCE_BUILD=true
OIDN_FORCE_BUILD=true
FFMPEG_FORCE_BUILD=true
ALEMBIC_FORCE_BUILD=true
OPENXR_FORCE_BUILD=true
shift; continue
;;
--build-python)
@@ -662,18 +616,12 @@ while true; do
--build-embree)
EMBREE_FORCE_BUILD=true; shift; continue
;;
--build-oidn)
OIDN_FORCE_BUILD=true; shift; continue
;;
--build-ffmpeg)
FFMPEG_FORCE_BUILD=true; shift; continue
;;
--build-alembic)
ALEMBIC_FORCE_BUILD=true; shift; continue
;;
--build-openxr)
OPENXR_FORCE_BUILD=true; shift; continue
;;
--force-all)
PYTHON_FORCE_REBUILD=true
NUMPY_FORCE_REBUILD=true
@@ -687,10 +635,8 @@ while true; do
OPENVDB_FORCE_REBUILD=true
OPENCOLLADA_FORCE_REBUILD=true
EMBREE_FORCE_REBUILD=true
OIDN_FORCE_REBUILD=true
FFMPEG_FORCE_REBUILD=true
ALEMBIC_FORCE_REBUILD=true
OPENXR_FORCE_REBUILD=true
shift; continue
;;
--force-python)
@@ -731,18 +677,12 @@ while true; do
--force-embree)
EMBREE_FORCE_REBUILD=true; shift; continue
;;
--force-oidn)
OIDN_FORCE_REBUILD=true; shift; continue
;;
--force-ffmpeg)
FFMPEG_FORCE_REBUILD=true; shift; continue
;;
--force-alembic)
ALEMBIC_FORCE_REBUILD=true; shift; continue
;;
--force-openxr)
OPENXR_FORCE_REBUILD=true; shift; continue
;;
--skip-python)
PYTHON_SKIP=true; shift; continue
;;
@@ -779,18 +719,12 @@ while true; do
--skip-embree)
EMBREE_SKIP=true; shift; continue
;;
--skip-oidn)
OIDN_SKIP=true; shift; continue
;;
--skip-ffmpeg)
FFMPEG_SKIP=true; shift; continue
;;
--skip-alembic)
ALEMBIC_SKIP=true; shift; continue
;;
--skip-openxr)
OPENXR_SKIP=true; shift; continue
;;
--)
# no more arguments to parse
break
@@ -812,9 +746,6 @@ fi
if [ "$WITH_ALL" = true -a "$EMBREE_SKIP" = false ]; then
WITH_EMBREE=true
fi
if [ "$WITH_ALL" = true -a "$OIDN_SKIP" = false ]; then
WITH_OIDN=true
fi
if [ "$WITH_ALL" = true ]; then
WITH_JACK=true
fi
@@ -909,20 +840,9 @@ EMBREE_SOURCE=( "https://github.com/embree/embree/archive/v${EMBREE_VERSION}.tar
#~ EMBREE_REPO_UID="4a12bfed63c90e85b6eab98b8cdd8dd2a3ba5809"
#~ EMBREE_REPO_BRANCH="master"
OIDN_USE_REPO=false
OIDN_SOURCE=( "https://github.com/OpenImageDenoise/oidn/releases/download/v${OIDN_VERSION}/oidn-${OIDN_VERSION}.src.tar.gz" )
#~ OIDN_SOURCE_REPO=( "https://github.com/OpenImageDenoise/oidn.git" )
#~ OIDN_REPO_UID="dabfd9c80101edae9d25a710160d12d6d963c591"
#~ OIDN_REPO_BRANCH="master"
FFMPEG_SOURCE=( "http://ffmpeg.org/releases/ffmpeg-$FFMPEG_VERSION.tar.bz2" )
OPENXR_USE_REPO=false
OPENXR_SOURCE=("https://github.com/KhronosGroup/OpenXR-SDK-Source/archive/release-$OPENXR_VERSION.tar.gz")
#~ OPENXR_SOURCE_REPO=("https://github.com/KhronosGroup/OpenXR-SDK-Source.git")
#~ OPENXR_REPO_UID="348912bf9bfaf445ac2974bda19fd0d50496460b"
#~ OPENXR_REPO_BRANCH="master"
# C++11 is required now
CXXFLAGS_BACK=$CXXFLAGS
CXXFLAGS="$CXXFLAGS -std=c++11"
@@ -962,7 +882,6 @@ You may also want to build them yourself (optional ones are [between brackets]):
* [OpenVDB $OPENVDB_VERSION_MIN] (from $OPENVDB_SOURCE), [Blosc $OPENVDB_BLOSC_VERSION] (from $OPENVDB_BLOSC_SOURCE).
* [OpenCollada $OPENCOLLADA_VERSION] (from $OPENCOLLADA_SOURCE).
* [Embree $EMBREE_VERSION] (from $EMBREE_SOURCE).
* [OpenImageDenoise $OIDN_VERSION] (from $OIDN_SOURCE).
* [Alembic $ALEMBIC_VERSION] (from $ALEMBIC_SOURCE).\""
if [ "$DO_SHOW_DEPS" = true ]; then
@@ -1146,14 +1065,13 @@ _create_inst_shortcut() {
# ldconfig
run_ldconfig() {
_lib_path="$INST/$1/lib"
_lib64_path="$INST/$1/lib64"
_ldconf_path="/etc/ld.so.conf.d/$1.conf"
PRINT ""
if [ ! $SUDO ]; then
WARNING "--no-sudo enabled, impossible to run ldconfig for $1, you'll have to do it yourself..."
else
INFO "Running ldconfig for $1..."
$SUDO sh -c "echo -e \"$_lib_path\n$_lib64_path\" > $_ldconf_path"
$SUDO sh -c "echo \"$_lib_path\" > $_ldconf_path"
$SUDO /sbin/ldconfig # XXX OpenSuse does not include sbin in command path with sudo!!!
fi
PRINT ""
@@ -2014,8 +1932,7 @@ compile_OSL() {
cmake_d="$cmake_d -D OSL_BUILD_PLUGINS=OFF"
cmake_d="$cmake_d -D OSL_BUILD_TESTS=OFF"
cmake_d="$cmake_d -D USE_SIMD=sse2"
cmake_d="$cmake_d -D USE_LLVM_BITCODE=OFF"
cmake_d="$cmake_d -D USE_PARTIO=OFF"
cmake_d="$cmake_d -D OSL_BUILD_CPP11=1"
#~ cmake_d="$cmake_d -D ILMBASE_VERSION=$ILMBASE_VERSION"
@@ -2635,98 +2552,6 @@ compile_Embree() {
fi
}
#### Build OpenImageDenoise ####
_init_oidn() {
_src=$SRC/oidn-$OIDN_VERSION
_git=true
_inst=$INST/oidn-$OIDN_VERSION
_inst_shortcut=$INST/oidn
}
clean_oidn() {
_init_oidn
_clean
}
compile_OIDN() {
if [ "$NO_BUILD" = true ]; then
WARNING "--no-build enabled, OpenImageDenoise will not be compiled!"
return
fi
# To be changed each time we make edits that would modify the compiled results!
oidn_magic=9
_init_oidn
# Clean install if needed!
magic_compile_check oidn-$OIDN_VERSION $oidn_magic
if [ $? -eq 1 -o "$OIDN_FORCE_REBUILD" = true ]; then
clean_oidn
fi
if [ ! -d $_inst ]; then
INFO "Building OpenImageDenoise-$OIDN_VERSION"
prepare_opt
if [ ! -d $_src ]; then
mkdir -p $SRC
if [ "OIDN_USE_REPO" = true ]; then
git clone $OIDN_SOURCE_REPO $_src
else
download OIDN_SOURCE[@] "$_src.tar.gz"
INFO "Unpacking OpenImageDenoise-$OIDN_VERSION"
tar -C $SRC -xf $_src.tar.gz
fi
fi
cd $_src
if [ "$OIDN_USE_REPO" = true ]; then
git pull origin $OIDN_REPO_BRANCH
# Stick to same rev as windows' libs...
git checkout $OIDN_REPO_UID
git reset --hard
fi
# Always refresh the whole build!
if [ -d build ]; then
rm -rf build
fi
mkdir build
cd build
cmake_d="-D CMAKE_BUILD_TYPE=Release"
cmake_d="$cmake_d -D CMAKE_INSTALL_PREFIX=$_inst"
cmake_d="$cmake_d -D WITH_EXAMPLE=OFF"
cmake_d="$cmake_d -D WITH_TEST=OFF"
cmake_d="$cmake_d -D OIDN_STATIC_LIB=ON"
cmake $cmake_d ../
make -j$THREADS && make install
make clean
if [ -d $_inst ]; then
_create_inst_shortcut
else
ERROR "OpenImageDenoise-$OIDN_VERSION failed to compile, exiting"
exit 1
fi
magic_compile_set oidn-$OIDN_VERSION $oidn_magic
cd $CWD
INFO "Done compiling OpenImageDenoise-$OIDN_VERSION!"
else
INFO "Own OpenImageDenoise-$OIDN_VERSION is up to date, nothing to do!"
INFO "If you want to force rebuild of this lib, use the --force-oidn option."
fi
run_ldconfig "oidn"
}
#### Build FFMPEG ####
_init_ffmpeg() {
_src=$SRC/ffmpeg-$FFMPEG_VERSION
@@ -2838,103 +2663,6 @@ compile_FFmpeg() {
}
#### Build OpenXR SDK ####
_init_openxr_sdk() {
_src=$SRC/OpenXR-SDK-$OPENXR_VERSION
_git=true
_inst=$INST/openxr-sdk-$OPENXR_VERSION
_inst_shortcut=$INST/openxr-sdk
}
clean_OpenXR_SDK() {
_init_openxr_sdk
_clean
}
compile_OpenXR_SDK() {
if [ "$NO_BUILD" = true ]; then
WARNING "--no-build enabled, OpenXR will not be compiled!"
return
fi
# To be changed each time we make edits that would modify the compiled result!
openxr_magic=0
_init_openxr_sdk
# Clean install if needed!
magic_compile_check openxr-$OPENXR_VERSION $openxr_magic
if [ $? -eq 1 -o "$OPENXR_FORCE_REBUILD" = true ]; then
clean_OpenXR_SDK
fi
if [ ! -d $_inst ]; then
INFO "Building OpenXR-SDK-$OPENXR_VERSION"
prepare_opt
if [ ! -d $_src ]; then
mkdir -p $SRC
if [ "$OPENXR_USE_REPO" = true ]; then
git clone $OPENXR_SOURCE_REPO $_src
else
download OPENXR_SOURCE[@] "$_src.tar.gz"
INFO "Unpacking OpenXR-SDK-$OPENXR_VERSION"
tar -C $SRC --transform "s,(.*/?)OpenXR-SDK-[^/]*(.*),\1OpenXR-SDK-$OPENXR_VERSION\2,x" \
-xf $_src.tar.gz
fi
fi
cd $_src
if [ "$OPENXR_USE_REPO" = true ]; then
git pull origin $OPENXR_REPO_BRANCH
# Stick to same rev as windows' libs...
git checkout $OPENXR_REPO_UID
git reset --hard
fi
# Always refresh the whole build!
if [ -d build ]; then
rm -rf build
fi
mkdir build
cd build
cmake_d="-D CMAKE_BUILD_TYPE=Release"
cmake_d="$cmake_d -D CMAKE_INSTALL_PREFIX=$_inst"
cmake_d="$cmake_d -D BUILD_API_LAYERS=ON"
cmake_d="$cmake_d -D BUILD_FORCE_GENERATION=ON"
cmake_d="$cmake_d -D BUILD_LOADER=ON"
cmake_d="$cmake_d -D BUILD_SPECIFICATION=OFF"
cmake_d="$cmake_d -D BUILD_TESTS=OFF"
cmake $cmake_d ..
make -j$THREADS && make install
make clean
if [ -d $_inst ]; then
_create_inst_shortcut
else
ERROR "OpenXR-SDK-$OPENXR_VERSION failed to compile, exiting"
exit 1
fi
magic_compile_set openxr-$OPENXR_VERSION $openxr_magic
cd $CWD
INFO "Done compiling OpenXR-SDK-$OPENXR_VERSION!"
else
INFO "Own OpenXR-SDK-$OPENXR_VERSION is up to date, nothing to do!"
INFO "If you want to force rebuild of this lib, use the --force-openxr option."
fi
run_ldconfig "openxr"
}
#### Install on DEB-like ####
get_package_version_DEB() {
dpkg-query -W -f '${Version}' $1 | sed -r 's/([0-9]+:)?(([0-9]+\.?)+([0-9]+)).*/\2/'
@@ -3420,24 +3148,6 @@ install_DEB() {
fi
fi
if [ "$WITH_OIDN" = true ]; then
_do_compile_oidn=false
PRINT ""
if [ "$OIDN_SKIP" = true ]; then
WARNING "Skipping OpenImgeDenoise installation, as requested..."
elif [ "$OIDN_FORCE_BUILD" = true ]; then
INFO "Forced OpenImageDenoise building, as requested..."
_do_compile_oidn=true
else
# No package currently!
_do_compile_oidn=true
fi
if [ "$_do_compile_oidn" = true ]; then
compile_OIDN
fi
fi
PRINT ""
if [ "$FFMPEG_SKIP" = true ]; then
WARNING "Skipping FFMpeg installation, as requested..."
@@ -3459,18 +3169,6 @@ install_DEB() {
compile_FFmpeg
fi
fi
PRINT ""
if [ "$OPENXR_SKIP" = true ]; then
WARNING "Skipping OpenXR-SDK installation, as requested..."
elif [ "$OPENXR_FORCE_BUILD" = true ]; then
INFO "Forced OpenXR-SDK building, as requested..."
compile_OpenXR_SDK
else
# No package currently!
PRINT ""
compile_OpenXR_SDK
fi
}
@@ -4024,24 +3722,6 @@ install_RPM() {
fi
fi
if [ "$WITH_OIDN" = true ]; then
_do_compile_oidn=false
PRINT ""
if [ "$OIDN_SKIP" = true ]; then
WARNING "Skipping OpenImgeDenoise installation, as requested..."
elif [ "$OIDN_FORCE_BUILD" = true ]; then
INFO "Forced OpenImageDenoise building, as requested..."
_do_compile_oidn=true
else
# No package currently!
_do_compile_oidn=true
fi
if [ "$_do_compile_oidn" = true ]; then
compile_OIDN
fi
fi
PRINT ""
if [ "$FFMPEG_SKIP" = true ]; then
WARNING "Skipping FFMpeg installation, as requested..."
@@ -4057,17 +3737,6 @@ install_RPM() {
compile_FFmpeg
fi
fi
PRINT ""
if [ "$OPENXR_SKIP" = true ]; then
WARNING "Skipping OpenXR-SDK installation, as requested..."
elif [ "$OPENXR_FORCE_BUILD" = true ]; then
INFO "Forced OpenXR-SDK building, as requested..."
compile_OpenXR_SDK
else
# No package currently!
compile_OpenXR_SDK
fi
}
@@ -4517,24 +4186,6 @@ install_ARCH() {
fi
fi
if [ "$WITH_OIDN" = true ]; then
_do_compile_oidn=false
PRINT ""
if [ "$OIDN_SKIP" = true ]; then
WARNING "Skipping OpenImgeDenoise installation, as requested..."
elif [ "$OIDN_FORCE_BUILD" = true ]; then
INFO "Forced OpenImageDenoise building, as requested..."
_do_compile_oidn=true
else
# No package currently!
_do_compile_oidn=true
fi
if [ "$_do_compile_oidn" = true ]; then
compile_OIDN
fi
fi
PRINT ""
if [ "$FFMPEG_SKIP" = true ]; then
WARNING "Skipping FFMpeg installation, as requested..."
@@ -4550,17 +4201,6 @@ install_ARCH() {
compile_FFmpeg
fi
fi
PRINT ""
if [ "$OPENXR_SKIP" = true ]; then
WARNING "Skipping OpenXR-SDK installation, as requested..."
elif [ "$OPENXR_FORCE_BUILD" = true ]; then
INFO "Forced OpenXR-SDK building, as requested..."
compile_OpenXR_SDK
else
# No package currently!
compile_OpenXR_SDK
fi
}
@@ -4732,24 +4372,6 @@ install_OTHER() {
fi
fi
if [ "$WITH_OIDN" = true ]; then
_do_compile_oidn=false
PRINT ""
if [ "$OIDN_SKIP" = true ]; then
WARNING "Skipping OpenImgeDenoise installation, as requested..."
elif [ "$OIDN_FORCE_BUILD" = true ]; then
INFO "Forced OpenImageDenoise building, as requested..."
_do_compile_oidn=true
else
# No package currently!
_do_compile_oidn=true
fi
if [ "$_do_compile_oidn" = true ]; then
compile_OIDN
fi
fi
PRINT ""
if [ "$FFMPEG_SKIP" = true ]; then
WARNING "Skipping FFMpeg installation, as requested..."
@@ -4757,17 +4379,6 @@ install_OTHER() {
INFO "Forced FFMpeg building, as requested..."
compile_FFmpeg
fi
PRINT ""
if [ "$OPENXR_SKIP" = true ]; then
WARNING "Skipping OpenXR-SDK installation, as requested..."
elif [ "$OPENXR_FORCE_BUILD" = true ]; then
INFO "Forced OpenXR-SDK building, as requested..."
compile_OpenXR_SDK
else
# No package currently!
compile_OpenXR_SDK
fi
}
#### Printing User Info ####
@@ -4976,17 +4587,6 @@ print_info() {
fi
fi
if [ "$WITH_OIDN" = true ]; then
_1="-D WITH_OPENIMAGEDENOISE=ON"
PRINT " $_1"
_buildargs="$_buildargs $_1"
if [ -d $INST/oidn ]; then
_1="-D OPENIMAGEDENOISE_ROOT_DIR=$INST/oidn"
PRINT " $_1"
_buildargs="$_buildargs $_1"
fi
fi
if [ "$WITH_JACK" = true ]; then
_1="-D WITH_JACK=ON"
_2="-D WITH_JACK_DYNLOAD=ON"
@@ -5025,17 +4625,6 @@ print_info() {
fi
fi
if [ "$OPENXR_SKIP" = false ]; then
_1="-D WITH_OPENXR=ON"
PRINT " $_1"
_buildargs="$_buildargs $_1"
if [ -d $INST/openxr-sdk ]; then
_1="-D OPENXR_ROOT_DIR=$INST/openxr-sdk"
PRINT " $_1"
_buildargs="$_buildargs $_1"
fi
fi
PRINT ""
PRINT "Or even simpler, just run (in your blender-source dir):"
PRINT " make -j$THREADS BUILD_CMAKE_ARGS=\"$_buildargs\""

View File

@@ -1,119 +0,0 @@
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 70ec895..e616b63 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -178,7 +178,9 @@ set_property(TARGET ${PROJECT_NAME} PROPERTY SOVERSION "0")
## Open Image Denoise examples
## ----------------------------------------------------------------------------
-add_subdirectory(examples)
+if(WITH_EXAMPLE)
+ add_subdirectory(examples)
+endif()
## ----------------------------------------------------------------------------
## Open Image Denoise install and packaging
Submodule mkl-dnn contains modified content
diff --git a/mkl-dnn/cmake/TBB.cmake b/mkl-dnn/cmake/TBB.cmake
index 0711e699..c14210b6 100644
--- a/mkl-dnn/cmake/TBB.cmake
+++ b/mkl-dnn/cmake/TBB.cmake
@@ -90,8 +90,8 @@ if(WIN32)
NO_DEFAULT_PATH
)
set(TBB_LIB_DIR ${TBB_ROOT}/lib/${TBB_ARCH}/${TBB_VCVER})
- find_library(TBB_LIBRARY tbb PATHS ${TBB_LIB_DIR} ${TBB_ROOT}/lib NO_DEFAULT_PATH)
- find_library(TBB_LIBRARY_MALLOC tbbmalloc PATHS ${TBB_LIB_DIR} ${TBB_ROOT}/lib NO_DEFAULT_PATH)
+ find_library(TBB_LIBRARY tbb_static PATHS ${TBB_LIB_DIR} ${TBB_ROOT}/lib NO_DEFAULT_PATH)
+ find_library(TBB_LIBRARY_MALLOC tbbmalloc_static PATHS ${TBB_LIB_DIR} ${TBB_ROOT}/lib NO_DEFAULT_PATH)
endif()
else()
@@ -138,13 +138,13 @@ else()
set(TBB_LIBRARY_MALLOC TBB_LIBRARY_MALLOC-NOTFOUND)
if(APPLE)
find_path(TBB_INCLUDE_DIR tbb/task_scheduler_init.h PATHS ${TBB_ROOT}/include NO_DEFAULT_PATH)
- find_library(TBB_LIBRARY tbb PATHS ${TBB_ROOT}/lib NO_DEFAULT_PATH)
- find_library(TBB_LIBRARY_MALLOC tbbmalloc PATHS ${TBB_ROOT}/lib NO_DEFAULT_PATH)
+ find_library(TBB_LIBRARY tbb_static PATHS ${TBB_ROOT}/lib NO_DEFAULT_PATH)
+ find_library(TBB_LIBRARY_MALLOC tbbmalloc_static PATHS ${TBB_ROOT}/lib NO_DEFAULT_PATH)
else()
find_path(TBB_INCLUDE_DIR tbb/task_scheduler_init.h PATHS ${TBB_ROOT}/include NO_DEFAULT_PATH)
set(TBB_HINTS HINTS ${TBB_ROOT}/lib/intel64/gcc4.4 ${TBB_ROOT}/lib ${TBB_ROOT}/lib64 PATHS /usr/libx86_64-linux-gnu/)
- find_library(TBB_LIBRARY tbb ${TBB_HINTS})
- find_library(TBB_LIBRARY_MALLOC tbbmalloc ${TBB_HINTS})
+ find_library(TBB_LIBRARY tbb_static ${TBB_HINTS})
+ find_library(TBB_LIBRARY_MALLOC tbbmalloc_static ${TBB_HINTS})
endif()
endif()
diff '--ignore-matching-lines=:' -ur '--exclude=*.svn*' -u -r
--- a/cmake/install.cmake 2019-08-12 18:02:20.794402575 +0200
+++ b/cmake/install.cmake 2019-08-12 18:06:07.470045703 +0200
@@ -18,6 +18,13 @@
## Install library
## ----------------------------------------------------------------------------
+if(UNIX)
+install(FILES
+ ${CMAKE_BINARY_DIR}/libOpenImageDenoise.a
+ ${CMAKE_BINARY_DIR}/libmkldnn.a
+ ${CMAKE_BINARY_DIR}/libcommon.a
+ DESTINATION ${CMAKE_INSTALL_LIBDIR})
+else()
install(TARGETS ${PROJECT_NAME}
EXPORT
${PROJECT_NAME}_Export
@@ -38,6 +45,7 @@
DESTINATION ${CMAKE_INSTALL_LIBDIR} COMPONENT devel
)
endif()
+endif()
## ----------------------------------------------------------------------------
## Install headers
@@ -78,6 +86,7 @@
## Install CMake configuration files
## ----------------------------------------------------------------------------
+if(NOT UNIX)
install(EXPORT ${PROJECT_NAME}_Export
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
#NAMESPACE ${PROJECT_NAME}::
@@ -92,3 +101,4 @@
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}
COMPONENT devel
)
+endif()
diff '--ignore-matching-lines=:' -ur '--exclude=*.svn*' -u -r
--- a/CMakeLists.txt 2019-08-12 14:22:00.974078598 +0200
+++ b/CMakeLists.txt 2019-08-12 18:05:05.949057375 +0200
@@ -14,7 +14,11 @@
## limitations under the License. ##
## ======================================================================== ##
-cmake_minimum_required(VERSION 3.1)
+if(UNIX)
+ cmake_minimum_required(VERSION 3.1)
+else()
+ cmake_minimum_required(VERSION 3.13)
+endif()
set(OIDN_VERSION_MAJOR 1)
set(OIDN_VERSION_MINOR 0)
@@ -32,13 +36,8 @@
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${PROJECT_SOURCE_DIR}/cmake")
# Build as shared or static library
-if(${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.13.0")
- option(OIDN_STATIC_LIB "Build Open Image Denoise as a static library.")
- mark_as_advanced(CLEAR OIDN_STATIC_LIB)
-else()
- set(OIDN_STATIC_LIB OFF CACHE BOOL "Build Open Image Denoise as a static library." FORCE)
- mark_as_advanced(OIDN_STATIC_LIB)
-endif()
+option(OIDN_STATIC_LIB "Build Open Image Denoise as a static library.")
+mark_as_advanced(CLEAR OIDN_STATIC_LIB)
if(OIDN_STATIC_LIB)
set(OIDN_LIB_TYPE STATIC)
else()

View File

@@ -1,28 +0,0 @@
diff -Naur orig/src/loader/CMakeLists.txt external_openxr_sdk/src/loader/CMakeLists.txt
--- orig/src/loader/CMakeLists.txt 2019-07-29 07:06:59 -0600
+++ external_openxr_sdk/src/loader/CMakeLists.txt 2019-08-20 07:56:51 -0600
@@ -128,24 +128,6 @@
configure_file("openxr.pc.in" "openxr.pc" @ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/openxr.pc" DESTINATION "${CMAKE_INSTALL_LIBDIR}/pkgconfig")
elseif(CMAKE_SYSTEM_NAME STREQUAL "Windows")
- foreach(configuration in CMAKE_C_FLAGS_DEBUG
- CMAKE_C_FLAGS_RELEASE
- CMAKE_C_FLAGS_RELWITHDEBINFO
- CMAKE_CXX_FLAGS_DEBUG
- CMAKE_CXX_FLAGS_RELEASE
- CMAKE_CXX_FLAGS_RELWITHDEBINFO)
- # If building DLLs, force static CRT linkage
- if(DYNAMIC_LOADER)
- if (${configuration} MATCHES "/MD")
- string(REGEX REPLACE "/MD" "/MT" ${configuration} "${${configuration}}")
- endif()
- else() # Otherwise for static libs, link the CRT dynamically
- if (${configuration} MATCHES "/MT")
- string(REGEX REPLACE "/MT" "/MD" ${configuration} "${${configuration}}")
- endif()
- endif()
- endforeach()
-
target_link_libraries(${LOADER_NAME} shlwapi)
target_compile_options(${LOADER_NAME} PRIVATE)
generate_export_header(${LOADER_NAME})

View File

@@ -6,7 +6,7 @@ include("${CMAKE_CURRENT_LIST_DIR}/../../cmake/config/blender_release.cmake")
# There we can not use CPU bitness check since it is always 64bit. So instead
# we check for a specific libraries.
#
# Other builders we are running in a bare virtual machine, and the libraries
# Other builders we are runnign in a bare virtual machine, and the libraries
# are installed to /opt/.
# We assume that only 64bit builders exists in such configuration.
if(EXISTS "/lib/x86_64-linux-gnu/libc-2.24.so")

View File

@@ -1,122 +0,0 @@
# - Find OpenImageDenoise library
# Find the native OpenImageDenoise includes and library
# This module defines
# OPENIMAGEDENOISE_INCLUDE_DIRS, where to find oidn.h, Set when
# OPENIMAGEDENOISE is found.
# OPENIMAGEDENOISE_LIBRARIES, libraries to link against to use OpenImageDenoise.
# OPENIMAGEDENOISE_ROOT_DIR, The base directory to search for OpenImageDenoise.
# This can also be an environment variable.
# OPENIMAGEDENOISE_FOUND, If false, do not try to use OpenImageDenoise.
#
# also defined, but not for general use are
# OPENIMAGEDENOISE_LIBRARY, where to find the OpenImageDenoise library.
#=============================================================================
# Copyright 2019 Blender Foundation.
#
# Distributed under the OSI-approved BSD License (the "License");
# see accompanying file Copyright.txt for details.
#
# This software is distributed WITHOUT ANY WARRANTY; without even the
# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the License for more information.
#=============================================================================
# If OPENIMAGEDENOISE_ROOT_DIR was defined in the environment, use it.
IF(NOT OPENIMAGEDENOISE_ROOT_DIR AND NOT $ENV{OPENIMAGEDENOISE_ROOT_DIR} STREQUAL "")
SET(OPENIMAGEDENOISE_ROOT_DIR $ENV{OPENIMAGEDENOISE_ROOT_DIR})
ENDIF()
SET(_openimagedenoise_SEARCH_DIRS
${OPENIMAGEDENOISE_ROOT_DIR}
/usr/local
/sw # Fink
/opt/local # DarwinPorts
/opt/lib/openimagedenoise
)
FIND_PATH(OPENIMAGEDENOISE_INCLUDE_DIR
NAMES
OpenImageDenoise/oidn.h
HINTS
${_openimagedenoise_SEARCH_DIRS}
PATH_SUFFIXES
include
)
SET(_openimagedenoise_FIND_COMPONENTS
OpenImageDenoise
)
# These are needed when building statically
SET(_openimagedenoise_FIND_STATIC_COMPONENTS
common
mkldnn
)
SET(_openimagedenoise_LIBRARIES)
FOREACH(COMPONENT ${_openimagedenoise_FIND_COMPONENTS})
STRING(TOUPPER ${COMPONENT} UPPERCOMPONENT)
FIND_LIBRARY(OPENIMAGEDENOISE_${UPPERCOMPONENT}_LIBRARY
NAMES
${COMPONENT}
HINTS
${_openimagedenoise_SEARCH_DIRS}
PATH_SUFFIXES
lib64 lib
)
LIST(APPEND _openimagedenoise_LIBRARIES "${OPENIMAGEDENOISE_${UPPERCOMPONENT}_LIBRARY}")
ENDFOREACH()
FOREACH(COMPONENT ${_openimagedenoise_FIND_STATIC_COMPONENTS})
STRING(TOUPPER ${COMPONENT} UPPERCOMPONENT)
FIND_LIBRARY(OPENIMAGEDENOISE_${UPPERCOMPONENT}_LIBRARY
NAMES
${COMPONENT}
HINTS
${_openimagedenoise_SEARCH_DIRS}
PATH_SUFFIXES
lib64 lib
)
MARK_AS_ADVANCED(OPENIMAGEDENOISE_${UPPERCOMPONENT}_LIBRARY)
IF(OPENIMAGEDENOISE_${UPPERCOMPONENT}_LIBRARY)
LIST(APPEND _openimagedenoise_LIBRARIES "${OPENIMAGEDENOISE_${UPPERCOMPONENT}_LIBRARY}")
ENDIF()
ENDFOREACH()
FIND_LIBRARY(OPENIMAGEDENOISE_LIBRARY
NAMES
OpenImageDenoise
HINTS
${_openimagedenoise_SEARCH_DIRS}
PATH_SUFFIXES
lib64 lib
)
# handle the QUIETLY and REQUIRED arguments and set OPENIMAGEDENOISE_FOUND to TRUE if
# all listed variables are TRUE
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(OPENIMAGEDENOISE DEFAULT_MSG
OPENIMAGEDENOISE_LIBRARY OPENIMAGEDENOISE_INCLUDE_DIR)
IF(OPENIMAGEDENOISE_FOUND)
SET(OPENIMAGEDENOISE_LIBRARIES ${_openimagedenoise_LIBRARIES})
SET(OPENIMAGEDENOISE_INCLUDE_DIRS ${OPENIMAGEDENOISE_INCLUDE_DIR})
ELSE()
SET(OPENIMAGEDENOISE_FOUND FALSE)
ENDIF()
MARK_AS_ADVANCED(
OPENIMAGEDENOISE_INCLUDE_DIR
)
FOREACH(COMPONENT ${_openimagedenoise_FIND_COMPONENTS})
STRING(TOUPPER ${COMPONENT} UPPERCOMPONENT)
MARK_AS_ADVANCED(OPENIMAGEDENOISE_${UPPERCOMPONENT}_LIBRARY)
ENDFOREACH()
UNSET(_openimagedenoise_SEARCH_DIRS)
UNSET(_openimagedenoise_FIND_COMPONENTS)
UNSET(_openimagedenoise_LIBRARIES)

View File

@@ -1,68 +0,0 @@
# - Find OpenXR-SDK library
# Find the native OpenXR-SDK includes and library
# This module defines
# OPENXR_SDK_INCLUDE_DIRS, where to find OpenXR-SDK headers, Set when
# OPENXR_SDK_INCLUDE_DIR is found.
# OPENXR_SDK_LIBRARIES, libraries to link against to use OpenXR-SDK.
# OPENXR_SDK_ROOT_DIR, the base directory to search for OpenXR-SDK.
# This can also be an environment variable.
# OPENXR_SDK_FOUND, if false, do not try to use OpenXR-SDK.
#
# also defined, but not for general use are
# OPENXR_LOADER_LIBRARY, where to find the OpenXR-SDK library.
#=============================================================================
# Distributed under the OSI-approved BSD License (the "License");
# see accompanying file Copyright.txt for details.
#
# This software is distributed WITHOUT ANY WARRANTY; without even the
# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the License for more information.
#=============================================================================
# If OPENXR_SDK_ROOT_DIR was defined in the environment, use it.
IF(NOT OPENXR_SDK_ROOT_DIR AND NOT $ENV{OPENXR_SDK_ROOT_DIR} STREQUAL "")
SET(OPENXR_SDK_ROOT_DIR $ENV{OPENXR_SDK_ROOT_DIR})
ENDIF()
SET(_openxr_sdk_SEARCH_DIRS
${OPENXR_SDK_ROOT_DIR}
/usr/local
/sw # Fink
/opt/local # DarwinPorts
/opt/lib/openxr-sdk
)
FIND_PATH(OPENXR_SDK_INCLUDE_DIR
NAMES
openxr/openxr.h
HINTS
${_openxr_sdk_SEARCH_DIRS}
PATH_SUFFIXES
include
)
FIND_LIBRARY(OPENXR_LOADER_LIBRARY
NAMES
openxr_loader
HINTS
${_openxr_sdk_SEARCH_DIRS}
PATH_SUFFIXES
lib64 lib
)
# handle the QUIETLY and REQUIRED arguments and set OPENXR_SDK_FOUND to TRUE if
# all listed variables are TRUE
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(OPENXR_SDK DEFAULT_MSG
OPENXR_LOADER_LIBRARY OPENXR_SDK_INCLUDE_DIR)
IF(OPENXR_SDK_FOUND)
SET(OPENXR_SDK_LIBRARIES ${OPENXR_LOADER_LIBRARY})
SET(OPENXR_SDK_INCLUDE_DIRS ${OPENXR_SDK_INCLUDE_DIR})
ENDIF(OPENXR_SDK_FOUND)
MARK_AS_ADVANCED(
OPENXR_SDK_INCLUDE_DIR
OPENXR_LOADER_LIBRARY
)

View File

@@ -50,10 +50,6 @@ macro(BLENDER_SRC_GTEST_EX NAME SRC EXTRA_LIBS DO_ADD_TEST)
INCLUDE_DIRECTORIES "${TEST_INC}")
if(${DO_ADD_TEST})
add_test(NAME ${NAME}_test COMMAND ${TESTS_OUTPUT_DIR}/${NAME}_test WORKING_DIRECTORY $<TARGET_FILE_DIR:blender>)
# Don't fail tests on leaks since these often happen in external libraries
# that we can't fix.
set_tests_properties(${NAME}_test PROPERTIES ENVIRONMENT LSAN_OPTIONS=exitcode=0)
endif()
endif()
endmacro()

View File

@@ -1,115 +0,0 @@
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copied right from the OpenXR-SDK (src/cmake/presentation.cmake).
# Don't forget to add the license header above.
set(PRESENTATION_BACKENDS xlib xcb wayland)
set(PRESENTATION_BACKEND xlib CACHE STRING
"Presentation backend chosen at configure time")
set_property(CACHE PRESENTATION_BACKEND PROPERTY STRINGS
${PRESENTATION_BACKENDS})
list(FIND PRESENTATION_BACKENDS ${PRESENTATION_BACKEND} index)
if(index EQUAL -1)
message(FATAL_ERROR "Presentation backend must be one of
${PRESENTATION_BACKENDS}")
endif()
message(STATUS "Using presentation backend: ${PRESENTATION_BACKEND}")
if( PRESENTATION_BACKEND MATCHES "xlib" )
find_package(X11 REQUIRED)
if ((NOT X11_Xxf86vm_LIB) OR (NOT X11_Xrandr_LIB))
message(FATAL_ERROR "OpenXR xlib backend requires Xxf86vm and Xrandr")
endif()
add_definitions( -DSUPPORT_X )
add_definitions( -DOS_LINUX_XLIB )
set( XLIB_LIBRARIES
${X11_LIBRARIES}
${X11_Xxf86vm_LIB}
${X11_Xrandr_LIB} )
elseif( PRESENTATION_BACKEND MATCHES "xcb" )
find_package(PkgConfig REQUIRED)
# XCB + XCB GLX is limited to OpenGL 2.1
# add_definitions( -DOS_LINUX_XCB )
# XCB + Xlib GLX 1.3
add_definitions( -DOS_LINUX_XCB_GLX )
pkg_search_module(X11 REQUIRED x11)
pkg_search_module(XCB REQUIRED xcb)
pkg_search_module(XCB_RANDR REQUIRED xcb-randr)
pkg_search_module(XCB_KEYSYMS REQUIRED xcb-keysyms)
pkg_search_module(XCB_GLX REQUIRED xcb-glx)
pkg_search_module(XCB_DRI2 REQUIRED xcb-dri2)
pkg_search_module(XCB_ICCCM REQUIRED xcb-icccm)
set( XCB_LIBRARIES
${XCB_LIBRARIES}
${XCB_KEYSYMS_LIBRARIES}
${XCB_RANDR_LIBRARIES}
${XCB_GLX_LIBRARIES}
${XCB_DRI2_LIBRARIES}
${X11_LIBRARIES} )
elseif( PRESENTATION_BACKEND MATCHES "wayland" )
find_package(PkgConfig REQUIRED)
pkg_search_module(WAYLAND_CLIENT REQUIRED wayland-client)
pkg_search_module(WAYLAND_EGL REQUIRED wayland-egl)
pkg_search_module(WAYLAND_SCANNER REQUIRED wayland-scanner)
pkg_search_module(WAYLAND_PROTOCOLS REQUIRED wayland-protocols>=1.7)
pkg_search_module(EGL REQUIRED egl)
add_definitions( -DOS_LINUX_WAYLAND )
set( WAYLAND_LIBRARIES
${EGL_LIBRARIES}
${WAYLAND_CLIENT_LIBRARIES}
${WAYLAND_EGL_LIBRARIES} )
# generate wayland protocols
set(WAYLAND_PROTOCOLS_DIR ${CMAKE_SOURCE_DIR}/wayland-protocols/)
file(MAKE_DIRECTORY ${WAYLAND_PROTOCOLS_DIR})
pkg_get_variable(WAYLAND_PROTOCOLS_DATADIR wayland-protocols pkgdatadir)
pkg_get_variable(WAYLAND_SCANNER wayland-scanner wayland_scanner)
set(PROTOCOL xdg-shell-unstable-v6)
set(PROTOCOL_XML
${WAYLAND_PROTOCOLS_DATADIR}/unstable/xdg-shell/${PROTOCOL}.xml)
if( EXISTS ${PROTOCOL_XML} )
execute_process(COMMAND
${WAYLAND_SCANNER}
code
${PROTOCOL_XML}
${WAYLAND_PROTOCOLS_DIR}/${PROTOCOL}.c)
execute_process(COMMAND
${WAYLAND_SCANNER}
client-header
${PROTOCOL_XML}
${WAYLAND_PROTOCOLS_DIR}/${PROTOCOL}.h)
set( WAYLAND_PROTOCOL_SRC
${WAYLAND_PROTOCOLS_DIR}/${PROTOCOL}.c
${WAYLAND_PROTOCOLS_DIR}/${PROTOCOL}.h )
include_directories(${WAYLAND_PROTOCOLS_DIR})
else()
message(FATAL_ERROR
"xdg-shell-unstable-v6.xml not found in "
${WAYLAND_PROTOCOLS_DATADIR}
"\nYour wayland-protocols package does not "
"contain xdg-shell-unstable-v6.")
endif()
endif()

View File

@@ -1,50 +0,0 @@
# Copyright (c) 2017 The Khronos Group Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# These defines are required as per the OpenXR specification. We can
# just take them from the OpenXR-SDK's src/CMakeLists.txt. Not all of
# them are needed (e.g. XCB and Wayland), but we just copy them anyway.
if(WIN32)
add_definitions(-DXR_OS_WINDOWS)
elseif(CMAKE_SYSTEM_NAME STREQUAL "Linux")
add_definitions(-DXR_OS_LINUX)
endif()
# Determine the presentation backend for Linux systems.
# Use an include because the code is pretty big.
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
include(presentation)
endif()
# Several files use these compile-time platform switches
if(CMAKE_SYSTEM_NAME STREQUAL "Windows")
add_definitions( -DXR_USE_PLATFORM_WIN32 )
elseif( PRESENTATION_BACKEND MATCHES "xlib" )
add_definitions( -DXR_USE_PLATFORM_XLIB )
elseif( PRESENTATION_BACKEND MATCHES "xcb" )
add_definitions( -DXR_USE_PLATFORM_XCB )
elseif( PRESENTATION_BACKEND MATCHES "wayland" )
add_definitions( -DXR_USE_PLATFORM_WAYLAND )
endif()
add_definitions(-DXR_USE_GRAPHICS_API_OPENGL)
if(CMAKE_SYSTEM_NAME STREQUAL "Windows")
add_definitions(-DXR_USE_GRAPHICS_API_D3D)
add_definitions(-DXR_USE_GRAPHICS_API_D3D10)
add_definitions(-DXR_USE_GRAPHICS_API_D3D11)
add_definitions(-DXR_USE_GRAPHICS_API_D3D12)
endif()

View File

@@ -130,7 +130,7 @@ def function_parm_wash_tokens(parm):
)
"""
Return tokens without trailing commands and 'const'
Return tolens without trailing commands and 'const'
"""
tokens = [t for t in parm.get_tokens()]

View File

@@ -238,7 +238,7 @@ def create_nb_project_main():
f.write(' </makeTool>\n')
f.write(' </makefileType>\n')
# finished makefile info
# finishe makefle info
f.write(' \n')

View File

@@ -1,19 +0,0 @@
# Configuration for developers, with faster builds, error checking and tests.
#
# Example usage:
# cmake -C../blender/build_files/cmake/config/blender_developer.cmake ../blender
#
set(WITH_ASSERT_ABORT ON CACHE BOOL "" FORCE)
set(WITH_BUILDINFO OFF CACHE BOOL "" FORCE)
set(WITH_COMPILER_ASAN ON CACHE BOOL "" FORCE)
set(WITH_CYCLES_DEBUG ON CACHE BOOL "" FORCE)
set(WITH_CYCLES_NATIVE_ONLY ON CACHE BOOL "" FORCE)
set(WITH_GTESTS ON CACHE BOOL "" FORCE)
set(WITH_LIBMV_SCHUR_SPECIALIZATIONS OFF CACHE BOOL "" FORCE)
set(WITH_PYTHON_SAFETY ON CACHE BOOL "" FORCE)
set(WITH_DOC_MANPAGE OFF CACHE BOOL "" FORCE)
# This may have issues with C++ initialization order, needs to be tested
# on all platforms to be sure this is safe to enable.
# set(WITH_CXX_GUARDEDALLOC ON CACHE BOOL "" FORCE)

View File

@@ -40,8 +40,6 @@ set(WITH_AUDASPACE ON CACHE BOOL "" FORCE)
set(WITH_OPENAL ON CACHE BOOL "" FORCE)
set(WITH_OPENCOLLADA ON CACHE BOOL "" FORCE)
set(WITH_OPENCOLORIO ON CACHE BOOL "" FORCE)
set(WITH_OPENIMAGEDENOISE ON CACHE BOOL "" FORCE)
set(WITH_OPENXR ON CACHE BOOL "" FORCE)
set(WITH_OPENMP ON CACHE BOOL "" FORCE)
set(WITH_OPENSUBDIV ON CACHE BOOL "" FORCE)
set(WITH_OPENVDB ON CACHE BOOL "" FORCE)

View File

@@ -45,8 +45,6 @@ set(WITH_AUDASPACE OFF CACHE BOOL "" FORCE)
set(WITH_OPENAL OFF CACHE BOOL "" FORCE)
set(WITH_OPENCOLLADA OFF CACHE BOOL "" FORCE)
set(WITH_OPENCOLORIO OFF CACHE BOOL "" FORCE)
set(WITH_OPENIMAGEDENOISE OFF CACHE BOOL "" FORCE)
set(WITH_OPENXR OFF CACHE BOOL "" FORCE)
set(WITH_OPENIMAGEIO OFF CACHE BOOL "" FORCE)
set(WITH_OPENMP OFF CACHE BOOL "" FORCE)
set(WITH_OPENSUBDIV OFF CACHE BOOL "" FORCE)

View File

@@ -41,8 +41,6 @@ set(WITH_AUDASPACE ON CACHE BOOL "" FORCE)
set(WITH_OPENAL ON CACHE BOOL "" FORCE)
set(WITH_OPENCOLLADA ON CACHE BOOL "" FORCE)
set(WITH_OPENCOLORIO ON CACHE BOOL "" FORCE)
set(WITH_OPENIMAGEDENOISE ON CACHE BOOL "" FORCE)
set(WITH_OPENXR ON CACHE BOOL "" FORCE)
set(WITH_OPENMP ON CACHE BOOL "" FORCE)
set(WITH_OPENSUBDIV ON CACHE BOOL "" FORCE)
set(WITH_OPENVDB ON CACHE BOOL "" FORCE)

View File

@@ -352,9 +352,6 @@ function(SETUP_LIBDIRS)
if(WITH_OPENIMAGEIO)
link_directories(${OPENIMAGEIO_LIBPATH})
endif()
if(WITH_OPENIMAGEDENOISE)
link_directories(${OPENIMAGEDENOISE_LIBPATH})
endif()
if(WITH_OPENCOLORIO)
link_directories(${OPENCOLORIO_LIBPATH})
endif()
@@ -465,18 +462,12 @@ function(setup_liblinks
if(WITH_OPENIMAGEIO)
target_link_libraries(${target} ${OPENIMAGEIO_LIBRARIES})
endif()
if(WITH_OPENIMAGEDENOISE)
target_link_libraries(${target} ${OPENIMAGEDENOISE_LIBRARIES} ${TBB_LIBRARIES})
endif()
if(WITH_OPENCOLORIO)
target_link_libraries(${target} ${OPENCOLORIO_LIBRARIES})
endif()
if(WITH_OPENSUBDIV)
target_link_libraries(${target} ${OPENSUBDIV_LIBRARIES})
endif()
if(WITH_OPENXR)
target_link_libraries(${target} ${OPENXR_SDK_LIBRARIES})
endif()
if(WITH_CYCLES_EMBREE)
target_link_libraries(${target} ${EMBREE_LIBRARIES})
endif()

View File

@@ -80,28 +80,22 @@ if(APPLE)
endif()
if(WIN32)
set(CPACK_PACKAGE_INSTALL_DIRECTORY "Blender Foundation/Blender ${MAJOR_VERSION}.${MINOR_VERSION}")
set(CPACK_PACKAGE_INSTALL_REGISTRY_KEY "Blender Foundation/Blender ${MAJOR_VERSION}.${MINOR_VERSION}")
set(CPACK_PACKAGE_INSTALL_DIRECTORY "Blender Foundation/Blender")
set(CPACK_PACKAGE_INSTALL_REGISTRY_KEY "Blender Foundation/Blender")
set(CPACK_NSIS_MUI_ICON ${CMAKE_SOURCE_DIR}/release/windows/icons/winblender.ico)
set(CPACK_NSIS_COMPRESSOR "/SOLID lzma")
set(CPACK_RESOURCE_FILE_LICENSE ${CMAKE_SOURCE_DIR}/release/text/GPL3-license.txt)
set(CPACK_WIX_PRODUCT_ICON ${CMAKE_SOURCE_DIR}/release/windows/icons/winblender.ico)
set(BLENDER_NAMESPACE_GUID "507F933F-5898-404A-9A05-18282FD491A6")
string(UUID CPACK_WIX_UPGRADE_GUID
NAMESPACE ${BLENDER_NAMESPACE_GUID}
NAME ${CPACK_PACKAGE_INSTALL_DIRECTORY}
TYPE SHA1 UPPER
)
set(CPACK_WIX_UPGRADE_GUID "B767E4FD-7DE7-4094-B051-3AE62E13A17A")
set(CPACK_WIX_TEMPLATE ${LIBDIR}/package/installer_wix/WIX.template)
set(CPACK_WIX_UI_BANNER ${LIBDIR}/package/installer_wix/WIX_UI_BANNER.bmp)
set(CPACK_WIX_UI_DIALOG ${LIBDIR}/package/installer_wix/WIX_UI_DIALOG.bmp)
set(CPACK_WIX_LIGHT_EXTRA_FLAGS -dcl:medium)
#force lzma instead of deflate
set(CPACK_WIX_LIGHT_EXTRA_FLAGS -dcl:high)
endif()
set(CPACK_PACKAGE_EXECUTABLES "blender" "blender")

View File

@@ -382,19 +382,6 @@ if(WITH_CYCLES_EMBREE)
set(PLATFORM_LINKFLAGS "${PLATFORM_LINKFLAGS} -Xlinker -stack_size -Xlinker 0x100000")
endif()
if(WITH_OPENIMAGEDENOISE)
find_package(OpenImageDenoise)
find_package(TBB)
if(NOT OPENIMAGEDENOISE_FOUND)
set(WITH_OPENIMAGEDENOISE OFF)
message(STATUS "OpenImageDenoise not found")
elseif(NOT TBB_FOUND)
set(WITH_OPENIMAGEDENOISE OFF)
message(STATUS "TBB not found")
endif()
endif()
# CMake FindOpenMP doesn't know about AppleClang before 3.12, so provide custom flags.
if(WITH_OPENMP)
if(CMAKE_C_COMPILER_ID MATCHES "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL "7.0")
@@ -416,14 +403,6 @@ if(WITH_OPENMP)
endif()
endif()
if(WITH_OPENXR)
find_package(OpenXR-SDK)
if(NOT OPENXR_SDK_FOUND)
message(WARNING "OpenXR-SDK was not found, disabling WITH_OPENXR")
set(WITH_OPENXR OFF)
endif()
endif()
set(EXETYPE MACOSX_BUNDLE)
set(CMAKE_C_FLAGS_DEBUG "-fno-strict-aliasing -g")

View File

@@ -368,15 +368,6 @@ if(WITH_CYCLES_EMBREE)
find_package(Embree 3.2.4 REQUIRED)
endif()
if(WITH_OPENIMAGEDENOISE)
find_package_wrapper(OpenImageDenoise)
if(NOT OPENIMAGEDENOISE_FOUND)
set(WITH_OPENIMAGEDENOISE OFF)
message(STATUS "OpenImageDenoise not found")
endif()
endif()
if(WITH_LLVM)
if(EXISTS ${LIBDIR})
set(LLVM_STATIC ON)
@@ -416,15 +407,6 @@ if(WITH_OPENSUBDIV)
endif()
endif()
if(WITH_OPENXR)
find_package(OpenXR-SDK)
if(NOT OPENXR_SDK_FOUND)
message(WARNING "OpenXR-SDK was not found, disabling WITH_OPENXR")
set(WITH_OPENXR OFF)
endif()
endif()
# OpenSuse needs lutil, ArchLinux not, for now keep, can avoid by using --as-needed
if(HAIKU)
list(APPEND PLATFORM_LINKLIBS -lnetwork)

View File

@@ -131,12 +131,12 @@ if(MSVC_CLANG) # Clangs version of cl doesn't support all flags
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${CXX_WARN_FLAGS} /nologo /J /Gd /EHsc -Wno-unused-command-line-argument -Wno-microsoft-enum-forward-reference ")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /nologo /J /Gd -Wno-unused-command-line-argument -Wno-microsoft-enum-forward-reference")
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /nologo /J /Gd /MP /EHsc /bigobj")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /nologo /J /Gd /MP /bigobj")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /nologo /J /Gd /MP /EHsc")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /nologo /J /Gd /MP")
endif()
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /MTd /ZI")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /MTd /ZI")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /MTd")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /MTd")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /MT")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /MT")
set(CMAKE_CXX_FLAGS_MINSIZEREL "${CMAKE_CXX_FLAGS_MINSIZEREL} /MT")
@@ -144,11 +144,6 @@ set(CMAKE_C_FLAGS_MINSIZEREL "${CMAKE_C_FLAGS_MINSIZEREL} /MT")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} /MT")
set(CMAKE_C_FLAGS_RELWITHDEBINFO "${CMAKE_C_FLAGS_RELWITHDEBINFO} /MT")
#JMC is available on msvc 15.8 (1915) and up
if(MSVC_VERSION GREATER 1914 AND NOT MSVC_CLANG)
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /JMC")
endif()
set(PLATFORM_LINKFLAGS "${PLATFORM_LINKFLAGS} /SUBSYSTEM:CONSOLE /STACK:2097152 /INCREMENTAL:NO ")
set(PLATFORM_LINKFLAGS "${PLATFORM_LINKFLAGS} /NODEFAULTLIB:msvcrt.lib /NODEFAULTLIB:msvcmrt.lib /NODEFAULTLIB:msvcurt.lib /NODEFAULTLIB:msvcrtd.lib ")
@@ -171,7 +166,8 @@ if(NOT DEFINED LIBDIR)
message(STATUS "64 bit compiler detected.")
set(LIBDIR_BASE "win64")
else()
message(FATAL_ERROR "32 bit compiler detected, blender no longer provides pre-build libraries for 32 bit windows, please set the LIBDIR cmake variable to your own library folder")
message(STATUS "32 bit compiler detected.")
set(LIBDIR_BASE "windows")
endif()
# Can be 1910..1912
if(MSVC_VERSION GREATER 1919)
@@ -347,13 +343,15 @@ if(WITH_PYTHON)
set(PYTHON_VERSION 3.7) # CACHE STRING)
string(REPLACE "." "" _PYTHON_VERSION_NO_DOTS ${PYTHON_VERSION})
set(PYTHON_LIBRARY ${LIBDIR}/python/${_PYTHON_VERSION_NO_DOTS}/libs/python${_PYTHON_VERSION_NO_DOTS}.lib)
set(PYTHON_LIBRARY_DEBUG ${LIBDIR}/python/${_PYTHON_VERSION_NO_DOTS}/libs/python${_PYTHON_VERSION_NO_DOTS}_d.lib)
# Use shared libs for vc2008 and vc2010 until we actually have vc2010 libs
set(PYTHON_LIBRARY ${LIBDIR}/python/lib/python${_PYTHON_VERSION_NO_DOTS}.lib)
set(PYTHON_LIBRARY_DEBUG ${LIBDIR}/python/lib/python${_PYTHON_VERSION_NO_DOTS}_d.lib)
set(PYTHON_INCLUDE_DIR ${LIBDIR}/python/${_PYTHON_VERSION_NO_DOTS}/include)
set(PYTHON_NUMPY_INCLUDE_DIRS ${LIBDIR}/python/${_PYTHON_VERSION_NO_DOTS}/lib/site-packages/numpy/core/include)
set(NUMPY_FOUND On)
unset(_PYTHON_VERSION_NO_DOTS)
# Shared includes for both vc2008 and vc2010
set(PYTHON_INCLUDE_DIR ${LIBDIR}/python/include/python${PYTHON_VERSION})
# uncached vars
set(PYTHON_INCLUDE_DIRS "${PYTHON_INCLUDE_DIR}")
set(PYTHON_LIBRARIES debug "${PYTHON_LIBRARY_DEBUG}" optimized "${PYTHON_LIBRARY}" )
@@ -383,6 +381,9 @@ if(WITH_BOOST)
if(CMAKE_CL_64)
set(BOOST_POSTFIX "vc140-mt-s-x64-1_68.lib")
set(BOOST_DEBUG_POSTFIX "vc140-mt-sgd-x64-1_68.lib")
else()
set(BOOST_POSTFIX "vc140-mt-s-x32-1_68.lib")
set(BOOST_DEBUG_POSTFIX "vc140-mt-sgd-x32-1_68.lib")
endif()
set(BOOST_LIBRARIES
optimized ${BOOST_LIBPATH}/libboost_date_time-${BOOST_POSTFIX}
@@ -418,7 +419,7 @@ endif()
if(WITH_OPENIMAGEIO)
windows_find_package(OpenImageIO)
set(OPENIMAGEIO ${LIBDIR}/OpenImageIO)
set(OPENIMAGEIO ${LIBDIR}/openimageio)
set(OPENIMAGEIO_LIBPATH ${OPENIMAGEIO}/lib)
set(OPENIMAGEIO_INCLUDE_DIRS ${OPENIMAGEIO}/include)
set(OIIO_OPTIMIZED optimized ${OPENIMAGEIO_LIBPATH}/OpenImageIO.lib optimized ${OPENIMAGEIO_LIBPATH}/OpenImageIO_Util.lib)
@@ -459,14 +460,14 @@ if(WITH_LLVM)
endif()
if(WITH_OPENCOLORIO)
set(OPENCOLORIO ${LIBDIR}/OpenColorIO)
set(OPENCOLORIO ${LIBDIR}/opencolorio)
set(OPENCOLORIO_INCLUDE_DIRS ${OPENCOLORIO}/include)
set(OPENCOLORIO_LIBPATH ${OPENCOLORIO}/lib)
set(OPENCOLORIO_LIBPATH ${LIBDIR}/opencolorio/lib)
set(OPENCOLORIO_LIBRARIES
optimized ${OPENCOLORIO_LIBPATH}/OpenColorIO.lib
optimized ${OPENCOLORIO_LIBPATH}/tinyxml.lib
optimized ${OPENCOLORIO_LIBPATH}/libyaml-cpp.lib
debug ${OPENCOLORIO_LIBPATH}/OpencolorIO_d.lib
debug ${OPENCOLORIO_LIBPATH}/OpenColorIO_d.lib
debug ${OPENCOLORIO_LIBPATH}/tinyxml_d.lib
debug ${OPENCOLORIO_LIBPATH}/libyaml-cpp_d.lib
)
@@ -477,32 +478,19 @@ if(WITH_OPENVDB)
set(BLOSC_LIBRARIES optimized ${LIBDIR}/blosc/lib/libblosc.lib debug ${LIBDIR}/blosc/lib/libblosc_d.lib)
set(TBB_LIBRARIES optimized ${LIBDIR}/tbb/lib/tbb.lib debug ${LIBDIR}/tbb/lib/tbb_debug.lib)
set(TBB_INCLUDE_DIR ${LIBDIR}/tbb/include)
set(OPENVDB ${LIBDIR}/openVDB)
set(OPENVDB_LIBPATH ${OPENVDB}/lib)
set(OPENVDB ${LIBDIR}/openvdb)
set(OPENVDB_LIBPATH ${LIBDIR}/openvdb/lib)
set(OPENVDB_INCLUDE_DIRS ${OPENVDB}/include ${TBB_INCLUDE_DIR})
set(OPENVDB_LIBRARIES optimized ${OPENVDB_LIBPATH}/openvdb.lib debug ${OPENVDB_LIBPATH}/openvdb_d.lib ${TBB_LIBRARIES} ${BLOSC_LIBRARIES})
set(OPENVDB_DEFINITIONS -DNOMINMAX)
endif()
if(WITH_OPENIMAGEDENOISE)
set(TBB_LIBRARIES optimized ${LIBDIR}/tbb/lib/tbb.lib debug ${LIBDIR}/tbb/lib/tbb_debug.lib)
set(TBB_INCLUDE_DIR ${LIBDIR}/tbb/include)
set(OPENIMAGEDENOISE ${LIBDIR}/OpenImageDenoise)
set(OPENIMAGEDENOISE_LIBPATH ${LIBDIR}/OpenImageDenoise/lib)
set(OPENIMAGEDENOISE_INCLUDE_DIRS ${OPENIMAGEDENOISE}/include ${TBB_INCLUDE_DIR})
set(OPENIMAGEDENOISE_LIBRARIES
optimized ${OPENIMAGEDENOISE_LIBPATH}/OpenImageDenoise.lib ${OPENIMAGEDENOISE_LIBPATH}/common.lib ${OPENIMAGEDENOISE_LIBPATH}/mkldnn.lib
debug ${OPENIMAGEDENOISE_LIBPATH}/OpenImageDenoise_d.lib ${OPENIMAGEDENOISE_LIBPATH}/common_d.lib ${OPENIMAGEDENOISE_LIBPATH}/mkldnn_d.lib
${TBB_LIBRARIES})
set(OPENIMAGEDENOISE_DEFINITIONS)
endif()
if(WITH_ALEMBIC)
set(ALEMBIC ${LIBDIR}/alembic)
set(ALEMBIC_INCLUDE_DIR ${ALEMBIC}/include)
set(ALEMBIC_INCLUDE_DIRS ${ALEMBIC_INCLUDE_DIR})
set(ALEMBIC_LIBPATH ${ALEMBIC}/lib)
set(ALEMBIC_LIBRARIES optimized ${ALEMBIC}/lib/Alembic.lib debug ${ALEMBIC}/lib/Alembic_d.lib)
set(ALEMBIC_LIBRARIES optimized ${ALEMBIC}/lib/alembic.lib debug ${ALEMBIC}/lib/alembic_d.lib)
set(ALEMBIC_FOUND 1)
endif()
@@ -691,15 +679,3 @@ if(WINDOWS_PYTHON_DEBUG)
</Project>")
endif()
endif()
if(WITH_OPENXR)
if(EXISTS ${LIBDIR}/openxr_sdk)
set(OPENXR_SDK ${LIBDIR}/openxr_sdk)
set(OPENXR_SDK_LIBPATH ${LIBDIR}/openxr_sdk/lib)
set(OPENXR_SDK_INCLUDE_DIR ${OPENXR_SDK}/include)
set(OPENXR_SDK_LIBRARIES optimized ${OPENXR_SDK_LIBPATH}/openxr_loader-1_0.lib debug ${OPENXR_SDK_LIBPATH}/openxr_loader-1_0_d.lib)
else()
message(WARNING "OpenXR-SDK was not found, disabling WITH_OPENXR")
set(WITH_OPENXR OFF)
endif()
endif()

View File

@@ -1,7 +1,7 @@
#!/bin/sh
# Builds a debian package from SVN source.
#
# For parallel builds use:
# For paralelle builds use:
# DEB_BUILD_OPTIONS="parallel=5" sh build_files/package_spec/build_debian.sh
# this needs to run in the root dir.

View File

@@ -2,7 +2,11 @@ if "%BUILD_VS_YEAR%"=="2015" set BUILD_VS_LIBDIRPOST=vc14
if "%BUILD_VS_YEAR%"=="2017" set BUILD_VS_LIBDIRPOST=vc14
if "%BUILD_VS_YEAR%"=="2019" set BUILD_VS_LIBDIRPOST=vc14
set BUILD_VS_SVNDIR=win64_%BUILD_VS_LIBDIRPOST%
if "%BUILD_ARCH%"=="x64" (
set BUILD_VS_SVNDIR=win64_%BUILD_VS_LIBDIRPOST%
) else if "%BUILD_ARCH%"=="x86" (
set BUILD_VS_SVNDIR=windows_%BUILD_VS_LIBDIRPOST%
)
set BUILD_VS_LIBDIR="%BLENDER_DIR%..\lib\%BUILD_VS_SVNDIR%"
if NOT "%verbose%" == "" (

View File

@@ -1,6 +1,14 @@
set BUILD_GENERATOR_POST=
set BUILD_PLATFORM_SELECT=
set MSBUILD_PLATFORM=x64
if "%BUILD_ARCH%"=="x64" (
set MSBUILD_PLATFORM=x64
) else if "%BUILD_ARCH%"=="x86" (
set MSBUILD_PLATFORM=win32
if "%WITH_CLANG%"=="1" (
echo Clang not supported for X86
exit /b 1
)
)
if "%WITH_CLANG%"=="1" (
set CLANG_CMAKE_ARGS=-T"llvm"

View File

@@ -6,13 +6,11 @@ if "%BUILD_ARCH%"=="" (
set WINDOWS_ARCH= Win64
set BUILD_ARCH=x64
) else (
echo Error: 32 bit builds of blender are no longer supported.
goto ERR
set WINDOWS_ARCH=
set BUILD_ARCH=x86
)
) else if "%BUILD_ARCH%"=="x64" (
set WINDOWS_ARCH= Win64
) else if "%BUILD_ARCH%"=="x86" (
set WINDOWS_ARCH=
)
:EOF
exit /b 0
:ERR
exit /b 1

View File

@@ -2,6 +2,10 @@ if EXIST %BLENDER_DIR%\..\lib\win64_vc14\llvm\bin\clang-format.exe (
set CF_PATH=..\lib\win64_vc14\llvm\bin
goto detect_done
)
if EXIST %BLENDER_DIR%\..\lib\windows_vc14\llvm\bin\clang-format.exe (
set CF_PATH=..\lib\windows_vc14\llvm\bin
goto detect_done
)
echo clang-format not found
exit /b 1
@@ -9,17 +13,8 @@ exit /b 1
:detect_done
echo found clang-format in %CF_PATH%
if EXIST %BLENDER_DIR%\..\lib\win64_vc14\python\37\bin\python.exe (
set PYTHON=%BLENDER_DIR%\..\lib\win64_vc14\python\37\bin\python.exe
goto detect_python_done
)
echo python not found in lib folder
exit /b 1
:detect_python_done
echo found python (%PYTHON%)
REM TODO(sergey): Switch to Python from libraries when available.
set PYTHON="python.exe"
set FORMAT_PATHS=%BLENDER_DIR%\source\tools\utils_maintenance\clang_format_paths.py
REM The formatting script expects clang-format to be in the current PATH.

View File

@@ -41,13 +41,10 @@ if NOT "%1" == "" (
) else if "%1" == "release" (
set BUILD_CMAKE_ARGS=%BUILD_CMAKE_ARGS% -C"%BLENDER_DIR%\build_files\cmake\config\blender_release.cmake"
set TARGET=Release
) else if "%1" == "developer" (
set BUILD_CMAKE_ARGS=%BUILD_CMAKE_ARGS% -C"%BLENDER_DIR%\build_files\cmake\config\blender_developer.cmake"
) else if "%1" == "asan" (
set WITH_ASAN=1
) else if "%1" == "x86" (
echo Error: 32 bit builds of blender are no longer supported.
goto ERR
) else if "%1" == "x86" (
set BUILD_ARCH=x86
) else if "%1" == "x64" (
set BUILD_ARCH=x64
) else if "%1" == "2017" (
@@ -100,12 +97,10 @@ if NOT "%1" == "" (
goto EOF
) else (
echo Command "%1" unknown, aborting!
goto ERR
exit /b 1
)
shift /1
goto argv_loop
)
:EOF
exit /b 0
:ERR
exit /b 1
exit /b 0

View File

@@ -7,6 +7,7 @@ set BUILD_VS_YEAR=
set BUILD_VS_LIBDIRPOST=
set BUILD_VS_LIBDIR=
set BUILD_VS_SVNDIR=
set BUILD_NGE=
set KEY_NAME=
set MSBUILD_PLATFORM=
set MUST_CLEAN=

View File

@@ -1,9 +1,4 @@
if NOT "%TARGET%" == "" (
set BUILD_DIR=%BUILD_DIR%_%TARGET%_%BUILD_ARCH%_vc%BUILD_VS_VER%_%BUILD_TYPE%
) else (
set BUILD_DIR=%BUILD_DIR%_%BUILD_ARCH%_vc%BUILD_VS_VER%_%BUILD_TYPE%
)
set BUILD_DIR=%BUILD_DIR%_%TARGET%%BUILD_NGE%_%BUILD_ARCH%_vc%BUILD_VS_VER%_%BUILD_TYPE%
if NOT "%BUILD_DIR_OVERRRIDE%"=="" (
set BUILD_DIR=%BUILD_DIR_OVERRRIDE%
)

View File

@@ -17,12 +17,13 @@ echo - format [path] ^(Format the source using clang-format, path is optional, r
echo.
echo Configuration options
echo - verbose ^(enable diagnostic output during configuration^)
echo - developer ^(enable faster builds, error checking and tests, recommended for developers^)
echo - with_tests ^(enable building unit tests^)
echo - nobuildinfo ^(disable buildinfo^)
echo - debug ^(Build an unoptimized debuggable build^)
echo - packagename [newname] ^(override default cpack package name^)
echo - buildir [newdir] ^(override default build folder^)
echo - x86 ^(override host auto-detect and build 32 bit code^)
echo - x64 ^(override host auto-detect and build 64 bit code^)
echo - 2017 ^(build with visual studio 2017^)
echo - 2017pre ^(build with visual studio 2017 pre-release^)
echo - 2017b ^(build with visual studio 2017 Build Tools^)

View File

@@ -38,7 +38,7 @@ PROJECT_NAME = Blender
# could be handy for archiving the generated documentation or if some version
# control system is used.
PROJECT_NUMBER = "V2.81"
PROJECT_NUMBER = "V2.79"
# Using the PROJECT_BRIEF tag one can provide an optional one line description
# for a project that appears at the top of each page and should give viewer a

View File

@@ -177,7 +177,7 @@ font:
With the new truetype option in Blender, this is used for all font families
When a uiBlock is created, each uiButton that is defined gets the uiBlock properties.
Changing Block properties in between will effect uiButtons defined thereafter.
Changing Block properties in between will affact uiButtons defined thereafter.

View File

@@ -40,7 +40,7 @@ In most cases you can figure out what context an operator needs
simply be seeing how it's used in Blender and thinking about what it does.
Unfortunately if you're still stuck - the only way to **really** know
what's going on is to read the source code for the poll function and see what its checking.
whats going on is to read the source code for the poll function and see what its checking.
For Python operators it's not so hard to find the source
since it's included with Blender and the source file/line is included in the operator reference docs.
@@ -125,7 +125,7 @@ While a script executes Blender waits for it to finish and is effectively locked
while in this state Blender won't redraw or respond to user input.
Normally this is not such a problem because scripts distributed with Blender
tend not to run for an extended period of time,
nevertheless scripts *can* take ages to execute and its nice to see what's going on in the view port.
nevertheless scripts *can* take ages to execute and its nice to see whats going on in the view port.
Tools that lock Blender in a loop and redraw are highly discouraged
since they conflict with Blenders ability to run multiple operators

View File

@@ -317,9 +317,7 @@ To run the script:
#. Click the button labeled ``New`` and the confirmation pop up in order to create a new text block.
#. Press :kbd:`Ctrl-V` to paste the code into the text panel (the upper left frame).
#. Click on the button **Run Script**.
#. Move your cursor into the 3D Viewport,
open the :ref:`operator search menu <blender_manual:bpy.ops.wm.search_menu>`,
and type "Simple".
#. Move your cursor into the 3D view, press spacebar for the operator search menu, and type "Simple".
#. Click on the "Simple Operator" item found in search.

View File

@@ -239,7 +239,7 @@ Drop Into a Python Interpreter in Your Script
=============================================
In the middle of a script you may want to inspect some variables,
run some function and generally dig about to see what's going on.
run some function and generally dig about to see whats going on.
.. code-block:: python

View File

@@ -1,15 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLESKY_MODULE_H
#define EIGEN_CHOLESKY_MODULE_H
#include "Core"
#include "Jacobi"
#include "src/Core/util/DisableStupidWarnings.h"
@@ -18,26 +10,20 @@
*
*
* This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are also accessible via the following methods:
* - MatrixBase::llt()
* Those decompositions are accessible via the following MatrixBase methods:
* - MatrixBase::llt(),
* - MatrixBase::ldlt()
* - SelfAdjointView::llt()
* - SelfAdjointView::ldlt()
*
* \code
* #include <Eigen/Cholesky>
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/Cholesky/LLT.h"
#include "src/Cholesky/LDLT.h"
#ifdef EIGEN_USE_LAPACKE
#ifdef EIGEN_USE_MKL
#include "mkl_lapacke.h"
#else
#include "src/misc/lapacke.h"
#endif
#include "src/Cholesky/LLT_LAPACKE.h"
#include "src/Cholesky/LLT_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H
#define EIGEN_CHOLMODSUPPORT_MODULE_H
@@ -19,7 +12,7 @@ extern "C" {
/** \ingroup Support_modules
* \defgroup CholmodSupport_Module CholmodSupport module
*
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
* It provides the two following main factorization classes:
* - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
* - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
@@ -40,8 +33,12 @@ extern "C" {
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLMODSUPPORT_MODULE_H

View File

@@ -14,74 +14,6 @@
// first thing Eigen does: stop the compiler from committing suicide
#include "src/Core/util/DisableStupidWarnings.h"
#if defined(__CUDACC__) && !defined(EIGEN_NO_CUDA)
#define EIGEN_CUDACC __CUDACC__
#endif
#if defined(__CUDA_ARCH__) && !defined(EIGEN_NO_CUDA)
#define EIGEN_CUDA_ARCH __CUDA_ARCH__
#endif
#if defined(__CUDACC_VER_MAJOR__) && (__CUDACC_VER_MAJOR__ >= 9)
#define EIGEN_CUDACC_VER ((__CUDACC_VER_MAJOR__ * 10000) + (__CUDACC_VER_MINOR__ * 100))
#elif defined(__CUDACC_VER__)
#define EIGEN_CUDACC_VER __CUDACC_VER__
#else
#define EIGEN_CUDACC_VER 0
#endif
// Handle NVCC/CUDA/SYCL
#if defined(__CUDACC__) || defined(__SYCL_DEVICE_ONLY__)
// Do not try asserts on CUDA and SYCL!
#ifndef EIGEN_NO_DEBUG
#define EIGEN_NO_DEBUG
#endif
#ifdef EIGEN_INTERNAL_DEBUGGING
#undef EIGEN_INTERNAL_DEBUGGING
#endif
#ifdef EIGEN_EXCEPTIONS
#undef EIGEN_EXCEPTIONS
#endif
// All functions callable from CUDA code must be qualified with __device__
#ifdef __CUDACC__
// Do not try to vectorize on CUDA and SYCL!
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#define EIGEN_DEVICE_FUNC __host__ __device__
// We need cuda_runtime.h to ensure that that EIGEN_USING_STD_MATH macro
// works properly on the device side
#include <cuda_runtime.h>
#else
#define EIGEN_DEVICE_FUNC
#endif
#else
#define EIGEN_DEVICE_FUNC
#endif
// When compiling CUDA device code with NVCC, pull in math functions from the
// global namespace. In host mode, and when device doee with clang, use the
// std versions.
#if defined(__CUDA_ARCH__) && defined(__NVCC__)
#define EIGEN_USING_STD_MATH(FUNC) using ::FUNC;
#else
#define EIGEN_USING_STD_MATH(FUNC) using std::FUNC;
#endif
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(EIGEN_EXCEPTIONS) && !defined(EIGEN_USE_SYCL)
#define EIGEN_EXCEPTIONS
#endif
#ifdef EIGEN_EXCEPTIONS
#include <new>
#endif
// then include this file where all our macros are defined. It's really important to do it first because
// it's where we do all the alignment settings (platform detection and honoring the user's will if he
// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
@@ -89,7 +21,7 @@
// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3)
// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details.
#if EIGEN_COMP_MINGW && EIGEN_GNUC_AT_LEAST(4,6)
#if defined(__MINGW32__) && EIGEN_GNUC_AT_LEAST(4,6)
#pragma GCC optimize ("-fno-ipa-cp-clone")
#endif
@@ -99,26 +31,26 @@
// and inclusion of their respective header files
#include "src/Core/util/MKL_support.h"
// if alignment is disabled, then disable vectorization. Note: EIGEN_MAX_ALIGN_BYTES is the proper check, it takes into
// account both the user's will (EIGEN_MAX_ALIGN_BYTES,EIGEN_DONT_ALIGN) and our own platform checks
#if EIGEN_MAX_ALIGN_BYTES==0
// if alignment is disabled, then disable vectorization. Note: EIGEN_ALIGN is the proper check, it takes into
// account both the user's will (EIGEN_DONT_ALIGN) and our own platform checks
#if !EIGEN_ALIGN
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#endif
#if EIGEN_COMP_MSVC
#ifdef _MSC_VER
#include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
#if (EIGEN_COMP_MSVC >= 1500) // 2008 or later
#if (_MSC_VER >= 1500) // 2008 or later
// Remember that usage of defined() in a #define is undefined by the standard.
// a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || EIGEN_ARCH_x86_64
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(_M_X64)
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
#endif
#endif
#else
// Remember that usage of defined() in a #define is undefined by the standard
#if (defined __SSE2__) && ( (!EIGEN_COMP_GNUC) || EIGEN_COMP_ICC || EIGEN_GNUC_AT_LEAST(4,2) )
#if (defined __SSE2__) && ( (!defined __GNUC__) || (defined __INTEL_COMPILER) || EIGEN_GNUC_AT_LEAST(4,2) )
#define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC
#endif
#endif
@@ -150,31 +82,6 @@
#ifdef __SSE4_2__
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX__
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_SSE3
#define EIGEN_VECTORIZE_SSSE3
#define EIGEN_VECTORIZE_SSE4_1
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX2__
#define EIGEN_VECTORIZE_AVX2
#endif
#ifdef __FMA__
#define EIGEN_VECTORIZE_FMA
#endif
#if defined(__AVX512F__) && defined(EIGEN_ENABLE_AVX512)
#define EIGEN_VECTORIZE_AVX512
#define EIGEN_VECTORIZE_AVX2
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_FMA
#ifdef __AVX512DQ__
#define EIGEN_VECTORIZE_AVX512DQ
#endif
#ifdef __AVX512ER__
#define EIGEN_VECTORIZE_AVX512ER
#endif
#endif
// include files
@@ -188,10 +95,9 @@
extern "C" {
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
#if EIGEN_COMP_ICC >= 1110
#if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110
#include <immintrin.h>
#else
#include <mmintrin.h>
#include <emmintrin.h>
#include <xmmintrin.h>
#ifdef EIGEN_VECTORIZE_SSE3
@@ -206,20 +112,8 @@
#ifdef EIGEN_VECTORIZE_SSE4_2
#include <nmmintrin.h>
#endif
#if defined(EIGEN_VECTORIZE_AVX) || defined(EIGEN_VECTORIZE_AVX512)
#include <immintrin.h>
#endif
#endif
} // end extern "C"
#elif defined __VSX__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_VSX
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif defined __ALTIVEC__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ALTIVEC
@@ -229,35 +123,13 @@
#undef bool
#undef vector
#undef pixel
#elif (defined __ARM_NEON) || (defined __ARM_NEON__)
#elif defined __ARM_NEON
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_NEON
#include <arm_neon.h>
#elif (defined __s390x__ && defined __VEC__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ZVECTOR
#include <vecintrin.h>
#endif
#endif
#if defined(__F16C__) && !defined(EIGEN_COMP_CLANG)
// We can use the optimized fp16 to float and float to fp16 conversion routines
#define EIGEN_HAS_FP16_C
#endif
#if defined __CUDACC__
#define EIGEN_VECTORIZE_CUDA
#include <vector_types.h>
#if EIGEN_CUDACC_VER >= 70500
#define EIGEN_HAS_CUDA_FP16
#endif
#endif
#if defined EIGEN_HAS_CUDA_FP16
#include <host_defines.h>
#include <cuda_fp16.h>
#endif
#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE)
#define EIGEN_HAS_OPENMP
#endif
@@ -267,7 +139,7 @@
#endif
// MSVC for windows mobile does not have the errno.h file
#if !(EIGEN_COMP_MSVC && EIGEN_OS_WINCE) && !EIGEN_COMP_ARM
#if !(defined(_MSC_VER) && defined(_WIN32_WCE)) && !defined(__ARMCC_VERSION)
#define EIGEN_HAS_ERRNO
#endif
@@ -287,30 +159,29 @@
// for min/max:
#include <algorithm>
// for std::is_nothrow_move_assignable
#ifdef EIGEN_INCLUDE_TYPE_TRAITS
#include <type_traits>
#endif
// for outputting debug info
#ifdef EIGEN_DEBUG_ASSIGN
#include <iostream>
#endif
// required for __cpuid, needs to be included after cmath
#if EIGEN_COMP_MSVC && EIGEN_ARCH_i386_OR_x86_64 && !EIGEN_OS_WINCE
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
#include <intrin.h>
#endif
#if defined(_CPPUNWIND) || defined(__EXCEPTIONS)
#define EIGEN_EXCEPTIONS
#endif
#ifdef EIGEN_EXCEPTIONS
#include <new>
#endif
/** \brief Namespace containing all symbols from the %Eigen library. */
namespace Eigen {
inline static const char *SimdInstructionSetsInUse(void) {
#if defined(EIGEN_VECTORIZE_AVX512)
return "AVX512, FMA, AVX2, AVX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_AVX)
return "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_2)
#if defined(EIGEN_VECTORIZE_SSE4_2)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_1)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1";
@@ -322,12 +193,8 @@ inline static const char *SimdInstructionSetsInUse(void) {
return "SSE, SSE2";
#elif defined(EIGEN_VECTORIZE_ALTIVEC)
return "AltiVec";
#elif defined(EIGEN_VECTORIZE_VSX)
return "VSX";
#elif defined(EIGEN_VECTORIZE_NEON)
return "ARM NEON";
#elif defined(EIGEN_VECTORIZE_ZVECTOR)
return "S390X ZVECTOR";
#else
return "None";
#endif
@@ -335,21 +202,42 @@ inline static const char *SimdInstructionSetsInUse(void) {
} // end namespace Eigen
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT
// This will generate an error message:
#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information
#define STAGE10_FULL_EIGEN2_API 10
#define STAGE20_RESOLVE_API_CONFLICTS 20
#define STAGE30_FULL_EIGEN3_API 30
#define STAGE40_FULL_EIGEN3_STRICTNESS 40
#define STAGE99_NO_EIGEN2_SUPPORT 99
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS
#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS
#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API
#define EIGEN2_SUPPORT
#define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API
#elif defined EIGEN2_SUPPORT
// default to stage 3, that's what it's always meant
#define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API
#define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API
#else
#define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT
#endif
namespace Eigen {
#ifdef EIGEN2_SUPPORT
#undef minor
#endif
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
// ensure QNX/QCC support
using std::size_t;
// gcc 4.6.0 wants std:: for ptrdiff_t
// gcc 4.6.0 wants std:: for ptrdiff_t
using std::ptrdiff_t;
}
/** \defgroup Core_Module Core module
* This is the main module of Eigen providing dense matrix and vector support
* (both fixed and dynamic size) with all the features corresponding to a BLAS library
@@ -361,8 +249,8 @@ using std::ptrdiff_t;
*/
#include "src/Core/util/Constants.h"
#include "src/Core/util/Meta.h"
#include "src/Core/util/ForwardDeclarations.h"
#include "src/Core/util/Meta.h"
#include "src/Core/util/StaticAssert.h"
#include "src/Core/util/XprHelper.h"
#include "src/Core/util/Memory.h"
@@ -370,94 +258,41 @@ using std::ptrdiff_t;
#include "src/Core/NumTraits.h"
#include "src/Core/MathFunctions.h"
#include "src/Core/GenericPacketMath.h"
#include "src/Core/MathFunctionsImpl.h"
#include "src/Core/arch/Default/ConjHelper.h"
#if defined EIGEN_VECTORIZE_AVX512
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/AVX/PacketMath.h"
#include "src/Core/arch/AVX512/PacketMath.h"
#include "src/Core/arch/AVX512/MathFunctions.h"
#elif defined EIGEN_VECTORIZE_AVX
// Use AVX for floats and doubles, SSE for integers
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/SSE/Complex.h"
#include "src/Core/arch/SSE/MathFunctions.h"
#include "src/Core/arch/AVX/PacketMath.h"
#include "src/Core/arch/AVX/MathFunctions.h"
#include "src/Core/arch/AVX/Complex.h"
#include "src/Core/arch/AVX/TypeCasting.h"
#include "src/Core/arch/SSE/TypeCasting.h"
#elif defined EIGEN_VECTORIZE_SSE
#if defined EIGEN_VECTORIZE_SSE
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/SSE/MathFunctions.h"
#include "src/Core/arch/SSE/Complex.h"
#include "src/Core/arch/SSE/TypeCasting.h"
#elif defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX)
#elif defined EIGEN_VECTORIZE_ALTIVEC
#include "src/Core/arch/AltiVec/PacketMath.h"
#include "src/Core/arch/AltiVec/MathFunctions.h"
#include "src/Core/arch/AltiVec/Complex.h"
#elif defined EIGEN_VECTORIZE_NEON
#include "src/Core/arch/NEON/PacketMath.h"
#include "src/Core/arch/NEON/MathFunctions.h"
#include "src/Core/arch/NEON/Complex.h"
#elif defined EIGEN_VECTORIZE_ZVECTOR
#include "src/Core/arch/ZVector/PacketMath.h"
#include "src/Core/arch/ZVector/MathFunctions.h"
#include "src/Core/arch/ZVector/Complex.h"
#endif
// Half float support
#include "src/Core/arch/CUDA/Half.h"
#include "src/Core/arch/CUDA/PacketMathHalf.h"
#include "src/Core/arch/CUDA/TypeCasting.h"
#if defined EIGEN_VECTORIZE_CUDA
#include "src/Core/arch/CUDA/PacketMath.h"
#include "src/Core/arch/CUDA/MathFunctions.h"
#endif
#include "src/Core/arch/Default/Settings.h"
#include "src/Core/functors/TernaryFunctors.h"
#include "src/Core/functors/BinaryFunctors.h"
#include "src/Core/functors/UnaryFunctors.h"
#include "src/Core/functors/NullaryFunctors.h"
#include "src/Core/functors/StlFunctors.h"
#include "src/Core/functors/AssignmentFunctors.h"
// Specialized functors to enable the processing of complex numbers
// on CUDA devices
#include "src/Core/arch/CUDA/Complex.h"
#include "src/Core/IO.h"
#include "src/Core/Functors.h"
#include "src/Core/DenseCoeffsBase.h"
#include "src/Core/DenseBase.h"
#include "src/Core/MatrixBase.h"
#include "src/Core/EigenBase.h"
#include "src/Core/Product.h"
#include "src/Core/CoreEvaluators.h"
#include "src/Core/AssignEvaluator.h"
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
// at least confirmed with Doxygen 1.5.5 and 1.5.6
#include "src/Core/Assign.h"
#endif
#include "src/Core/ArrayBase.h"
#include "src/Core/util/BlasUtil.h"
#include "src/Core/DenseStorage.h"
#include "src/Core/NestByValue.h"
// #include "src/Core/ForceAlignedAccess.h"
#include "src/Core/ForceAlignedAccess.h"
#include "src/Core/ReturnByValue.h"
#include "src/Core/NoAlias.h"
#include "src/Core/PlainObjectBase.h"
#include "src/Core/Matrix.h"
#include "src/Core/Array.h"
#include "src/Core/CwiseTernaryOp.h"
#include "src/Core/CwiseBinaryOp.h"
#include "src/Core/CwiseUnaryOp.h"
#include "src/Core/CwiseNullaryOp.h"
@@ -465,32 +300,32 @@ using std::ptrdiff_t;
#include "src/Core/SelfCwiseBinaryOp.h"
#include "src/Core/Dot.h"
#include "src/Core/StableNorm.h"
#include "src/Core/Stride.h"
#include "src/Core/MapBase.h"
#include "src/Core/Stride.h"
#include "src/Core/Map.h"
#include "src/Core/Ref.h"
#include "src/Core/Block.h"
#include "src/Core/VectorBlock.h"
#include "src/Core/Ref.h"
#include "src/Core/Transpose.h"
#include "src/Core/DiagonalMatrix.h"
#include "src/Core/Diagonal.h"
#include "src/Core/DiagonalProduct.h"
#include "src/Core/PermutationMatrix.h"
#include "src/Core/Transpositions.h"
#include "src/Core/Redux.h"
#include "src/Core/Visitor.h"
#include "src/Core/Fuzzy.h"
#include "src/Core/IO.h"
#include "src/Core/Swap.h"
#include "src/Core/CommaInitializer.h"
#include "src/Core/Flagged.h"
#include "src/Core/ProductBase.h"
#include "src/Core/GeneralProduct.h"
#include "src/Core/Solve.h"
#include "src/Core/Inverse.h"
#include "src/Core/SolverBase.h"
#include "src/Core/PermutationMatrix.h"
#include "src/Core/Transpositions.h"
#include "src/Core/TriangularMatrix.h"
#include "src/Core/SelfAdjointView.h"
#include "src/Core/products/GeneralBlockPanelKernel.h"
#include "src/Core/products/Parallelizer.h"
#include "src/Core/ProductEvaluators.h"
#include "src/Core/products/CoeffBasedProduct.h"
#include "src/Core/products/GeneralMatrixVector.h"
#include "src/Core/products/GeneralMatrixMatrix.h"
#include "src/Core/SolveTriangular.h"
@@ -505,7 +340,6 @@ using std::ptrdiff_t;
#include "src/Core/products/TriangularSolverVector.h"
#include "src/Core/BandMatrix.h"
#include "src/Core/CoreIterators.h"
#include "src/Core/ConditionEstimator.h"
#include "src/Core/BooleanRedux.h"
#include "src/Core/Select.h"
@@ -513,17 +347,18 @@ using std::ptrdiff_t;
#include "src/Core/Random.h"
#include "src/Core/Replicate.h"
#include "src/Core/Reverse.h"
#include "src/Core/ArrayBase.h"
#include "src/Core/ArrayWrapper.h"
#ifdef EIGEN_USE_BLAS
#include "src/Core/products/GeneralMatrixMatrix_BLAS.h"
#include "src/Core/products/GeneralMatrixVector_BLAS.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h"
#include "src/Core/products/SelfadjointMatrixMatrix_BLAS.h"
#include "src/Core/products/SelfadjointMatrixVector_BLAS.h"
#include "src/Core/products/TriangularMatrixMatrix_BLAS.h"
#include "src/Core/products/TriangularMatrixVector_BLAS.h"
#include "src/Core/products/TriangularSolverMatrix_BLAS.h"
#include "src/Core/products/GeneralMatrixMatrix_MKL.h"
#include "src/Core/products/GeneralMatrixVector_MKL.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular_MKL.h"
#include "src/Core/products/SelfadjointMatrixMatrix_MKL.h"
#include "src/Core/products/SelfadjointMatrixVector_MKL.h"
#include "src/Core/products/TriangularMatrixMatrix_MKL.h"
#include "src/Core/products/TriangularMatrixVector_MKL.h"
#include "src/Core/products/TriangularSolverMatrix_MKL.h"
#endif // EIGEN_USE_BLAS
#ifdef EIGEN_USE_MKL_VML
@@ -534,4 +369,8 @@ using std::ptrdiff_t;
#include "src/Core/util/ReenableStupidWarnings.h"
#ifdef EIGEN2_SUPPORT
#include "Eigen2Support"
#endif
#endif // EIGEN_CORE_H

View File

@@ -1,2 +1,2 @@
#include "Dense"
#include "Sparse"
//#include "Sparse"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EIGENVALUES_MODULE_H
#define EIGEN_EIGENVALUES_MODULE_H
@@ -32,7 +25,6 @@
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/Eigenvalues/Tridiagonalization.h"
#include "src/Eigenvalues/RealSchur.h"
#include "src/Eigenvalues/EigenSolver.h"
@@ -45,14 +37,9 @@
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
#ifdef EIGEN_USE_LAPACKE
#ifdef EIGEN_USE_MKL
#include "mkl_lapacke.h"
#else
#include "src/misc/lapacke.h"
#endif
#include "src/Eigenvalues/RealSchur_LAPACKE.h"
#include "src/Eigenvalues/ComplexSchur_LAPACKE.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h"
#include "src/Eigenvalues/RealSchur_MKL.h"
#include "src/Eigenvalues/ComplexSchur_MKL.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GEOMETRY_MODULE_H
#define EIGEN_GEOMETRY_MODULE_H
@@ -16,17 +9,21 @@
#include "LU"
#include <limits>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/** \defgroup Geometry_Module Geometry module
*
*
*
* This module provides support for:
* - fixed-size homogeneous transformations
* - translation, scaling, 2D and 3D rotations
* - \link Quaternion quaternions \endlink
* - cross products (\ref MatrixBase::cross, \ref MatrixBase::cross3)
* - orthognal vector generation (\ref MatrixBase::unitOrthogonal)
* - some linear components: \link ParametrizedLine parametrized-lines \endlink and \link Hyperplane hyperplanes \endlink
* - \link AlignedBox axis aligned bounding boxes \endlink
* - \link umeyama least-square transformation fitting \endlink
* - quaternions
* - \ref MatrixBase::cross() "cross product"
* - \ref MatrixBase::unitOrthogonal() "orthognal vector generation"
* - some linear components: parametrized-lines and hyperplanes
*
* \code
* #include <Eigen/Geometry>
@@ -36,23 +33,27 @@
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/EulerAngles.h"
#include "src/Geometry/Homogeneous.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"
#include "src/Geometry/Translation.h"
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
#include "src/Geometry/Umeyama.h"
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
#include "src/Geometry/Homogeneous.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"
#include "src/Geometry/Translation.h"
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
#include "src/Geometry/Umeyama.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#include "src/Geometry/arch/Geometry_SSE.h"
#if defined EIGEN_VECTORIZE_SSE
#include "src/Geometry/arch/Geometry_SSE.h"
#endif
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/Geometry/All.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOUSEHOLDER_MODULE_H
#define EIGEN_HOUSEHOLDER_MODULE_H

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
@@ -19,29 +12,28 @@
* This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
* Those solvers are accessible via the following classes:
* - ConjugateGradient for selfadjoint (hermitian) matrices,
* - LeastSquaresConjugateGradient for rectangular least-square problems,
* - BiCGSTAB for general square matrices.
*
* These iterative solvers are associated with some preconditioners:
* - IdentityPreconditioner - not really useful
* - DiagonalPreconditioner - also called Jacobi preconditioner, work very well on diagonal dominant matrices.
* - IncompleteLUT - incomplete LU factorization with dual thresholding
* - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices.
* - IncompleteILUT - incomplete LU factorization with dual thresholding
*
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
*
\code
#include <Eigen/IterativeLinearSolvers>
\endcode
* \code
* #include <Eigen/IterativeLinearSolvers>
* \endcode
*/
#include "src/IterativeLinearSolvers/SolveWithGuess.h"
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
#include "src/IterativeLinearSolvers/LeastSquareConjugateGradient.h"
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
#include "src/IterativeLinearSolvers/IncompleteCholesky.h"
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_JACOBI_MODULE_H
#define EIGEN_JACOBI_MODULE_H

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LU_MODULE_H
#define EIGEN_LU_MODULE_H
@@ -23,27 +16,25 @@
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/misc/Kernel.h"
#include "src/misc/Image.h"
#include "src/LU/FullPivLU.h"
#include "src/LU/PartialPivLU.h"
#ifdef EIGEN_USE_LAPACKE
#ifdef EIGEN_USE_MKL
#include "mkl_lapacke.h"
#else
#include "src/misc/lapacke.h"
#endif
#include "src/LU/PartialPivLU_LAPACKE.h"
#include "src/LU/PartialPivLU_MKL.h"
#endif
#include "src/LU/Determinant.h"
#include "src/LU/InverseImpl.h"
#include "src/LU/Inverse.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#if defined EIGEN_VECTORIZE_SSE
#include "src/LU/arch/Inverse_SSE.h"
#endif
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/LU.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_LU_MODULE_H

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_METISSUPPORT_MODULE_H
#define EIGEN_METISSUPPORT_MODULE_H

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
#define EIGEN_ORDERINGMETHODS_MODULE_H

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PASTIXSUPPORT_MODULE_H
#define EIGEN_PASTIXSUPPORT_MODULE_H
@@ -12,6 +5,7 @@
#include "src/Core/util/DisableStupidWarnings.h"
#include <complex.h>
extern "C" {
#include <pastix_nompi.h>
#include <pastix.h>
@@ -41,8 +35,12 @@ extern "C" {
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/PaStiXSupport/PaStiXSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PASTIXSUPPORT_MODULE_H

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PARDISOSUPPORT_MODULE_H
#define EIGEN_PARDISOSUPPORT_MODULE_H
@@ -14,6 +7,8 @@
#include <mkl_pardiso.h>
#include <unsupported/Eigen/SparseExtra>
/** \ingroup Support_modules
* \defgroup PardisoSupport_Module PardisoSupport module
*

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QR_MODULE_H
#define EIGEN_QR_MODULE_H
@@ -22,30 +15,31 @@
*
* This module provides various QR decompositions
* This module also provides some MatrixBase methods, including:
* - MatrixBase::householderQr()
* - MatrixBase::colPivHouseholderQr()
* - MatrixBase::fullPivHouseholderQr()
* - MatrixBase::qr(),
*
* \code
* #include <Eigen/QR>
* \endcode
*/
#include "src/misc/Solve.h"
#include "src/QR/HouseholderQR.h"
#include "src/QR/FullPivHouseholderQR.h"
#include "src/QR/ColPivHouseholderQR.h"
#include "src/QR/CompleteOrthogonalDecomposition.h"
#ifdef EIGEN_USE_LAPACKE
#ifdef EIGEN_USE_MKL
#include "mkl_lapacke.h"
#else
#include "src/misc/lapacke.h"
#include "src/QR/HouseholderQR_MKL.h"
#include "src/QR/ColPivHouseholderQR_MKL.h"
#endif
#include "src/QR/HouseholderQR_LAPACKE.h"
#include "src/QR/ColPivHouseholderQR_LAPACKE.h"
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/QR.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#ifdef EIGEN2_SUPPORT
#include "Eigenvalues"
#endif
#endif // EIGEN_QR_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@@ -1,9 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QTMALLOC_MODULE_H
#define EIGEN_QTMALLOC_MODULE_H
@@ -14,7 +8,7 @@
#include "src/Core/util/DisableStupidWarnings.h"
void *qMalloc(std::size_t size)
void *qMalloc(size_t size)
{
return Eigen::internal::aligned_malloc(size);
}
@@ -24,10 +18,10 @@ void qFree(void *ptr)
Eigen::internal::aligned_free(ptr);
}
void *qRealloc(void *ptr, std::size_t size)
void *qRealloc(void *ptr, size_t size)
{
void* newPtr = Eigen::internal::aligned_malloc(size);
std::memcpy(newPtr, ptr, size);
memcpy(newPtr, ptr, size);
Eigen::internal::aligned_free(ptr);
return newPtr;
}

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPQRSUPPORT_MODULE_H
#define EIGEN_SPQRSUPPORT_MODULE_H
@@ -17,7 +10,7 @@
/** \ingroup Support_modules
* \defgroup SPQRSupport_Module SuiteSparseQR module
*
* This module provides an interface to the SPQR library, which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* This module provides an interface to the SPQR library, which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
*
* \code
* #include <Eigen/SPQRSupport>
@@ -28,6 +21,8 @@
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/SPQRSupport/SuiteSparseQRSupport.h"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SVD_MODULE_H
#define EIGEN_SVD_MODULE_H
@@ -19,30 +12,23 @@
*
*
* This module provides SVD decomposition for matrices (both real and complex).
* Two decomposition algorithms are provided:
* - JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones.
* - BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems.
* These decompositions are accessible via the respective classes and following MatrixBase methods:
* This decomposition is accessible via the following MatrixBase method:
* - MatrixBase::jacobiSvd()
* - MatrixBase::bdcSvd()
*
* \code
* #include <Eigen/SVD>
* \endcode
*/
#include "src/misc/RealSvd2x2.h"
#include "src/SVD/UpperBidiagonalization.h"
#include "src/SVD/SVDBase.h"
#include "src/misc/Solve.h"
#include "src/SVD/JacobiSVD.h"
#include "src/SVD/BDCSVD.h"
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
#ifdef EIGEN_USE_MKL
#include "mkl_lapacke.h"
#else
#include "src/misc/lapacke.h"
#include "src/SVD/JacobiSVD_MKL.h"
#endif
#include "src/SVD/JacobiSVD_LAPACKE.h"
#include "src/SVD/UpperBidiagonalization.h"
#ifdef EIGEN2_SUPPORT
#include "src/Eigen2Support/SVD.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_MODULE_H
#define EIGEN_SPARSE_MODULE_H
@@ -18,16 +11,14 @@
* - \ref SparseQR_Module
* - \ref IterativeLinearSolvers_Module
*
\code
#include <Eigen/Sparse>
\endcode
* \code
* #include <Eigen/Sparse>
* \endcode
*/
#include "SparseCore"
#include "OrderingMethods"
#ifndef EIGEN_MPL2_ONLY
#include "SparseCholesky"
#endif
#include "SparseLU"
#include "SparseQR"
#include "IterativeLinearSolvers"

View File

@@ -34,6 +34,8 @@
#error The SparseCholesky module has nothing to offer in MPL2 only mode
#endif
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/SparseCholesky/SimplicialCholesky.h"
#ifndef EIGEN_MPL2_ONLY

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSECORE_MODULE_H
#define EIGEN_SPARSECORE_MODULE_H
@@ -33,35 +26,37 @@
* This module depends on: Core.
*/
namespace Eigen {
/** The type used to identify a general sparse storage. */
struct Sparse {};
}
#include "src/SparseCore/SparseUtil.h"
#include "src/SparseCore/SparseMatrixBase.h"
#include "src/SparseCore/SparseAssign.h"
#include "src/SparseCore/CompressedStorage.h"
#include "src/SparseCore/AmbiVector.h"
#include "src/SparseCore/SparseCompressedBase.h"
#include "src/SparseCore/SparseMatrix.h"
#include "src/SparseCore/SparseMap.h"
#include "src/SparseCore/MappedSparseMatrix.h"
#include "src/SparseCore/SparseVector.h"
#include "src/SparseCore/SparseRef.h"
#include "src/SparseCore/SparseBlock.h"
#include "src/SparseCore/SparseTranspose.h"
#include "src/SparseCore/SparseCwiseUnaryOp.h"
#include "src/SparseCore/SparseCwiseBinaryOp.h"
#include "src/SparseCore/SparseTranspose.h"
#include "src/SparseCore/SparseBlock.h"
#include "src/SparseCore/SparseDot.h"
#include "src/SparseCore/SparsePermutation.h"
#include "src/SparseCore/SparseRedux.h"
#include "src/SparseCore/SparseView.h"
#include "src/SparseCore/SparseDiagonalProduct.h"
#include "src/SparseCore/SparseFuzzy.h"
#include "src/SparseCore/ConservativeSparseSparseProduct.h"
#include "src/SparseCore/SparseSparseProductWithPruning.h"
#include "src/SparseCore/SparseProduct.h"
#include "src/SparseCore/SparseDenseProduct.h"
#include "src/SparseCore/SparseSelfAdjointView.h"
#include "src/SparseCore/SparseDiagonalProduct.h"
#include "src/SparseCore/SparseTriangularView.h"
#include "src/SparseCore/SparseSelfAdjointView.h"
#include "src/SparseCore/TriangularSolver.h"
#include "src/SparseCore/SparsePermutation.h"
#include "src/SparseCore/SparseFuzzy.h"
#include "src/SparseCore/SparseSolverBase.h"
#include "src/SparseCore/SparseView.h"
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@@ -20,6 +20,9 @@
* Please, see the documentation of the SparseLU class for more details.
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
// Ordering interface
#include "OrderingMethods"

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEQR_MODULE_H
#define EIGEN_SPARSEQR_MODULE_H
@@ -28,6 +21,9 @@
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "OrderingMethods"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseQR/SparseQR.h"

View File

@@ -14,7 +14,7 @@
#include "Core"
#include <deque>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...)

View File

@@ -13,7 +13,7 @@
#include "Core"
#include <list>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...)

View File

@@ -14,7 +14,7 @@
#include "Core"
#include <vector>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 && (EIGEN_MAX_STATIC_ALIGN_BYTES<=16) /* MSVC auto aligns up to 16 bytes in 64 bit builds */
#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...)

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H
#define EIGEN_SUPERLUSUPPORT_MODULE_H
@@ -43,8 +36,6 @@ namespace Eigen { struct SluMatrix; }
* - class SuperLU: a supernodal sequential LU factorization.
* - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods).
*
* \warning This wrapper requires at least versions 4.0 of SuperLU. The 3.x versions are not supported.
*
* \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.
*
* \code
@@ -57,8 +48,12 @@ namespace Eigen { struct SluMatrix; }
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/SuperLUSupport/SuperLUSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SUPERLUSUPPORT_MODULE_H

View File

@@ -1,10 +1,3 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H
#define EIGEN_UMFPACKSUPPORT_MODULE_H
@@ -19,7 +12,7 @@ extern "C" {
/** \ingroup Support_modules
* \defgroup UmfPackSupport_Module UmfPackSupport module
*
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.suitesparse.com">suitesparse</a> package.
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
* It provides the following factorization class:
* - class UmfPackLU: a multifrontal sequential LU factorization.
*
@@ -33,6 +26,9 @@ extern "C" {
*
*/
#include "src/misc/Solve.h"
#include "src/misc/SparseSolve.h"
#include "src/UmfPackSupport/UmfPackSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"

View File

@@ -13,7 +13,7 @@
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
namespace Eigen {
namespace Eigen {
namespace internal {
template<typename MatrixType, int UpLo> struct LDLT_Traits;
@@ -28,8 +28,8 @@ namespace internal {
*
* \brief Robust Cholesky decomposition of a matrix with pivoting
*
* \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
@@ -43,9 +43,7 @@ namespace internal {
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
* decomposition to determine whether a system of equations has a solution.
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
* \sa MatrixBase::ldlt(), class LLT
*/
template<typename _MatrixType, int _UpLo> class LDLT
{
@@ -54,15 +52,15 @@ template<typename _MatrixType, int _UpLo> class LDLT
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef typename MatrixType::Index Index;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
@@ -74,11 +72,11 @@ template<typename _MatrixType, int _UpLo> class LDLT
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LDLT::compute(const MatrixType&).
*/
LDLT()
: m_matrix(),
m_transpositions(),
LDLT()
: m_matrix(),
m_transpositions(),
m_sign(internal::ZeroSign),
m_isInitialized(false)
m_isInitialized(false)
{}
/** \brief Default Constructor with memory preallocation
@@ -87,7 +85,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
* according to the specified problem \a size.
* \sa LDLT()
*/
explicit LDLT(Index size)
LDLT(Index size)
: m_matrix(size, size),
m_transpositions(size),
m_temporary(size),
@@ -98,35 +96,16 @@ template<typename _MatrixType, int _UpLo> class LDLT
/** \brief Constructor with decomposition
*
* This calculates the decomposition for the input \a matrix.
*
* \sa LDLT(Index size)
*/
template<typename InputType>
explicit LDLT(const EigenBase<InputType>& matrix)
LDLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** \brief Constructs a LDLT factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
*
* \sa LDLT(const EigenBase&)
*/
template<typename InputType>
explicit LDLT(EigenBase<InputType>& matrix)
: m_matrix(matrix.derived()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{
compute(matrix.derived());
compute(matrix);
}
/** Clear any existing decomposition
@@ -172,6 +151,13 @@ template<typename _MatrixType, int _UpLo> class LDLT
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
}
#ifdef EIGEN2_SUPPORT
inline bool isPositiveDefinite() const
{
return isPositive();
}
#endif
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
@@ -187,38 +173,37 @@ template<typename _MatrixType, int _UpLo> class LDLT
* \note_about_checking_solutions
*
* More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
* by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
* by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
* \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
* \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
* least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
* computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
*
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
* \sa MatrixBase::ldlt()
*/
template<typename Rhs>
inline const Solve<LDLT, Rhs>
inline const internal::solve_retval<LDLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
return Solve<LDLT, Rhs>(*this, b.derived());
return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
#endif
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
template<typename InputType>
LDLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which \c *this is the LDLT decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
LDLT& compute(const MatrixType& matrix);
template <typename Derived>
LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
@@ -235,35 +220,22 @@ template<typename _MatrixType, int _UpLo> class LDLT
MatrixType reconstructedMatrix() const;
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LDLT& adjoint() const { return *this; };
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the factorization failed because of a zero pivot.
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_info;
return Success;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
@@ -276,12 +248,10 @@ template<typename _MatrixType, int _UpLo> class LDLT
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
RealScalar m_l1_norm;
TranspositionType m_transpositions;
TmpMatrixType m_temporary;
internal::SignMatrix m_sign;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
@@ -296,18 +266,15 @@ template<> struct ldlt_inplace<Lower>
using std::abs;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename TranspositionType::StorageIndex IndexType;
typedef typename MatrixType::Index Index;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
bool found_zero_pivot = false;
bool ret = true;
if (size <= 1)
{
transpositions.setIdentity();
if(size==0) sign = ZeroSign;
else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef;
else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
else sign = ZeroSign;
return true;
}
@@ -319,7 +286,7 @@ template<> struct ldlt_inplace<Lower>
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
transpositions.coeffRef(k) = index_of_biggest_in_corner;
if(k != index_of_biggest_in_corner)
{
// apply the transposition while taking care to consider only
@@ -328,7 +295,7 @@ template<> struct ldlt_inplace<Lower>
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
for(Index i=k+1;i<index_of_biggest_in_corner;++i)
for(int i=k+1;i<index_of_biggest_in_corner;++i)
{
Scalar tmp = mat.coeffRef(i,k);
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
@@ -354,46 +321,26 @@ template<> struct ldlt_inplace<Lower>
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
// was smaller than the cutoff value. However, since LDLT is not rank-revealing
// we should only make sure that we do not introduce INF or NaN values.
// Remark that LAPACK also uses 0 as the cutoff value.
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
// we should only make sure we do not introduce INF or NaN values.
// LAPACK also uses 0 as the cutoff value.
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
bool pivot_is_valid = (abs(realAkk) > RealScalar(0));
if(k==0 && !pivot_is_valid)
{
// The entire diagonal is zero, there is nothing more to do
// except filling the transpositions, and checking whether the matrix is zero.
sign = ZeroSign;
for(Index j = 0; j<size; ++j)
{
transpositions.coeffRef(j) = IndexType(j);
ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all();
}
return ret;
}
if((rs>0) && pivot_is_valid)
if((rs>0) && (abs(realAkk) > RealScalar(0)))
A21 /= realAkk;
else if(rs>0)
ret = ret && (A21.array()==Scalar(0)).all();
if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed
else if(!pivot_is_valid) found_zero_pivot = true;
if (sign == PositiveSemiDef) {
if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite;
if (realAkk < 0) sign = Indefinite;
} else if (sign == NegativeSemiDef) {
if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite;
if (realAkk > 0) sign = Indefinite;
} else if (sign == ZeroSign) {
if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef;
else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef;
if (realAkk > 0) sign = PositiveSemiDef;
else if (realAkk < 0) sign = NegativeSemiDef;
}
}
return ret;
return true;
}
// Reference for the algorithm: Davis and Hager, "Multiple Rank
@@ -409,6 +356,7 @@ template<> struct ldlt_inplace<Lower>
using numext::isfinite;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
const Index size = mat.rows();
eigen_assert(mat.cols() == size && w.size()==size);
@@ -472,16 +420,16 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
static inline MatrixL getL(const MatrixType& m) { return m; }
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
static inline MatrixU getU(const MatrixType& m) { return m; }
};
} // end namespace internal
@@ -489,35 +437,21 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType, int _UpLo>
template<typename InputType>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix = a.derived();
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm)
m_l1_norm = abs_col_sum;
}
m_matrix = a;
m_transpositions.resize(size);
m_isInitialized = false;
m_temporary.resize(size);
m_sign = internal::ZeroSign;
m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue;
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
m_isInitialized = true;
return *this;
@@ -532,19 +466,18 @@ template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
{
typedef typename TranspositionType::StorageIndex IndexType;
const Index size = w.rows();
if (m_isInitialized)
{
eigen_assert(m_matrix.rows()==size);
}
else
{
{
m_matrix.resize(size,size);
m_matrix.setZero();
m_transpositions.resize(size);
for (Index i = 0; i < size; i++)
m_transpositions.coeffRef(i) = IndexType(i);
m_transpositions.coeffRef(i) = i;
m_temporary.resize(size);
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
m_isInitialized = true;
@@ -555,46 +488,53 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType, int _UpLo>
template<typename RhsType, typename DstType>
void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
namespace internal {
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
: solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{
eigen_assert(rhs.rows() == rows());
// dst = P b
dst = m_transpositions * rhs;
typedef LDLT<_MatrixType,_UpLo> LDLTType;
EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
// dst = L^-1 (P b)
matrixL().solveInPlace(dst);
// dst = D^-1 (L^-1 P b)
// more precisely, use pseudo-inverse of D (see bug 241)
using std::abs;
const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
// In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min())
// and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS:
// RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
// diagonal element is not well justified and leads to numerical issues in some cases.
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
// Using numeric_limits::min() gives us more robustness to denormals.
RealScalar tolerance = (std::numeric_limits<RealScalar>::min)();
for (Index i = 0; i < vecD.size(); ++i)
template<typename Dest> void evalTo(Dest& dst) const
{
if(abs(vecD(i)) > tolerance)
dst.row(i) /= vecD(i);
else
dst.row(i).setZero();
eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
// dst = P b
dst = dec().transpositionsP() * rhs();
// dst = L^-1 (P b)
dec().matrixL().solveInPlace(dst);
// dst = D^-1 (L^-1 P b)
// more precisely, use pseudo-inverse of D (see bug 241)
using std::abs;
using std::max;
typedef typename LDLTType::MatrixType MatrixType;
typedef typename LDLTType::RealScalar RealScalar;
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
// as motivated by LAPACK's xGELSS:
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
// diagonal element is not well justified and to numerical issues in some cases.
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
for (Index i = 0; i < vectorD.size(); ++i) {
if(abs(vectorD(i)) > tolerance)
dst.row(i) /= vectorD(i);
else
dst.row(i).setZero();
}
// dst = L^-T (D^-1 L^-1 P b)
dec().matrixU().solveInPlace(dst);
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
dst = dec().transpositionsP().transpose() * dst;
}
// dst = L^-T (D^-1 L^-1 P b)
matrixU().solveInPlace(dst);
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
dst = m_transpositions.transpose() * dst;
};
}
#endif
/** \internal use x = ldlt_object.solve(x);
*
@@ -648,7 +588,6 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa MatrixBase::ldlt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
@@ -659,7 +598,6 @@ SelfAdjointView<MatrixType, UpLo>::ldlt() const
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa SelfAdjointView::ldlt()
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>

View File

@@ -10,7 +10,7 @@
#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H
namespace Eigen {
namespace Eigen {
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
@@ -22,9 +22,9 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
@@ -40,18 +40,12 @@ template<typename MatrixType, int UpLo> struct LLT_Traits;
*
* Example: \include LLT_example.cpp
* Output: \verbinclude LLT_example.out
*
* \b Performance: for best performance, it is recommended to use a column-major storage format
* with the Lower triangular part (the default), or, equivalently, a row-major storage format
* with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization
* step, and rank-updates can be up to 3 times slower.
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered.
* Therefore, the strict lower part does not have to store correct values.
*
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
*
* \sa MatrixBase::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType, int _UpLo> class LLT
{
@@ -60,12 +54,12 @@ template<typename _MatrixType, int _UpLo> class LLT
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::Index Index;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
@@ -89,30 +83,14 @@ template<typename _MatrixType, int _UpLo> class LLT
* according to the specified problem \a size.
* \sa LLT()
*/
explicit LLT(Index size) : m_matrix(size, size),
LLT(Index size) : m_matrix(size, size),
m_isInitialized(false) {}
template<typename InputType>
explicit LLT(const EigenBase<InputType>& matrix)
LLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_isInitialized(false)
{
compute(matrix.derived());
}
/** \brief Constructs a LDLT factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
* \c MatrixType is a Eigen::Ref.
*
* \sa LLT(const EigenBase&)
*/
template<typename InputType>
explicit LLT(EigenBase<InputType>& matrix)
: m_matrix(matrix.derived()),
m_isInitialized(false)
{
compute(matrix.derived());
compute(matrix);
}
/** \returns a view of the upper triangular matrix U */
@@ -137,33 +115,33 @@ template<typename _MatrixType, int _UpLo> class LLT
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
* \sa solveInPlace(), MatrixBase::llt()
*/
template<typename Rhs>
inline const Solve<LLT, Rhs>
inline const internal::solve_retval<LLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
return Solve<LLT, Rhs>(*this, b.derived());
return internal::solve_retval<LLT, Rhs>(*this, b.derived());
}
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
{
*result = this->solve(b);
return true;
}
bool isPositiveDefinite() const { return true; }
#endif
template<typename Derived>
void solveInPlace(const MatrixBase<Derived> &bAndX) const;
void solveInPlace(MatrixBase<Derived> &bAndX) const;
template<typename InputType>
LLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which \c *this is the Cholesky decomposition.
*/
RealScalar rcond() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
LLT& compute(const MatrixType& matrix);
/** \returns the LLT decomposition matrix
*
@@ -181,7 +159,7 @@ template<typename _MatrixType, int _UpLo> class LLT
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears not to be positive definite.
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
@@ -189,38 +167,24 @@ template<typename _MatrixType, int _UpLo> class LLT
return m_info;
}
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LLT& adjoint() const { return *this; };
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
template<typename VectorType>
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
RealScalar m_l1_norm;
bool m_isInitialized;
ComputationInfo m_info;
};
@@ -230,11 +194,12 @@ namespace internal {
template<typename Scalar, int UpLo> struct llt_inplace;
template<typename MatrixType, typename VectorType>
static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
{
using std::sqrt;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef typename MatrixType::ColXpr ColXpr;
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
@@ -303,10 +268,11 @@ template<typename Scalar> struct llt_inplace<Scalar, Lower>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static Index unblocked(MatrixType& mat)
static typename MatrixType::Index unblocked(MatrixType& mat)
{
using std::sqrt;
typedef typename MatrixType::Index Index;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
for(Index k = 0; k < size; ++k)
@@ -329,8 +295,9 @@ template<typename Scalar> struct llt_inplace<Scalar, Lower>
}
template<typename MatrixType>
static Index blocked(MatrixType& m)
static typename MatrixType::Index blocked(MatrixType& m)
{
typedef typename MatrixType::Index Index;
eigen_assert(m.rows()==m.cols());
Index size = m.rows();
if(size<32)
@@ -355,36 +322,36 @@ template<typename Scalar> struct llt_inplace<Scalar, Lower>
Index ret;
if((ret=unblocked(A11))>=0) return k+ret;
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
}
return -1;
}
template<typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
}
};
template<typename Scalar> struct llt_inplace<Scalar, Upper>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::unblocked(matt);
}
template<typename MatrixType>
static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::blocked(matt);
}
template<typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
@@ -395,8 +362,8 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, Lower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
static inline MatrixL getL(const MatrixType& m) { return m; }
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
};
@@ -405,8 +372,8 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef const TriangularView<const MatrixType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
static inline MatrixU getU(const MatrixType& m) { return m; }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
};
@@ -421,29 +388,14 @@ template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
* Output: \verbinclude TutorialLinAlgComputeTwice.out
*/
template<typename MatrixType, int _UpLo>
template<typename InputType>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a)
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix.resize(size, size);
if (!internal::is_same_dense(m_matrix, a.derived()))
m_matrix = a.derived();
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (_UpLo == Lower)
abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm)
m_l1_norm = abs_col_sum;
}
m_matrix = a;
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
@@ -471,33 +423,39 @@ LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, c
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType,int _UpLo>
template<typename RhsType, typename DstType>
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
namespace internal {
template<typename _MatrixType, int UpLo, typename Rhs>
struct solve_retval<LLT<_MatrixType, UpLo>, Rhs>
: solve_retval_base<LLT<_MatrixType, UpLo>, Rhs>
{
dst = rhs;
solveInPlace(dst);
typedef LLT<_MatrixType,UpLo> LLTType;
EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dst = rhs();
dec().solveInPlace(dst);
}
};
}
#endif
/** \internal use x = llt_object.solve(x);
*
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* This version avoids a copy when the right hand side matrix b is not needed anymore.
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
* This function will const_cast it, so constness isn't honored here.
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
@@ -517,7 +475,6 @@ MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
@@ -528,7 +485,6 @@ MatrixBase<Derived>::llt() const
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>

View File

@@ -1,99 +0,0 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to LAPACKe
* LLt decomposition based on LAPACKE_?potrf function.
********************************************************************************
*/
#ifndef EIGEN_LLT_LAPACKE_H
#define EIGEN_LLT_LAPACKE_H
namespace Eigen {
namespace internal {
template<typename Scalar> struct lapacke_llt;
#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \
template<> struct lapacke_llt<EIGTYPE> \
{ \
template<typename MatrixType> \
static inline Index potrf(MatrixType& m, char uplo) \
{ \
lapack_int matrix_order; \
lapack_int size, lda, info, StorageOrder; \
EIGTYPE* a; \
eigen_assert(m.rows()==m.cols()); \
/* Set up parameters for ?potrf */ \
size = convert_index<lapack_int>(m.rows()); \
StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
a = &(m.coeffRef(0,0)); \
lda = convert_index<lapack_int>(m.outerStride()); \
\
info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \
info = (info==0) ? -1 : info>0 ? info-1 : size; \
return info; \
} \
}; \
template<> struct llt_inplace<EIGTYPE, Lower> \
{ \
template<typename MatrixType> \
static Index blocked(MatrixType& m) \
{ \
return lapacke_llt<EIGTYPE>::potrf(m, 'L'); \
} \
template<typename MatrixType, typename VectorType> \
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
}; \
template<> struct llt_inplace<EIGTYPE, Upper> \
{ \
template<typename MatrixType> \
static Index blocked(MatrixType& m) \
{ \
return lapacke_llt<EIGTYPE>::potrf(m, 'U'); \
} \
template<typename MatrixType, typename VectorType> \
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ \
Transpose<MatrixType> matt(mat); \
return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
} \
};
EIGEN_LAPACKE_LLT(double, double, d)
EIGEN_LAPACKE_LLT(float, float, s)
EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z)
EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LLT_LAPACKE_H

View File

@@ -14,52 +14,46 @@ namespace Eigen {
namespace internal {
template<typename Scalar> struct cholmod_configure_matrix;
template<> struct cholmod_configure_matrix<double> {
template<typename CholmodType>
static void run(CholmodType& mat) {
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix(CholmodType& mat)
{
if (internal::is_same<Scalar,float>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,double>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
};
template<> struct cholmod_configure_matrix<std::complex<double> > {
template<typename CholmodType>
static void run(CholmodType& mat) {
else if (internal::is_same<Scalar,std::complex<float> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,std::complex<double> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
}
};
// Other scalar types are not yet suppotred by Cholmod
// template<> struct cholmod_configure_matrix<float> {
// template<typename CholmodType>
// static void run(CholmodType& mat) {
// mat.xtype = CHOLMOD_REAL;
// mat.dtype = CHOLMOD_SINGLE;
// }
// };
//
// template<> struct cholmod_configure_matrix<std::complex<float> > {
// template<typename CholmodType>
// static void run(CholmodType& mat) {
// mat.xtype = CHOLMOD_COMPLEX;
// mat.dtype = CHOLMOD_SINGLE;
// }
// };
else
{
eigen_assert(false && "Scalar type not supported by CHOLMOD");
}
}
} // namespace internal
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
* Note that the data are shared.
*/
template<typename _Scalar, int _Options, typename _StorageIndex>
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> > mat)
template<typename _Scalar, int _Options, typename _Index>
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();
res.nrow = mat.rows();;
res.ncol = mat.cols();
res.p = mat.outerIndexPtr();
res.i = mat.innerIndexPtr();
@@ -80,11 +74,11 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
res.dtype = 0;
res.stype = -1;
if (internal::is_same<_StorageIndex,int>::value)
if (internal::is_same<_Index,int>::value)
{
res.itype = CHOLMOD_INT;
}
else if (internal::is_same<_StorageIndex,long>::value)
else if (internal::is_same<_Index,SuiteSparse_long>::value)
{
res.itype = CHOLMOD_LONG;
}
@@ -94,7 +88,7 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
}
// setup res.xtype
internal::cholmod_configure_matrix<_Scalar>::run(res);
internal::cholmod_configure_matrix<_Scalar>(res);
res.stype = 0;
@@ -104,23 +98,16 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseVector<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.const_cast_derived()));
cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
{
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
if(UpLo==Upper) res.stype = 1;
if(UpLo==Lower) res.stype = -1;
@@ -144,19 +131,19 @@ cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
res.x = (void*)(mat.derived().data());
res.z = 0;
internal::cholmod_configure_matrix<Scalar>::run(res);
internal::cholmod_configure_matrix<Scalar>(res);
return res;
}
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
* The data are not copied but shared. */
template<typename Scalar, int Flags, typename StorageIndex>
MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,StorageIndex>
(cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
return MappedSparseMatrix<Scalar,Flags,Index>
(cm.nrow, cm.ncol, static_cast<Index*>(cm.p)[cm.ncol],
static_cast<Index*>(cm.p), static_cast<Index*>(cm.i),static_cast<Scalar*>(cm.x) );
}
enum CholmodMode {
@@ -170,39 +157,29 @@ enum CholmodMode {
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename Derived>
class CholmodBase : public SparseSolverBase<Derived>
class CholmodBase : internal::noncopyable
{
protected:
typedef SparseSolverBase<Derived> Base;
using Base::derived;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef MatrixType CholMatrixType;
typedef typename MatrixType::StorageIndex StorageIndex;
enum {
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Index Index;
public:
CholmodBase()
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
{
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
}
explicit CholmodBase(const MatrixType& matrix)
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false)
CholmodBase(const MatrixType& matrix)
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
{
EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
compute(matrix);
}
@@ -214,8 +191,11 @@ class CholmodBase : public SparseSolverBase<Derived>
cholmod_finish(&m_cholmod);
}
inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
inline Index cols() const { return m_cholmodFactor->n; }
inline Index rows() const { return m_cholmodFactor->n; }
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** \brief Reports whether previous computation was successful.
*
@@ -236,6 +216,34 @@ class CholmodBase : public SparseSolverBase<Derived>
return derived();
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<CholmodBase, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived());
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::sparse_solve_retval<CholmodBase, Rhs>
solve(const SparseMatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(rows()==b.rows()
&& "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b");
return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
}
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
@@ -269,7 +277,7 @@ class CholmodBase : public SparseSolverBase<Derived>
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
// If the factorization failed, minor is the column at which it did. On success minor == n.
this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
m_factorizationIsOk = true;
@@ -282,22 +290,20 @@ class CholmodBase : public SparseSolverBase<Derived>
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size==b.rows());
// Cholmod needs column-major stoarge without inner-stride, which corresponds to the default behavior of Ref.
Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
// note: cd stands for Cholmod Dense
Rhs& b_ref(b.const_cast_derived());
cholmod_dense b_cd = viewAsCholmod(b_ref);
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
if(!x_cd)
{
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
@@ -305,8 +311,8 @@ class CholmodBase : public SparseSolverBase<Derived>
}
/** \internal */
template<typename RhsDerived, typename DestDerived>
void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
@@ -314,16 +320,14 @@ class CholmodBase : public SparseSolverBase<Derived>
eigen_assert(size==b.rows());
// note: cs stands for Cholmod Sparse
Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived());
cholmod_sparse b_cs = viewAsCholmod(b_ref);
cholmod_sparse b_cs = viewAsCholmod(b);
cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
if(!x_cs)
{
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs);
dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
cholmod_free_sparse(&x_cs, &m_cholmod);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
@@ -340,61 +344,10 @@ class CholmodBase : public SparseSolverBase<Derived>
*/
Derived& setShift(const RealScalar& offset)
{
m_shiftOffset[0] = double(offset);
m_shiftOffset[0] = offset;
return derived();
}
/** \returns the determinant of the underlying matrix from the current factorization */
Scalar determinant() const
{
using std::exp;
return exp(logDeterminant());
}
/** \returns the log determinant of the underlying matrix from the current factorization */
Scalar logDeterminant() const
{
using std::log;
using numext::real;
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
RealScalar logDet = 0;
Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x);
if (m_cholmodFactor->is_super)
{
// Supernodal factorization stored as a packed list of dense column-major blocs,
// as described by the following structure:
// super[k] == index of the first column of the j-th super node
StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super);
// pi[k] == offset to the description of row indices
StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
// px[k] == offset to the respective dense block
StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px);
Index nb_super_nodes = m_cholmodFactor->nsuper;
for (Index k=0; k < nb_super_nodes; ++k)
{
StorageIndex ncols = super[k + 1] - super[k];
StorageIndex nrows = pi[k + 1] - pi[k];
Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1));
logDet += sk.real().log().sum();
}
}
else
{
// Simplicial factorization stored as standard CSC matrix.
StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p);
Index size = m_cholmodFactor->n;
for (Index k=0; k<size; ++k)
logDet += log(real( x[p[k]] ));
}
if (m_cholmodFactor->is_ll)
logDet *= 2.0;
return logDet;
};
template<typename Stream>
void dumpMemory(Stream& /*s*/)
{}
@@ -402,8 +355,9 @@ class CholmodBase : public SparseSolverBase<Derived>
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
double m_shiftOffset[2];
RealScalar m_shiftOffset[2];
mutable ComputationInfo m_info;
bool m_isInitialized;
int m_factorizationIsOk;
int m_analysisIsOk;
};
@@ -422,13 +376,9 @@ class CholmodBase : public SparseSolverBase<Derived>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
@@ -445,7 +395,7 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
Base::compute(matrix);
}
~CholmodSimplicialLLT() {}
@@ -473,13 +423,9 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
@@ -496,7 +442,7 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
Base::compute(matrix);
}
~CholmodSimplicialLDLT() {}
@@ -522,13 +468,9 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
@@ -545,7 +487,7 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
Base::compute(matrix);
}
~CholmodSupernodalLLT() {}
@@ -573,13 +515,9 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
@@ -596,7 +534,7 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom
CholmodDecomposition(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
Base::compute(matrix);
}
~CholmodDecomposition() {}
@@ -634,6 +572,36 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom
}
};
namespace internal {
template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
: solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
{
typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs>
struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
: sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs>
{
typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec;
EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_CHOLMODSUPPORT_H

View File

@@ -12,16 +12,7 @@
namespace Eigen {
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
/** \class Array
/** \class Array
* \ingroup Core_Module
*
* \brief General-purpose arrays with easy API for coefficient-wise operations
@@ -33,14 +24,20 @@ struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : tra
* API for the %Matrix class provides easy access to linear-algebra
* operations.
*
* See documentation of class Matrix for detailed information on the template parameters
* storage layout.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
*
* \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy
* \sa \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
@@ -72,27 +69,11 @@ class Array
* the usage of 'using'. This should be done only for operator=.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
/** Set all the entries to \a value.
* \sa DenseBase::setConstant(), DenseBase::fill()
*/
/* This overload is needed because the usage of
* using Base::operator=;
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
* the usage of 'using'. This should be done only for operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const Scalar &value)
{
Base::setConstant(value);
return *this;
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
@@ -103,8 +84,7 @@ class Array
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const DenseBase<OtherDerived>& other)
EIGEN_STRONG_INLINE Array& operator=(const ArrayBase<OtherDerived>& other)
{
return Base::_set(other);
}
@@ -112,12 +92,11 @@ class Array
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const Array& other)
{
return Base::_set(other);
}
/** Default constructor.
*
* For fixed-size matrices, does nothing.
@@ -128,7 +107,6 @@ class Array
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array() : Base()
{
Base::_check_template_params();
@@ -138,7 +116,6 @@ class Array
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ??
/** \internal */
EIGEN_DEVICE_FUNC
Array(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{
@@ -147,62 +124,56 @@ class Array
}
#endif
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
Array(Array&& other)
: Base(std::move(other))
{
Base::_check_template_params();
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
Base::_set_noalias(other);
}
EIGEN_DEVICE_FUNC
Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
Array& operator=(Array&& other)
{
other.swap(*this);
return *this;
}
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(const T& x)
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Array(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
Base::_check_template_params();
Base::template _init1<T>(x);
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
{
Base::_check_template_params();
this->template _init2<T0,T1>(val0, val1);
}
#else
/** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
/** constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Array() instead.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(Index dim);
/** constructs an initialized 1x1 Array with the given coefficient */
Array(const Scalar& value);
/** constructs an uninitialized array with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size arrays. For fixed-size arrays,
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Array() instead. */
* Matrix() instead. */
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& val0, const Scalar& val1);
#endif
/** constructs an initialized 3D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2)
{
Base::_check_template_params();
@@ -212,7 +183,6 @@ class Array
m_storage.data()[2] = val2;
}
/** constructs an initialized 4D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3)
{
Base::_check_template_params();
@@ -223,27 +193,51 @@ class Array
m_storage.data()[3] = val3;
}
/** Copy constructor */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Array& other)
: Base(other)
{ }
explicit Array(const Scalar *data);
private:
struct PrivateType {};
public:
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ArrayBase<OtherDerived>& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor */
EIGEN_STRONG_INLINE Array(const Array& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Array(const ReturnByValue<OtherDerived>& other)
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other,
typename internal::enable_if<internal::is_convertible<typename OtherDerived::Scalar,Scalar>::value,
PrivateType>::type = PrivateType())
: Base(other.derived())
{ }
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
Base::_check_template_params();
Base::_resize_to_match(other);
*this = other;
}
EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
template<typename OtherDerived>
void swap(ArrayBase<OtherDerived> const & other)
{ this->_swap(other.derived()); }
inline Index innerStride() const { return 1; }
inline Index outerStride() const { return this->innerSize(); }
#ifdef EIGEN_ARRAY_PLUGIN
#include EIGEN_ARRAY_PLUGIN

View File

@@ -32,7 +32,7 @@ template<typename ExpressionType> class MatrixWrapper;
* \tparam Derived is the derived type, e.g., an array or an expression type.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
*
* \sa class MatrixBase, \ref TopicClassHierarchy
*/
@@ -47,11 +47,13 @@ template<typename Derived> class ArrayBase
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::operator*;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
@@ -60,7 +62,8 @@ template<typename Derived> class ArrayBase
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::CoeffReadCost;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
@@ -80,14 +83,25 @@ template<typename Derived> class ArrayBase
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Base::PlainObject PlainObject;
/** \internal the plain matrix type corresponding to this expression. Note that is not necessarily
* exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const
* reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either
* PlainObject or const PlainObject&.
*/
typedef Array<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainObject;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
#define EIGEN_DOC_UNARY_ADDONS(X,Y)
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/ArrayCwiseUnaryOps.h"
@@ -98,62 +112,44 @@ template<typename Derived> class ArrayBase
# include EIGEN_ARRAYBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_DOC_UNARY_ADDONS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const ArrayBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
/** Set all the entries to \a value.
* \sa DenseBase::setConstant(), DenseBase::fill() */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const Scalar &value)
{ Base::setConstant(value); return derived(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator+=(const Scalar& scalar);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator-=(const Scalar& scalar);
Derived& operator+=(const Scalar& scalar)
{ return *this = derived() + scalar; }
Derived& operator-=(const Scalar& scalar)
{ return *this = derived() - scalar; }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator+=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator-=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator*=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator/=(const ArrayBase<OtherDerived>& other);
public:
EIGEN_DEVICE_FUNC
ArrayBase<Derived>& array() { return *this; }
EIGEN_DEVICE_FUNC
const ArrayBase<Derived>& array() const { return *this; }
/** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array
* \sa MatrixBase::array() */
EIGEN_DEVICE_FUNC
MatrixWrapper<Derived> matrix() { return MatrixWrapper<Derived>(derived()); }
EIGEN_DEVICE_FUNC
const MatrixWrapper<const Derived> matrix() const { return MatrixWrapper<const Derived>(derived()); }
MatrixWrapper<Derived> matrix() { return derived(); }
const MatrixWrapper<const Derived> matrix() const { return derived(); }
// template<typename Dest>
// inline void evalTo(Dest& dst) const { dst = matrix(); }
protected:
EIGEN_DEVICE_FUNC
ArrayBase() : Base() {}
private:
@@ -175,10 +171,11 @@ template<typename Derived> class ArrayBase
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
@@ -188,10 +185,11 @@ ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
@@ -201,10 +199,11 @@ ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::mul_assign_op<Scalar,typename OtherDerived::Scalar>());
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
@@ -214,10 +213,11 @@ ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived &
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::div_assign_op<Scalar,typename OtherDerived::Scalar>());
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}

View File

@@ -32,8 +32,7 @@ struct traits<ArrayWrapper<ExpressionType> >
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
LvalueBitFlag = is_lvalue<ExpressionType>::value ? LvalueBit : 0,
Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag
Flags = Flags0 & ~NestByRefBit
};
};
}
@@ -45,7 +44,6 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
typedef ArrayBase<ArrayWrapper> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
@@ -53,45 +51,76 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::ref_selector<ExpressionType>::non_const_type NestedExpressionType;
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
using Base::coeffRef;
inline ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
inline const Scalar* data() const { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
inline CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_expression.coeffRef(rowId, colId);
return m_expression.coeff(rowId, colId);
}
inline Scalar& coeffRef(Index rowId, Index colId)
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
inline CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_expression.coeffRef(index);
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index rowId, Index colId) const
{
return m_expression.template packet<LoadMode>(rowId, colId);
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
}
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void evalTo(Dest& dst) const { dst = m_expression; }
const typename internal::remove_all<NestedExpressionType>::type&
EIGEN_DEVICE_FUNC
nestedExpression() const
{
return m_expression;
@@ -99,12 +128,10 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
EIGEN_DEVICE_FUNC
void resize(Index newSize) { m_expression.resize(newSize); }
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols) { m_expression.resize(rows,cols); }
void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
protected:
NestedExpressionType m_expression;
@@ -130,8 +157,7 @@ struct traits<MatrixWrapper<ExpressionType> >
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
LvalueBitFlag = is_lvalue<ExpressionType>::value ? LvalueBit : 0,
Flags = (Flags0 & ~(NestByRefBit | LvalueBit)) | LvalueBitFlag
Flags = Flags0 & ~NestByRefBit
};
};
}
@@ -143,7 +169,6 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
@@ -151,40 +176,72 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::ref_selector<ExpressionType>::non_const_type NestedExpressionType;
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
using Base::coeffRef;
inline MatrixWrapper(ExpressionType& a_matrix) : m_expression(a_matrix) {}
EIGEN_DEVICE_FUNC
explicit inline MatrixWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
inline const Scalar* data() const { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_expression.coeff(rowId, colId);
}
inline Scalar& coeffRef(Index rowId, Index colId)
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.derived().coeffRef(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
inline CoeffReturnType coeff(Index index) const
{
return m_expression.coeffRef(index);
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
inline const Scalar& coeffRef(Index index) const
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index rowId, Index colId) const
{
return m_expression.template packet<LoadMode>(rowId, colId);
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<NestedExpressionType>::type&
nestedExpression() const
{
@@ -193,12 +250,10 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
EIGEN_DEVICE_FUNC
void resize(Index newSize) { m_expression.resize(newSize); }
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols) { m_expression.resize(rows,cols); }
void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); }
protected:
NestedExpressionType m_expression;

View File

@@ -14,6 +14,478 @@
namespace Eigen {
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
template <typename Derived, typename OtherDerived>
struct assign_traits
{
public:
enum {
DstIsAligned = Derived::Flags & AlignedBit,
DstHasDirectAccess = Derived::Flags & DirectAccessBit,
SrcIsAligned = OtherDerived::Flags & AlignedBit,
JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
};
private:
enum {
InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
: int(Derived::RowsAtCompileTime),
InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
: int(Derived::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
PacketSize = packet_traits<typename Derived::Scalar>::size
};
enum {
StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
MightVectorize = StorageOrdersAgree
&& (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = MightVectorize && DstHasDirectAccess
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix */
};
public:
enum {
Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) )
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
EIGEN_DEBUG_VAR(Traversal)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_DefaultTraversal_CompleteUnrolling
{
enum {
outer = Index / Derived1::InnerSizeAtCompileTime,
inner = Index % Derived1::InnerSizeAtCompileTime
};
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
dst.copyCoeffByOuterInner(outer, inner, src);
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_DefaultTraversal_InnerUnrolling
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
{
dst.copyCoeffByOuterInner(outer, Index, src);
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, outer);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_LinearTraversal_CompleteUnrolling
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
dst.copyCoeff(Index, src);
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_innervec_CompleteUnrolling
{
enum {
outer = Index / Derived1::InnerSizeAtCompileTime,
inner = Index % Derived1::InnerSizeAtCompileTime,
JointAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
dst.template copyPacketByOuterInner<Derived2, Aligned, JointAlignment>(outer, inner, src);
assign_innervec_CompleteUnrolling<Derived1, Derived2,
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
};
template<typename Derived1, typename Derived2, int Index, int Stop>
struct assign_innervec_InnerUnrolling
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
{
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, Index, src);
assign_innervec_InnerUnrolling<Derived1, Derived2,
Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, outer);
}
};
template<typename Derived1, typename Derived2, int Stop>
struct assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
{
static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
template<typename Derived1, typename Derived2,
int Traversal = assign_traits<Derived1, Derived2>::Traversal,
int Unrolling = assign_traits<Derived1, Derived2>::Unrolling,
int Version = Specialized>
struct assign_impl;
/************************
*** Default traversal ***
************************/
template<typename Derived1, typename Derived2, int Unrolling, int Version>
struct assign_impl<Derived1, Derived2, InvalidTraversal, Unrolling, Version>
{
static inline void run(Derived1 &, const Derived2 &) { }
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, DefaultTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, DefaultTraversal, CompleteUnrolling, Version>
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, DefaultTraversal, InnerUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
::run(dst, src, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
const Index size = dst.size();
for(Index i = 0; i < size; ++i)
dst.copyCoeff(i, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearTraversal, CompleteUnrolling, Version>
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index packetSize = packet_traits<typename Derived1::Scalar>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize)
dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, inner, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, CompleteUnrolling, Version>
{
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
::run(dst, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, InnerUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
assign_innervec_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
::run(dst, src, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
template <bool IsAligned = false>
struct unaligned_assign_impl
{
template <typename Derived, typename OtherDerived>
static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {}
};
template <>
struct unaligned_assign_impl<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
#ifdef _MSC_VER
template <typename Derived, typename OtherDerived>
static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
#else
template <typename Derived, typename OtherDerived>
static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
#endif
{
for (typename Derived::Index index = start; index < end; ++index)
dst.copyCoeff(index, src);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
const Index size = dst.size();
typedef packet_traits<typename Derived1::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
const Index alignedStart = assign_traits<Derived1,Derived2>::DstIsAligned ? 0
: internal::first_aligned(&dst.coeffRef(0), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_assign_impl<assign_traits<Derived1,Derived2>::DstIsAligned!=0>::run(src,dst,0,alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
{
dst.template copyPacket<Derived2, dstAlignment, srcAlignment>(index, src);
}
unaligned_assign_impl<>::run(src,dst,alignedEnd,size);
}
};
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, CompleteUnrolling, Version>
{
typedef typename Derived1::Index Index;
static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
{
enum { size = Derived1::SizeAtCompileTime,
packetSize = packet_traits<typename Derived1::Scalar>::size,
alignedSize = (size/packetSize)*packetSize };
assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename Derived1, typename Derived2, int Version>
struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Version>
{
typedef typename Derived1::Index Index;
static inline void run(Derived1 &dst, const Derived2 &src)
{
typedef typename Derived1::Scalar Scalar;
typedef packet_traits<Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
alignable = PacketTraits::AlignedOnScalar,
dstIsAligned = assign_traits<Derived1,Derived2>::DstIsAligned,
dstAlignment = alignable ? Aligned : int(dstIsAligned),
srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
};
const Scalar *dst_ptr = &dst.coeffRef(0,0);
if((!bool(dstIsAligned)) && (size_t(dst_ptr) % sizeof(Scalar))>0)
{
// the pointer is not aligend-on scalar, so alignment is not possible
return assign_impl<Derived1,Derived2,DefaultTraversal,NoUnrolling>::run(dst, src);
}
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
dst.template copyPacketByOuterInner<Derived2, dstAlignment, Unaligned>(outer, inner, src);
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
dst.copyCoeffByOuterInner(outer, inner, src);
alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
} // end namespace internal
/***************************************************************************
* Part 4 : implementation of DenseBase methods
***************************************************************************/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
@@ -27,62 +499,90 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
#ifdef EIGEN_DEBUG_ASSIGN
internal::assign_traits<Derived, OtherDerived>::debug();
#endif
eigen_assert(rows() == other.rows() && cols() == other.cols());
internal::call_assignment_no_alias(derived(),other.derived());
internal::assign_impl<Derived, OtherDerived, int(SameType) ? int(internal::assign_traits<Derived, OtherDerived>::Traversal)
: int(InvalidTraversal)>::run(derived(),other.derived());
#ifndef EIGEN_NO_DEBUG
checkTransposeAliasing(other.derived());
#endif
return derived();
}
namespace internal {
template<typename Derived, typename OtherDerived,
bool EvalBeforeAssigning = (int(internal::traits<OtherDerived>::Flags) & EvalBeforeAssigningBit) != 0,
bool NeedToTranspose = ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1))
&& int(Derived::SizeAtCompileTime) != 1>
struct assign_selector;
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,false,false> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
template<typename ActualDerived, typename ActualOtherDerived>
static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { other.evalTo(dst); return dst; }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,true,false> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,false,true> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
template<typename ActualDerived, typename ActualOtherDerived>
static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { Transpose<ActualDerived> dstTrans(dst); other.evalTo(dstTrans); return dst; }
};
template<typename Derived, typename OtherDerived>
struct assign_selector<Derived,OtherDerived,true,true> {
static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
};
} // end namespace internal
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
}
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
other.derived().evalTo(derived());
return derived();
return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
}
} // end namespace Eigen

View File

@@ -1,935 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc>
struct copy_using_evaluator_traits
{
typedef typename DstEvaluator::XprType Dst;
typedef typename Dst::Scalar DstScalar;
enum {
DstFlags = DstEvaluator::Flags,
SrcFlags = SrcEvaluator::Flags
};
public:
enum {
DstAlignment = DstEvaluator::Alignment,
SrcAlignment = SrcEvaluator::Alignment,
DstHasDirectAccess = (DstFlags & DirectAccessBit) == DirectAccessBit,
JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment)
};
private:
enum {
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
OuterStride = int(outer_stride_at_compile_time<Dst>::ret),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime
};
// TODO distinguish between linear traversal and inner-traversals
typedef typename find_best_packet<DstScalar,Dst::SizeAtCompileTime>::type LinearPacketType;
typedef typename find_best_packet<DstScalar,InnerSize>::type InnerPacketType;
enum {
LinearPacketSize = unpacket_traits<LinearPacketType>::size,
InnerPacketSize = unpacket_traits<InnerPacketType>::size
};
public:
enum {
LinearRequiredAlignment = unpacket_traits<LinearPacketType>::alignment,
InnerRequiredAlignment = unpacket_traits<InnerPacketType>::alignment
};
private:
enum {
DstIsRowMajor = DstFlags&RowMajorBit,
SrcIsRowMajor = SrcFlags&RowMajorBit,
StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
MightVectorize = bool(StorageOrdersAgree)
&& (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit)
&& bool(functor_traits<AssignFunc>::PacketAccess),
MayInnerVectorize = MightVectorize
&& int(InnerSize)!=Dynamic && int(InnerSize)%int(InnerPacketSize)==0
&& int(OuterStride)!=Dynamic && int(OuterStride)%int(InnerPacketSize)==0
&& (EIGEN_UNALIGNED_VECTORIZE || int(JointAlignment)>=int(InnerRequiredAlignment)),
MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize) && bool(DstHasDirectAccess)
&& (EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)) || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = bool(MightVectorize) && bool(DstHasDirectAccess)
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=(EIGEN_UNALIGNED_VECTORIZE?InnerPacketSize:(3*InnerPacketSize)))
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix
However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */
};
public:
enum {
Traversal = int(MayLinearVectorize) && (LinearPacketSize>InnerPacketSize) ? int(LinearVectorizedTraversal)
: int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
typedef typename conditional<int(Traversal)==LinearVectorizedTraversal, LinearPacketType, InnerPacketType>::type PacketType;
private:
enum {
ActualPacketSize = int(Traversal)==LinearVectorizedTraversal ? LinearPacketSize
: Vectorized ? InnerPacketSize
: 1,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * ActualPacketSize,
MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic
&& int(Dst::SizeAtCompileTime) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(InnerSize) * (int(DstEvaluator::CoeffReadCost)+int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && ( EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment)>=int(LinearRequiredAlignment)))
? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(NoUnrolling) )
#if EIGEN_UNALIGNED_VECTORIZE
: int(Traversal) == int(SliceVectorizedTraversal)
? ( bool(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling) )
#endif
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
std::cerr.setf(std::ios::hex, std::ios::basefield);
std::cerr << "DstFlags" << " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl;
std::cerr << "SrcFlags" << " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl;
std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstAlignment)
EIGEN_DEBUG_VAR(SrcAlignment)
EIGEN_DEBUG_VAR(LinearRequiredAlignment)
EIGEN_DEBUG_VAR(InnerRequiredAlignment)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(LinearPacketSize)
EIGEN_DEBUG_VAR(InnerPacketSize)
EIGEN_DEBUG_VAR(ActualPacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
std::cerr << "Traversal" << " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
std::cerr << "Unrolling" << " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
std::cerr << std::endl;
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.assignCoeffByOuterInner(outer, inner);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.assignCoeffByOuterInner(outer, Index_);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index_+1, Stop>::run(kernel, outer);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) { }
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel)
{
kernel.assignCoeff(Index);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
enum { NextIndex = Index + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling
{
typedef typename Kernel::PacketType PacketType;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, Index_);
enum { NextIndex = Index_ + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop, SrcAlignment, DstAlignment>::run(kernel, outer);
}
};
template<typename Kernel, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop, SrcAlignment, DstAlignment>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, Index) { }
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// dense_assignment_loop is based on assign_impl
template<typename Kernel,
int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop;
/************************
*** Default traversal ***
************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel &kernel)
{
for(Index outer = 0; outer < kernel.outerSize(); ++outer) {
for(Index inner = 0; inner < kernel.innerSize(); ++inner) {
kernel.assignCoeffByOuterInner(outer, inner);
}
}
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts
template <bool IsAligned = false>
struct unaligned_dense_assignment_loop
{
// if IsAligned = true, then do nothing
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index, Index) {}
};
template <>
struct unaligned_dense_assignment_loop<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
// FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
template <typename Kernel>
static EIGEN_DONT_INLINE void run(Kernel &kernel,
Index start,
Index end)
#else
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel,
Index start,
Index end)
#endif
{
for (Index index = start; index < end; ++index)
kernel.assignCoeff(index);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
const Index size = kernel.size();
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
requestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment,
packetSize = unpacket_traits<PacketType>::size,
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = packet_traits<Scalar>::AlignedOnScalar ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment),
srcAlignment = Kernel::AssignmentTraits::JointAlignment
};
const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned<requestedAlignment>(kernel.dstDataPtr(), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_dense_assignment_loop<dstIsAligned!=0>::run(kernel, 0, alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
kernel.template assignPacket<dstAlignment, srcAlignment, PacketType>(index);
unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum { size = DstXprType::SizeAtCompileTime,
packetSize =unpacket_traits<PacketType>::size,
alignedSize = (size/packetSize)*packetSize };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, alignedSize>::run(kernel);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, alignedSize, size>::run(kernel);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
{
typedef typename Kernel::PacketType PacketType;
enum {
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index packetSize = unpacket_traits<PacketType>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize)
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::AssignmentTraits Traits;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime,
Traits::SrcAlignment, Traits::DstAlignment>::run(kernel, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
const Index size = kernel.size();
for(Index i = 0; i < size; ++i)
kernel.assignCoeff(i);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
packetSize = unpacket_traits<PacketType>::size,
requestedAlignment = int(Kernel::AssignmentTraits::InnerRequiredAlignment),
alignable = packet_traits<Scalar>::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment)>=sizeof(Scalar),
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = alignable ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment)
};
const Scalar *dst_ptr = kernel.dstDataPtr();
if((!bool(dstIsAligned)) && (UIntPtr(dst_ptr) % sizeof(Scalar))>0)
{
// the pointer is not aligend-on scalar, so alignment is not possible
return dense_assignment_loop<Kernel,DefaultTraversal,NoUnrolling>::run(kernel);
}
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned<requestedAlignment>(dst_ptr, innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
kernel.template assignPacketByOuterInner<dstAlignment, Unaligned, PacketType>(outer, inner);
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
alignedStart = numext::mini((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
#if EIGEN_UNALIGNED_VECTORIZE
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, InnerUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum { size = DstXprType::InnerSizeAtCompileTime,
packetSize =unpacket_traits<PacketType>::size,
vectorizableSize = (size/packetSize)*packetSize };
for(Index outer = 0; outer < kernel.outerSize(); ++outer)
{
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, vectorizableSize, 0, 0>::run(kernel, outer);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, vectorizableSize, size>::run(kernel, outer);
}
}
};
#endif
/***************************************************************************
* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel
{
protected:
typedef typename DstEvaluatorTypeT::XprType DstXprType;
typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
typedef DstEvaluatorTypeT DstEvaluatorType;
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
{
#ifdef EIGEN_DEBUG_ASSIGN
AssignmentTraits::debug();
#endif
}
EIGEN_DEVICE_FUNC Index size() const { return m_dstExpr.size(); }
EIGEN_DEVICE_FUNC Index innerSize() const { return m_dstExpr.innerSize(); }
EIGEN_DEVICE_FUNC Index outerSize() const { return m_dstExpr.outerSize(); }
EIGEN_DEVICE_FUNC Index rows() const { return m_dstExpr.rows(); }
EIGEN_DEVICE_FUNC Index cols() const { return m_dstExpr.cols(); }
EIGEN_DEVICE_FUNC Index outerStride() const { return m_dstExpr.outerStride(); }
EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() { return m_dst; }
EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const { return m_src; }
/// Assign src(row,col) to dst(row,col) through the assignment functor.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col)
{
m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index)
{
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeffByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignCoeff(row, col);
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row,col), m_src.template packet<LoadMode,PacketType>(row,col));
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode,PacketType>(index));
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignPacket<StoreMode,LoadMode,PacketType>(row, col);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? inner
: outer;
}
EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const
{
return m_dstExpr.data();
}
protected:
DstEvaluatorType& m_dst;
const SrcEvaluatorType& m_src;
const Functor &m_functor;
// TODO find a way to avoid the needs of the original expression
DstXprType& m_dstExpr;
};
/***************************************************************************
* Part 5 : Entry point for dense rectangular assignment
***************************************************************************/
template<typename DstXprType,typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const Functor &/*func*/)
{
EIGEN_ONLY_USED_FOR_DEBUG(dst);
EIGEN_ONLY_USED_FOR_DEBUG(src);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
}
template<typename DstXprType,typename SrcXprType, typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void resize_if_allowed(DstXprType &dst, const SrcXprType& src, const internal::assign_op<T1,T2> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if(((dst.rows()!=dstRows) || (dst.cols()!=dstCols)))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == dstRows && dst.cols() == dstCols);
}
template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func)
{
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
// NOTE To properly handle A = (A*A.transpose())/s with A rectangular,
// we need to resize the destination after the source evaluator has been created.
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
typedef generic_dense_assignment_kernel<DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template<typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src)
{
call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>());
}
/***************************************************************************
* Part 6 : Generic assignment
***************************************************************************/
// Based on the respective shapes of the destination and source,
// the class AssignmentKind determine the kind of assignment mechanism.
// AssignmentKind must define a Kind typedef.
template<typename DstShape, typename SrcShape> struct AssignmentKind;
// Assignement kind defined in this file:
struct Dense2Dense {};
struct EigenBase2EigenBase {};
template<typename,typename> struct AssignmentKind { typedef EigenBase2EigenBase Kind; };
template<> struct AssignmentKind<DenseShape,DenseShape> { typedef Dense2Dense Kind; };
// This is the main assignment class
template< typename DstXprType, typename SrcXprType, typename Functor,
typename Kind = typename AssignmentKind< typename evaluator_traits<DstXprType>::Shape , typename evaluator_traits<SrcXprType>::Shape >::Kind,
typename EnableIf = void>
struct Assignment;
// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic transposition.
// Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite complicated.
// So this intermediate function removes everything related to "assume-aliasing" such that Assignment
// does not has to bother about these annoying details.
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(const Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
// Deal with "assume-aliasing"
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if< evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
typename plain_matrix_type<Src>::type tmp(src);
call_assignment_no_alias(dst, tmp, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<!evaluator_assume_aliasing<Src>::value, void*>::type = 0)
{
call_assignment_no_alias(dst, src, func);
}
// by-pass "assume-aliasing"
// When there is no aliasing, we require that 'dst' has been properly resized
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
call_assignment_no_alias(dst.expression(), src, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
enum {
NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1)
|| (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1)
) && int(Dst::SizeAtCompileTime) != 1
};
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst>::type ActualDstTypeCleaned;
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst&>::type ActualDstType;
ActualDstType actualDst(dst);
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar);
Assignment<ActualDstTypeCleaned,Src,Func>::run(actualDst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias(Dst& dst, const Src& src)
{
call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func)
{
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst,Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename Dst::Scalar,typename Src::Scalar);
Assignment<Dst,Src,Func>::run(dst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src)
{
call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar,typename Src::Scalar>());
}
// forward declaration
template<typename Dst, typename Src> void check_for_aliasing(const Dst &dst, const Src &src);
// Generic Dense to Dense assignment
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Weak>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
#ifndef EIGEN_NO_DEBUG
internal::check_for_aliasing(dst, src);
#endif
call_dense_assignment_loop(dst, src, func);
}
};
// Generic assignment through evalTo.
// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template< typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Weak>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.evalTo(dst);
}
// NOTE The following two functions are templated to avoid their instanciation if not needed
// This is needed because some expressions supports evalTo only and/or have 'void' as scalar type.
template<typename SrcScalarType>
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.addTo(dst);
}
template<typename SrcScalarType>
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,SrcScalarType> &/*func*/)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.subTo(dst);
}
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H

View File

@@ -1,7 +1,6 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
@@ -38,13 +37,17 @@ namespace Eigen {
namespace internal {
template<typename Dst, typename Src>
template<typename Op> struct vml_call
{ enum { IsSupported = 0 }; };
template<typename Dst, typename Src, typename UnaryOp>
class vml_assign_traits
{
private:
enum {
DstHasDirectAccess = Dst::Flags & DirectAccessBit,
SrcHasDirectAccess = Src::Flags & DirectAccessBit,
StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
@@ -54,122 +57,165 @@ class vml_assign_traits
: int(Dst::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
MightEnableVml = StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
MightEnableVml = vml_call<UnaryOp>::IsSupported && StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess
&& Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD
LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD,
MayEnableVml = MightEnableVml && LargeEnough,
MayLinearize = MayEnableVml && MightLinearize
};
public:
enum {
EnableVml = MightEnableVml && LargeEnough,
Traversal = MightLinearize ? LinearTraversal : DefaultTraversal
Traversal = MayLinearize ? LinearVectorizedTraversal
: MayEnableVml ? InnerVectorizedTraversal
: DefaultTraversal
};
};
#define EIGEN_PP_EXPAND(ARG) ARG
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling,
int VmlTraversal = vml_assign_traits<Derived1, Derived2, UnaryOp>::Traversal >
struct vml_assign_impl
: assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>
{
};
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, InnerVectorizedTraversal>
{
typedef typename Derived1::Scalar Scalar;
typedef typename Derived1::Index Index;
static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
{
// in case we want to (or have to) skip VML at runtime we can call:
// assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer) {
const Scalar *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) :
&(src.nestedExpression().coeffRef(0, outer));
Scalar *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer));
vml_call<UnaryOp>::run(src.functor(), innerSize, src_ptr, dst_ptr );
}
}
};
template<typename Derived1, typename Derived2, typename UnaryOp, int Traversal, int Unrolling>
struct vml_assign_impl<Derived1, Derived2, UnaryOp, Traversal, Unrolling, LinearVectorizedTraversal>
{
static inline void run(Derived1& dst, const CwiseUnaryOp<UnaryOp, Derived2>& src)
{
// in case we want to (or have to) skip VML at runtime we can call:
// assign_impl<Derived1,Eigen::CwiseUnaryOp<UnaryOp, Derived2>,Traversal,Unrolling,BuiltIn>::run(dst,src);
vml_call<UnaryOp>::run(src.functor(), dst.size(), src.nestedExpression().data(), dst.data() );
}
};
// Macroses
#define EIGEN_MKL_VML_SPECIALIZE_ASSIGN(TRAVERSAL,UNROLLING) \
template<typename Derived1, typename Derived2, typename UnaryOp> \
struct assign_impl<Derived1, Eigen::CwiseUnaryOp<UnaryOp, Derived2>, TRAVERSAL, UNROLLING, Specialized> { \
static inline void run(Derived1 &dst, const Eigen::CwiseUnaryOp<UnaryOp, Derived2> &src) { \
vml_assign_impl<Derived1,Derived2,UnaryOp,TRAVERSAL,UNROLLING>::run(dst, src); \
} \
};
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,InnerUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,InnerUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,CompleteUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,NoUnrolling)
EIGEN_MKL_VML_SPECIALIZE_ASSIGN(SliceVectorizedTraversal,NoUnrolling)
#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
#define EIGEN_VMLMODE_EXPAND_LA , VML_HA
#define EIGEN_MKL_VML_MODE VML_HA
#else
#define EIGEN_VMLMODE_EXPAND_LA , VML_LA
#define EIGEN_MKL_VML_MODE VML_LA
#endif
#define EIGEN_VMLMODE_EXPAND__
#define EIGEN_VMLMODE_PREFIX_LA vm
#define EIGEN_VMLMODE_PREFIX__ v
#define EIGEN_VMLMODE_PREFIX(VMLMODE) EIGEN_CAT(EIGEN_VMLMODE_PREFIX_,VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
template< typename DstXprType, typename SrcXprNested> \
struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE,EIGENTYPE>, \
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
resize_if_allowed(dst, src, func); \
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) { \
VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \
(VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
} else { \
const Index outerSize = dst.outerSize(); \
for(Index outer = 0; outer < outerSize; ++outer) { \
const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \
&(src.nestedExpression().coeffRef(0, outer)); \
EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, \
(VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
} \
} \
} \
}; \
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),s##VMLOP), float, float, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),d##VMLOP), double, double, VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),c##VMLOP), scomplex, MKL_Complex8, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),z##VMLOP), dcomplex, MKL_Complex16, VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sin, Sin, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(asin, Asin, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sinh, Sinh, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cos, Cos, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(acos, Acos, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cosh, Cosh, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tan, Tan, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(atan, Atan, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tanh, Tanh, LA)
// EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(exp, Exp, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log, Ln, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log10, Log10, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sqrt, Sqrt, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(arg, Arg, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(round, Round, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(floor, Floor, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _)
#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
template< typename DstXprType, typename SrcXprNested, typename Plain> \
struct Assignment<DstXprType, CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> >, assign_op<EIGENTYPE,EIGENTYPE>, \
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
typedef CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> > SrcXprType; \
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
resize_if_allowed(dst, src, func); \
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
VMLTYPE exponent = reinterpret_cast<const VMLTYPE&>(src.rhs().functor().m_other); \
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) \
{ \
VMLOP( dst.size(), (const VMLTYPE*)src.lhs().data(), exponent, \
(VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
} else { \
const Index outerSize = dst.outerSize(); \
for(Index outer = 0; outer < outerSize; ++outer) { \
const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.lhs().coeffRef(outer,0)) : \
&(src.lhs().coeffRef(0, outer)); \
EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, exponent, \
(VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
} \
} \
} \
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
enum { IsSupported = 1 }; \
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst); \
} \
};
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmsPowx, float, float, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdPowx, double, double, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcPowx, scomplex, MKL_Complex8, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzPowx, dcomplex, MKL_Complex16, LA)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
enum { IsSupported = 1 }; \
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& /*func*/, \
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst, vmlMode); \
} \
};
#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \
template<> struct vml_call< scalar_##EIGENOP##_op<EIGENTYPE> > { \
enum { IsSupported = 1 }; \
static inline void run( const scalar_##EIGENOP##_op<EIGENTYPE>& func, \
int size, const EIGENTYPE* src, EIGENTYPE* dst) { \
EIGENTYPE exponent = func.m_exponent; \
MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \
VMLOP(&size, (const VMLTYPE*)src, (const VMLTYPE*)&exponent, \
(VMLTYPE*)dst, &vmlMode); \
} \
};
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vs##VMLOP, float, float) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vd##VMLOP, double, double)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vc##VMLOP, scomplex, MKL_Complex8) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vz##VMLOP, dcomplex, MKL_Complex16)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vms##VMLOP, float, float) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmd##VMLOP, double, double)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmc##VMLOP, scomplex, MKL_Complex8) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmz##VMLOP, dcomplex, MKL_Complex16)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sin, Sin)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan)
//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sqrt, Sqrt)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr)
// The vm*powx functions are not avaibale in the windows version of MKL.
#ifndef _WIN32
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmspowx_, float, float)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdpowx_, double, double)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcpowx_, scomplex, MKL_Complex8)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzpowx_, dcomplex, MKL_Complex16)
#endif
} // end namespace internal

View File

@@ -32,7 +32,7 @@ class BandMatrixBase : public EigenBase<Derived>
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
typedef typename DenseMatrixType::StorageIndex StorageIndex;
typedef typename DenseMatrixType::Index Index;
typedef typename internal::traits<Derived>::CoefficientsType CoefficientsType;
typedef EigenBase<Derived> Base;
@@ -161,15 +161,15 @@ class BandMatrixBase : public EigenBase<Derived>
*
* \brief Represents a rectangular matrix with a banded storage
*
* \tparam _Scalar Numeric type, i.e. float, double, int
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
* \tparam _Supers Number of super diagonal
* \tparam _Subs Number of sub diagonal
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
* \param _Scalar Numeric type, i.e. float, double, int
* \param Rows Number of rows, or \b Dynamic
* \param Cols Number of columns, or \b Dynamic
* \param Supers Number of super diagonal
* \param Subs Number of sub diagonal
* \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
*
* \sa class TridiagonalMatrix
*/
@@ -179,7 +179,7 @@ struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
typedef DenseIndex Index;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
RowsAtCompileTime = _Rows,
@@ -201,10 +201,10 @@ class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Sub
public:
typedef typename internal::traits<BandMatrix>::Scalar Scalar;
typedef typename internal::traits<BandMatrix>::StorageIndex StorageIndex;
typedef typename internal::traits<BandMatrix>::Index Index;
typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
explicit inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
: m_coeffs(1+supers+subs,cols),
m_rows(rows), m_supers(supers), m_subs(subs)
{
@@ -241,7 +241,7 @@ struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Opt
{
typedef typename _CoefficientsType::Scalar Scalar;
typedef typename _CoefficientsType::StorageKind StorageKind;
typedef typename _CoefficientsType::StorageIndex StorageIndex;
typedef typename _CoefficientsType::Index Index;
enum {
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
RowsAtCompileTime = _Rows,
@@ -264,9 +264,9 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
typedef typename internal::traits<BandMatrixWrapper>::Scalar Scalar;
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
typedef typename internal::traits<BandMatrixWrapper>::StorageIndex StorageIndex;
typedef typename internal::traits<BandMatrixWrapper>::Index Index;
explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
: m_coeffs(coeffs),
m_rows(rows), m_supers(supers), m_subs(subs)
{
@@ -302,9 +302,9 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
*
* \brief Represents a tridiagonal matrix with a compact banded storage
*
* \tparam Scalar Numeric type, i.e. float, double, int
* \tparam Size Number of rows and cols, or \b Dynamic
* \tparam Options Can be 0 or \b SelfAdjoint
* \param _Scalar Numeric type, i.e. float, double, int
* \param Size Number of rows and cols, or \b Dynamic
* \param _Options Can be 0 or \b SelfAdjoint
*
* \sa class BandMatrix
*/
@@ -312,9 +312,9 @@ template<typename Scalar, int Size, int Options>
class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
{
typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
typedef typename Base::StorageIndex StorageIndex;
typedef typename Base::Index Index;
public:
explicit TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
inline typename Base::template DiagonalIntReturnType<1>::Type super()
{ return Base::template diagonal<1>(); }
@@ -327,25 +327,6 @@ class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint
protected:
};
struct BandShape {};
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct evaluator_traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef BandShape Shape;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef BandShape Shape;
};
template<> struct AssignmentKind<DenseShape,BandShape> { typedef EigenBase2EigenBase Kind; };
} // end namespace internal
} // end namespace Eigen

View File

@@ -13,70 +13,14 @@
namespace Eigen {
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprType>
{
typedef typename traits<XprType>::Scalar Scalar;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::XprKind XprKind;
typedef typename ref_selector<XprType>::type XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum{
MatrixRows = traits<XprType>::RowsAtCompileTime,
MatrixCols = traits<XprType>::ColsAtCompileTime,
RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
MaxRowsAtCompileTime = BlockRows==0 ? 0
: RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
: int(traits<XprType>::MaxRowsAtCompileTime),
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: XprTypeIsRowMajor,
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(inner_stride_at_compile_time<XprType>::ret)
: int(outer_stride_at_compile_time<XprType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
// FIXME, this traits is rather specialized for dense object and it needs to be cleaned further
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
Flags = (traits<XprType>::Flags & (DirectAccessBit | (InnerPanel?CompressedAccessBit:0))) | FlagsLvalueBit | FlagsRowMajorBit,
// FIXME DirectAccessBit should not be handled by expressions
//
// Alignment is needed by MapBase's assertions
// We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator
Alignment = 0
};
};
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false,
bool HasDirectAccess = internal::has_direct_access<XprType>::ret> class BlockImpl_dense;
} // end namespace internal
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typename StorageKind> class BlockImpl;
/** \class Block
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size block
*
* \tparam XprType the type of the expression in which we are taking a block
* \tparam BlockRows the number of rows of the block we are taking at compile time (optional)
* \tparam BlockCols the number of columns of the block we are taking at compile time (optional)
* \tparam InnerPanel is true, if the block maps to a set of rows of a row major matrix or
* to set of columns of a column major matrix (optional). The parameter allows to determine
* at compile time whether aligned access is possible on the block expression.
* \param XprType the type of the expression in which we are taking a block
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
*
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
@@ -100,6 +44,62 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typena
*
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
*/
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprType>
{
typedef typename traits<XprType>::Scalar Scalar;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::XprKind XprKind;
typedef typename nested<XprType>::type XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum{
MatrixRows = traits<XprType>::RowsAtCompileTime,
MatrixCols = traits<XprType>::ColsAtCompileTime,
RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
MaxRowsAtCompileTime = BlockRows==0 ? 0
: RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
: int(traits<XprType>::MaxRowsAtCompileTime),
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsDense = is_same<StorageKind,Dense>::value,
IsRowMajor = (IsDense&&MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (IsDense&&MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: XprTypeIsRowMajor,
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(inner_stride_at_compile_time<XprType>::ret)
: int(outer_stride_at_compile_time<XprType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
&& (InnerStrideAtCompileTime == 1)
? PacketAccessBit : 0,
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
DirectAccessBit |
MaskPacketAccessBit |
MaskAlignedBit),
Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit
};
};
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false,
bool HasDirectAccess = internal::has_direct_access<XprType>::ret> class BlockImpl_dense;
} // end namespace internal
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typename StorageKind> class BlockImpl;
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class Block
: public BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind>
{
@@ -109,12 +109,9 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class
typedef Impl Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
typedef typename internal::remove_all<XprType>::type NestedExpression;
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr, Index i) : Impl(xpr,i)
{
eigen_assert( (i>=0) && (
@@ -124,27 +121,25 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr, Index startRow, Index startCol)
: Impl(xpr, startRow, startCol)
inline Block(XprType& xpr, Index a_startRow, Index a_startCol)
: Impl(xpr, a_startRow, a_startCol)
{
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
eigen_assert(startRow >= 0 && BlockRows >= 0 && startRow + BlockRows <= xpr.rows()
&& startCol >= 0 && BlockCols >= 0 && startCol + BlockCols <= xpr.cols());
eigen_assert(a_startRow >= 0 && BlockRows >= 1 && a_startRow + BlockRows <= xpr.rows()
&& a_startCol >= 0 && BlockCols >= 1 && a_startCol + BlockCols <= xpr.cols());
}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr,
Index startRow, Index startCol,
Index a_startRow, Index a_startCol,
Index blockRows, Index blockCols)
: Impl(xpr, startRow, startCol, blockRows, blockCols)
: Impl(xpr, a_startRow, a_startCol, blockRows, blockCols)
{
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
eigen_assert(startRow >= 0 && blockRows >= 0 && startRow <= xpr.rows() - blockRows
&& startCol >= 0 && blockCols >= 0 && startCol <= xpr.cols() - blockCols);
eigen_assert(a_startRow >= 0 && blockRows >= 0 && a_startRow <= xpr.rows() - blockRows
&& a_startCol >= 0 && blockCols >= 0 && a_startCol <= xpr.cols() - blockCols);
}
};
@@ -155,15 +150,14 @@ class BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, Dense>
: public internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel>
{
typedef internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel> Impl;
typedef typename XprType::StorageIndex StorageIndex;
typedef typename XprType::Index Index;
public:
typedef Impl Base;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {}
EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index startRow, Index startCol) : Impl(xpr, startRow, startCol) {}
EIGEN_DEVICE_FUNC
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Impl(xpr, startRow, startCol, blockRows, blockCols) {}
inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {}
inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol) : Impl(xpr, a_startRow, a_startCol) {}
inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol, Index blockRows, Index blockCols)
: Impl(xpr, a_startRow, a_startCol, blockRows, blockCols) {}
};
namespace internal {
@@ -173,18 +167,16 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool H
: public internal::dense_xpr_base<Block<XprType, BlockRows, BlockCols, InnerPanel> >::type
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
typedef typename internal::ref_selector<XprType>::non_const_type XprTypeNested;
public:
typedef typename internal::dense_xpr_base<BlockType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
// class InnerIterator; // FIXME apparently never used
class InnerIterator;
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
: m_xpr(xpr),
// It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime,
@@ -199,76 +191,75 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool H
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
inline BlockImpl_dense(XprType& xpr, Index a_startRow, Index a_startCol)
: m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol),
m_blockRows(BlockRows), m_blockCols(BlockCols)
{}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index a_startRow, Index a_startCol,
Index blockRows, Index blockCols)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
: m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol),
m_blockRows(blockRows), m_blockCols(blockCols)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_blockRows.value(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_blockCols.value(); }
inline Index rows() const { return m_blockRows.value(); }
inline Index cols() const { return m_blockCols.value(); }
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index rowId, Index colId)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
return m_xpr.const_cast_derived()
.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_xpr.derived().coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
return m_xpr.derived()
.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
EIGEN_DEVICE_FUNC
inline const CoeffReturnType coeff(Index index) const
{
return m_xpr.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
return m_xpr
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline PacketScalar packet(Index rowId, Index colId) const
{
return m_xpr.template packet<Unaligned>(rowId + m_startRow.value(), colId + m_startCol.value());
return m_xpr.template packet<Unaligned>
(rowId + m_startRow.value(), colId + m_startCol.value());
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_xpr.template writePacket<Unaligned>(rowId + m_startRow.value(), colId + m_startCol.value(), val);
m_xpr.const_cast_derived().template writePacket<Unaligned>
(rowId + m_startRow.value(), colId + m_startCol.value(), val);
}
template<int LoadMode>
@@ -282,46 +273,40 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool H
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_xpr.template writePacket<Unaligned>
m_xpr.const_cast_derived().template writePacket<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \sa MapBase::data() */
EIGEN_DEVICE_FUNC inline const Scalar* data() const;
EIGEN_DEVICE_FUNC inline Index innerStride() const;
EIGEN_DEVICE_FUNC inline Index outerStride() const;
inline const Scalar* data() const;
inline Index innerStride() const;
inline Index outerStride() const;
#endif
EIGEN_DEVICE_FUNC
const typename internal::remove_all<XprTypeNested>::type& nestedExpression() const
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
{
return m_xpr;
}
EIGEN_DEVICE_FUNC
XprType& nestedExpression() { return m_xpr; }
EIGEN_DEVICE_FUNC
StorageIndex startRow() const
Index startRow() const
{
return m_startRow.value();
}
EIGEN_DEVICE_FUNC
StorageIndex startCol() const
Index startCol() const
{
return m_startCol.value();
}
protected:
XprTypeNested m_xpr;
const internal::variable_if_dynamic<StorageIndex, (XprType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<StorageIndex, (XprType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<StorageIndex, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<StorageIndex, ColsAtCompileTime> m_blockCols;
const typename XprType::Nested m_xpr;
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
};
/** \internal Internal implementation of dense Blocks in the direct access case.*/
@@ -330,10 +315,6 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
typedef typename internal::ref_selector<XprType>::non_const_type XprTypeNested;
enum {
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0
};
public:
typedef MapBase<BlockType> Base;
@@ -342,52 +323,42 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
: Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor))
|| ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()),
: Base(internal::const_cast_ptr(&xpr.coeffRef(
(BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0,
(BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)),
BlockRows==1 ? 1 : xpr.rows(),
BlockCols==1 ? 1 : xpr.cols()),
m_xpr(xpr),
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)
m_xpr(xpr)
{
init();
}
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
: Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)),
m_xpr(xpr), m_startRow(startRow), m_startCol(startCol)
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr)
{
init();
}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols),
m_xpr(xpr), m_startRow(startRow), m_startCol(startCol)
: Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols),
m_xpr(xpr)
{
init();
}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<XprTypeNested>::type& nestedExpression() const
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
{
return m_xpr;
}
EIGEN_DEVICE_FUNC
XprType& nestedExpression() { return m_xpr; }
/** \sa MapBase::innerStride() */
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return internal::traits<BlockType>::HasSameStorageOrderAsXprType
@@ -396,24 +367,11 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
}
/** \sa MapBase::outerStride() */
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return m_outerStride;
}
EIGEN_DEVICE_FUNC
StorageIndex startRow() const
{
return m_startRow.value();
}
EIGEN_DEVICE_FUNC
StorageIndex startCol() const
{
return m_startCol.value();
}
#ifndef __SUNPRO_CC
// FIXME sunstudio is not friendly with the above friend...
// META-FIXME there is no 'friend' keyword around here. Is this obsolete?
@@ -422,7 +380,6 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal used by allowAligned() */
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols)
: Base(data, blockRows, blockCols), m_xpr(xpr)
{
@@ -431,7 +388,6 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
#endif
protected:
EIGEN_DEVICE_FUNC
void init()
{
m_outerStride = internal::traits<BlockType>::HasSameStorageOrderAsXprType
@@ -439,9 +395,7 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
: m_xpr.innerStride();
}
XprTypeNested m_xpr;
const internal::variable_if_dynamic<StorageIndex, (XprType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<StorageIndex, (XprType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol;
typename XprType::Nested m_xpr;
Index m_outerStride;
};

View File

@@ -17,10 +17,9 @@ namespace internal {
template<typename Derived, int UnrollCount>
struct all_unroller
{
typedef typename Derived::ExpressionTraits Traits;
enum {
col = (UnrollCount-1) / Traits::RowsAtCompileTime,
row = (UnrollCount-1) % Traits::RowsAtCompileTime
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
@@ -44,12 +43,11 @@ struct all_unroller<Derived, Dynamic>
template<typename Derived, int UnrollCount>
struct any_unroller
{
typedef typename Derived::ExpressionTraits Traits;
enum {
col = (UnrollCount-1) / Traits::RowsAtCompileTime,
row = (UnrollCount-1) % Traits::RowsAtCompileTime
col = (UnrollCount-1) / Derived::RowsAtCompileTime,
row = (UnrollCount-1) % Derived::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
@@ -80,19 +78,19 @@ struct any_unroller<Derived, Dynamic>
template<typename Derived>
inline bool DenseBase<Derived>::all() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
&& CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
Evaluator evaluator(derived());
if(unroll)
return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
return internal::all_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (!evaluator.coeff(i, j)) return false;
if (!coeff(i, j)) return false;
return true;
}
}
@@ -104,19 +102,19 @@ inline bool DenseBase<Derived>::all() const
template<typename Derived>
inline bool DenseBase<Derived>::any() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
&& CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
Evaluator evaluator(derived());
if(unroll)
return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
return internal::any_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (evaluator.coeff(i, j)) return true;
if (coeff(i, j)) return true;
return false;
}
}
@@ -126,7 +124,7 @@ inline bool DenseBase<Derived>::any() const
* \sa all(), any()
*/
template<typename Derived>
inline Eigen::Index DenseBase<Derived>::count() const
inline typename DenseBase<Derived>::Index DenseBase<Derived>::count() const
{
return derived().template cast<bool>().template cast<Index>().sum();
}
@@ -138,11 +136,7 @@ inline Eigen::Index DenseBase<Derived>::count() const
template<typename Derived>
inline bool DenseBase<Derived>::hasNaN() const
{
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
return derived().array().isNaN().any();
#else
return !((derived().array()==derived().array()).all());
#endif
}
/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values.
@@ -152,11 +146,7 @@ inline bool DenseBase<Derived>::hasNaN() const
template<typename Derived>
inline bool DenseBase<Derived>::allFinite() const
{
#if EIGEN_COMP_MSVC || (defined __FAST_MATH__)
return derived().array().isFinite().all();
#else
return !((derived()-derived()).hasNaN());
#endif
}
} // end namespace Eigen

View File

@@ -22,14 +22,14 @@ namespace Eigen {
* the return type of MatrixBase::operator<<, and most of the time this is the only
* way it is used.
*
* \sa \blank \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
*/
template<typename XprType>
struct CommaInitializer
{
typedef typename XprType::Scalar Scalar;
typedef typename XprType::Index Index;
EIGEN_DEVICE_FUNC
inline CommaInitializer(XprType& xpr, const Scalar& s)
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
{
@@ -37,7 +37,6 @@ struct CommaInitializer
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
{
@@ -47,7 +46,6 @@ struct CommaInitializer
/* Copy/Move constructor which transfers ownership. This is crucial in
* absence of return value optimization to avoid assertions during destruction. */
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
EIGEN_DEVICE_FUNC
inline CommaInitializer(const CommaInitializer& o)
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
// Mark original object as finished. In absence of R-value references we need to const_cast:
@@ -57,7 +55,6 @@ struct CommaInitializer
}
/* inserts a scalar value in the target matrix */
EIGEN_DEVICE_FUNC
CommaInitializer& operator,(const Scalar& s)
{
if (m_col==m_xpr.cols())
@@ -77,10 +74,11 @@ struct CommaInitializer
/* inserts a matrix expression in the target matrix */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
{
if (m_col==m_xpr.cols() && (other.cols()!=0 || other.rows()!=m_currentBlockRows))
if(other.cols()==0 || other.rows()==0)
return *this;
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
@@ -88,22 +86,24 @@ struct CommaInitializer
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert((m_col + other.cols() <= m_xpr.cols())
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==other.rows());
m_xpr.template block<OtherDerived::RowsAtCompileTime, OtherDerived::ColsAtCompileTime>
(m_row, m_col, other.rows(), other.cols()) = other;
if (OtherDerived::SizeAtCompileTime != Dynamic)
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
(m_row, m_col) = other;
else
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
m_col += other.cols();
return *this;
}
EIGEN_DEVICE_FUNC
inline ~CommaInitializer()
#if defined VERIFY_RAISES_ASSERT && (!defined EIGEN_NO_ASSERTION_CHECKING) && defined EIGEN_EXCEPTIONS
EIGEN_EXCEPTION_SPEC(Eigen::eigen_assert_exception)
#endif
{
finished();
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
&& m_col == m_xpr.cols()
&& "Too few coefficients passed to comma initializer (operator<<)");
}
/** \returns the built matrix once all its coefficients have been set.
@@ -113,15 +113,9 @@ struct CommaInitializer
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
* \endcode
*/
EIGEN_DEVICE_FUNC
inline XprType& finished() {
eigen_assert(((m_row+m_currentBlockRows) == m_xpr.rows() || m_xpr.cols() == 0)
&& m_col == m_xpr.cols()
&& "Too few coefficients passed to comma initializer (operator<<)");
return m_xpr;
}
inline XprType& finished() { return m_xpr; }
XprType& m_xpr; // target expression
XprType& m_xpr; // target expression
Index m_row; // current row id
Index m_col; // current col id
Index m_currentBlockRows; // current block height

View File

@@ -1,175 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Rasmus Munk Larsen (rmlarsen@google.com)
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CONDITIONESTIMATOR_H
#define EIGEN_CONDITIONESTIMATOR_H
namespace Eigen {
namespace internal {
template <typename Vector, typename RealVector, bool IsComplex>
struct rcond_compute_sign {
static inline Vector run(const Vector& v) {
const RealVector v_abs = v.cwiseAbs();
return (v_abs.array() == static_cast<typename Vector::RealScalar>(0))
.select(Vector::Ones(v.size()), v.cwiseQuotient(v_abs));
}
};
// Partial specialization to avoid elementwise division for real vectors.
template <typename Vector>
struct rcond_compute_sign<Vector, Vector, false> {
static inline Vector run(const Vector& v) {
return (v.array() < static_cast<typename Vector::RealScalar>(0))
.select(-Vector::Ones(v.size()), Vector::Ones(v.size()));
}
};
/**
* \returns an estimate of ||inv(matrix)||_1 given a decomposition of
* \a matrix that implements .solve() and .adjoint().solve() methods.
*
* This function implements Algorithms 4.1 and 5.1 from
* http://www.maths.manchester.ac.uk/~higham/narep/narep135.pdf
* which also forms the basis for the condition number estimators in
* LAPACK. Since at most 10 calls to the solve method of dec are
* performed, the total cost is O(dims^2), as opposed to O(dims^3)
* needed to compute the inverse matrix explicitly.
*
* The most common usage is in estimating the condition number
* ||matrix||_1 * ||inv(matrix)||_1. The first term ||matrix||_1 can be
* computed directly in O(n^2) operations.
*
* Supports the following decompositions: FullPivLU, PartialPivLU, LDLT, and
* LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
template <typename Decomposition>
typename Decomposition::RealScalar rcond_invmatrix_L1_norm_estimate(const Decomposition& dec)
{
typedef typename Decomposition::MatrixType MatrixType;
typedef typename Decomposition::Scalar Scalar;
typedef typename Decomposition::RealScalar RealScalar;
typedef typename internal::plain_col_type<MatrixType>::type Vector;
typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVector;
const bool is_complex = (NumTraits<Scalar>::IsComplex != 0);
eigen_assert(dec.rows() == dec.cols());
const Index n = dec.rows();
if (n == 0)
return 0;
// Disable Index to float conversion warning
#ifdef __INTEL_COMPILER
#pragma warning push
#pragma warning ( disable : 2259 )
#endif
Vector v = dec.solve(Vector::Ones(n) / Scalar(n));
#ifdef __INTEL_COMPILER
#pragma warning pop
#endif
// lower_bound is a lower bound on
// ||inv(matrix)||_1 = sup_v ||inv(matrix) v||_1 / ||v||_1
// and is the objective maximized by the ("super-") gradient ascent
// algorithm below.
RealScalar lower_bound = v.template lpNorm<1>();
if (n == 1)
return lower_bound;
// Gradient ascent algorithm follows: We know that the optimum is achieved at
// one of the simplices v = e_i, so in each iteration we follow a
// super-gradient to move towards the optimal one.
RealScalar old_lower_bound = lower_bound;
Vector sign_vector(n);
Vector old_sign_vector;
Index v_max_abs_index = -1;
Index old_v_max_abs_index = v_max_abs_index;
for (int k = 0; k < 4; ++k)
{
sign_vector = internal::rcond_compute_sign<Vector, RealVector, is_complex>::run(v);
if (k > 0 && !is_complex && sign_vector == old_sign_vector) {
// Break if the solution stagnated.
break;
}
// v_max_abs_index = argmax |real( inv(matrix)^T * sign_vector )|
v = dec.adjoint().solve(sign_vector);
v.real().cwiseAbs().maxCoeff(&v_max_abs_index);
if (v_max_abs_index == old_v_max_abs_index) {
// Break if the solution stagnated.
break;
}
// Move to the new simplex e_j, where j = v_max_abs_index.
v = dec.solve(Vector::Unit(n, v_max_abs_index)); // v = inv(matrix) * e_j.
lower_bound = v.template lpNorm<1>();
if (lower_bound <= old_lower_bound) {
// Break if the gradient step did not increase the lower_bound.
break;
}
if (!is_complex) {
old_sign_vector = sign_vector;
}
old_v_max_abs_index = v_max_abs_index;
old_lower_bound = lower_bound;
}
// The following calculates an independent estimate of ||matrix||_1 by
// multiplying matrix by a vector with entries of slowly increasing
// magnitude and alternating sign:
// v_i = (-1)^{i} (1 + (i / (dim-1))), i = 0,...,dim-1.
// This improvement to Hager's algorithm above is due to Higham. It was
// added to make the algorithm more robust in certain corner cases where
// large elements in the matrix might otherwise escape detection due to
// exact cancellation (especially when op and op_adjoint correspond to a
// sequence of backsubstitutions and permutations), which could cause
// Hager's algorithm to vastly underestimate ||matrix||_1.
Scalar alternating_sign(RealScalar(1));
for (Index i = 0; i < n; ++i) {
// The static_cast is needed when Scalar is a complex and RealScalar implements expression templates
v[i] = alternating_sign * static_cast<RealScalar>(RealScalar(1) + (RealScalar(i) / (RealScalar(n - 1))));
alternating_sign = -alternating_sign;
}
v = dec.solve(v);
const RealScalar alternate_lower_bound = (2 * v.template lpNorm<1>()) / (3 * RealScalar(n));
return numext::maxi(lower_bound, alternate_lower_bound);
}
/** \brief Reciprocal condition number estimator.
*
* Computing a decomposition of a dense matrix takes O(n^3) operations, while
* this method estimates the condition number quickly and reliably in O(n^2)
* operations.
*
* \returns an estimate of the reciprocal condition number
* (1 / (||matrix||_1 * ||inv(matrix)||_1)) of matrix, given ||matrix||_1 and
* its decomposition. Supports the following decompositions: FullPivLU,
* PartialPivLU, LDLT, and LLT.
*
* \sa FullPivLU, PartialPivLU, LDLT, LLT.
*/
template <typename Decomposition>
typename Decomposition::RealScalar
rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Decomposition& dec)
{
typedef typename Decomposition::RealScalar RealScalar;
eigen_assert(dec.rows() == dec.cols());
if (dec.rows() == 0) return NumTraits<RealScalar>::infinity();
if (matrix_norm == RealScalar(0)) return RealScalar(0);
if (dec.rows() == 1) return RealScalar(1);
const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec);
return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0)
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
}
} // namespace internal
} // namespace Eigen
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -15,113 +15,47 @@ namespace Eigen {
/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
*/
namespace internal {
template<typename XprType, typename EvaluatorKind>
class inner_iterator_selector;
}
/** \class InnerIterator
* \brief An InnerIterator allows to loop over the element of any matrix expression.
*
* \warning To be used with care because an evaluator is constructed every time an InnerIterator iterator is constructed.
*
* TODO: add a usage example
/** \ingroup SparseCore_Module
* \class InnerIterator
* \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression
*
* todo
*/
template<typename XprType>
class InnerIterator
// generic version for dense matrix and expressions
template<typename Derived> class DenseBase<Derived>::InnerIterator
{
protected:
typedef internal::inner_iterator_selector<XprType, typename internal::evaluator_traits<XprType>::Kind> IteratorType;
typedef internal::evaluator<XprType> EvaluatorType;
typedef typename internal::traits<XprType>::Scalar Scalar;
public:
/** Construct an iterator over the \a outerId -th row or column of \a xpr */
InnerIterator(const XprType &xpr, const Index &outerId)
: m_eval(xpr), m_iter(m_eval, outerId, xpr.innerSize())
{}
/// \returns the value of the current coefficient.
EIGEN_STRONG_INLINE Scalar value() const { return m_iter.value(); }
/** Increment the iterator \c *this to the next non-zero coefficient.
* Explicit zeros are not skipped over. To skip explicit zeros, see class SparseView
*/
EIGEN_STRONG_INLINE InnerIterator& operator++() { m_iter.operator++(); return *this; }
/// \returns the column or row index of the current coefficient.
EIGEN_STRONG_INLINE Index index() const { return m_iter.index(); }
/// \returns the row index of the current coefficient.
EIGEN_STRONG_INLINE Index row() const { return m_iter.row(); }
/// \returns the column index of the current coefficient.
EIGEN_STRONG_INLINE Index col() const { return m_iter.col(); }
/// \returns \c true if the iterator \c *this still references a valid coefficient.
EIGEN_STRONG_INLINE operator bool() const { return m_iter; }
protected:
EvaluatorType m_eval;
IteratorType m_iter;
private:
// If you get here, then you're not using the right InnerIterator type, e.g.:
// SparseMatrix<double,RowMajor> A;
// SparseMatrix<double>::InnerIterator it(A,0);
template<typename T> InnerIterator(const EigenBase<T>&,Index outer);
protected:
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
enum { IsRowMajor = (Derived::Flags&RowMajorBit)==RowMajorBit };
public:
EIGEN_STRONG_INLINE InnerIterator(const Derived& expr, Index outer)
: m_expression(expr), m_inner(0), m_outer(outer), m_end(expr.innerSize())
{}
EIGEN_STRONG_INLINE Scalar value() const
{
return (IsRowMajor) ? m_expression.coeff(m_outer, m_inner)
: m_expression.coeff(m_inner, m_outer);
}
EIGEN_STRONG_INLINE InnerIterator& operator++() { m_inner++; return *this; }
EIGEN_STRONG_INLINE Index index() const { return m_inner; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
protected:
const Derived& m_expression;
Index m_inner;
const Index m_outer;
const Index m_end;
};
namespace internal {
// Generic inner iterator implementation for dense objects
template<typename XprType>
class inner_iterator_selector<XprType, IndexBased>
{
protected:
typedef evaluator<XprType> EvaluatorType;
typedef typename traits<XprType>::Scalar Scalar;
enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
public:
EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &innerSize)
: m_eval(eval), m_inner(0), m_outer(outerId), m_end(innerSize)
{}
EIGEN_STRONG_INLINE Scalar value() const
{
return (IsRowMajor) ? m_eval.coeff(m_outer, m_inner)
: m_eval.coeff(m_inner, m_outer);
}
EIGEN_STRONG_INLINE inner_iterator_selector& operator++() { m_inner++; return *this; }
EIGEN_STRONG_INLINE Index index() const { return m_inner; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
protected:
const EvaluatorType& m_eval;
Index m_inner;
const Index m_outer;
const Index m_end;
};
// For iterator-based evaluator, inner-iterator is already implemented as
// evaluator<>::InnerIterator
template<typename XprType>
class inner_iterator_selector<XprType, IteratorBased>
: public evaluator<XprType>::InnerIterator
{
protected:
typedef typename evaluator<XprType>::InnerIterator Base;
typedef evaluator<XprType> EvaluatorType;
public:
EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &/*innerSize*/)
: Base(eval, outerId)
{}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COREITERATORS_H

View File

@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -13,6 +13,26 @@
namespace Eigen {
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \param BinaryOp template functor implementing the operator
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
@@ -32,75 +52,77 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
// we still want to handle the case when the result type is different.
typedef typename result_of<
BinaryOp(
const typename Lhs::Scalar&,
const typename Rhs::Scalar&
typename Lhs::Scalar,
typename Rhs::Scalar
)
>::type Scalar;
typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind,
BinaryOp>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::StorageIndex,
typename traits<Rhs>::StorageIndex>::type StorageIndex;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
Flags = cwise_promote_storage_order<typename traits<Lhs>::StorageKind,typename traits<Rhs>::StorageKind,_LhsNested::Flags & RowMajorBit,_RhsNested::Flags & RowMajorBit>::value
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit),
Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
HereditaryBits
| (int(LhsFlags) & int(RhsFlags) &
( AlignedBit
| (StorageOrdersAgree ? LinearAccessBit : 0)
| (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
)
)
),
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
Cost0 = EIGEN_ADD_COST(LhsCoeffReadCost,RhsCoeffReadCost),
CoeffReadCost = EIGEN_ADD_COST(Cost0,functor_traits<BinaryOp>::Cost)
};
};
} // end namespace internal
// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
// that would take two operands of different types. If there were such an example, then this check should be
// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
// currently they take only one typename Scalar template parameter.
// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
// add together a float matrix and a double matrix.
#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
: int(internal::is_same<LHS, RHS>::value)), \
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \tparam BinaryOp template functor implementing the operator
* \tparam LhsType the type of the left-hand side
* \tparam RhsType the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
template<typename BinaryOp, typename LhsType, typename RhsType>
class CwiseBinaryOp :
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOp : internal::no_assignment_operator,
public CwiseBinaryOpImpl<
BinaryOp, LhsType, RhsType,
typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
typename internal::traits<RhsType>::StorageKind,
BinaryOp>::ret>,
internal::no_assignment_operator
BinaryOp, Lhs, Rhs,
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::ret>
{
public:
typedef typename internal::remove_all<BinaryOp>::type Functor;
typedef typename internal::remove_all<LhsType>::type Lhs;
typedef typename internal::remove_all<RhsType>::type Rhs;
typedef typename CwiseBinaryOpImpl<
BinaryOp, LhsType, RhsType,
typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
typename internal::traits<Rhs>::StorageKind,
BinaryOp>::ret>::Base Base;
BinaryOp, Lhs, Rhs,
typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
typedef typename internal::ref_selector<LhsType>::type LhsNested;
typedef typename internal::ref_selector<RhsType>::type RhsNested;
typedef typename internal::nested<Lhs>::type LhsNested;
typedef typename internal::nested<Rhs>::type RhsNested;
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp())
: m_lhs(aLhs), m_rhs(aRhs), m_functor(func)
{
@@ -110,7 +132,6 @@ class CwiseBinaryOp :
eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic)
@@ -118,7 +139,6 @@ class CwiseBinaryOp :
else
return m_lhs.rows();
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic)
@@ -128,13 +148,10 @@ class CwiseBinaryOp :
}
/** \returns the left hand side nested expression */
EIGEN_DEVICE_FUNC
const _LhsNested& lhs() const { return m_lhs; }
/** \returns the right hand side nested expression */
EIGEN_DEVICE_FUNC
const _RhsNested& rhs() const { return m_rhs; }
/** \returns the functor representing the binary operation */
EIGEN_DEVICE_FUNC
const BinaryOp& functor() const { return m_functor; }
protected:
@@ -143,13 +160,41 @@ class CwiseBinaryOp :
const BinaryOp m_functor;
};
// Generic API dispatcher
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl
: public internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
template<typename BinaryOp, typename Lhs, typename Rhs>
class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
: public internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
public:
typedef typename internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE( Derived )
EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
{
return derived().functor()(derived().lhs().coeff(rowId, colId),
derived().rhs().coeff(rowId, colId));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(rowId, colId),
derived().rhs().template packet<LoadMode>(rowId, colId));
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return derived().functor()(derived().lhs().coeff(index),
derived().rhs().coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(index),
derived().rhs().template packet<LoadMode>(index));
}
};
/** replaces \c *this by \c *this - \a other.
@@ -161,7 +206,8 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
@@ -174,11 +220,11 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
tmp = other.derived();
return derived();
}
} // end namespace Eigen
#endif // EIGEN_CWISE_BINARY_OP_H

View File

@@ -12,24 +12,13 @@
namespace Eigen {
namespace internal {
template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
Flags = traits<PlainObjectType>::Flags & RowMajorBit
};
};
} // namespace internal
/** \class CwiseNullaryOp
* \ingroup Core_Module
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \tparam NullaryOp template functor implementing the operator
* \tparam PlainObjectType the underlying plain matrix/array type
* \param NullaryOp template functor implementing the operator
* \param PlainObjectType the underlying plain matrix/array type
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
@@ -38,49 +27,68 @@ struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectT
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* The functor NullaryOp must expose one of the following method:
<table class="manual">
<tr ><td>\c operator()() </td><td>if the procedural generation does not depend on the coefficient entries (e.g., random numbers)</td></tr>
<tr class="alt"><td>\c operator()(Index i)</td><td>if the procedural generation makes sense for vectors only and that it depends on the coefficient index \c i (e.g., linspace) </td></tr>
<tr ><td>\c operator()(Index i,Index j)</td><td>if the procedural generation depends on the matrix coordinates \c i, \c j (e.g., to generate a checkerboard with 0 and 1)</td></tr>
</table>
* It is also possible to expose the last two operators if the generation makes sense for matrices but can be optimized for vectors.
*
* See DenseBase::NullaryExpr(Index,const CustomNullaryOp&) for an example binding
* C++11 random number generators.
*
* A nullary expression can also be used to implement custom sophisticated matrix manipulations
* that cannot be covered by the existing set of natively supported matrix manipulations.
* See this \ref TopicCustomizing_NullaryExpr "page" for some examples and additional explanations
* on the behavior of CwiseNullaryOp.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
*/
namespace internal {
template<typename NullaryOp, typename PlainObjectType>
class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type, internal::no_assignment_operator
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
Flags = (traits<PlainObjectType>::Flags
& ( HereditaryBits
| (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
| (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
| (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
CoeffReadCost = functor_traits<NullaryOp>::Cost
};
};
}
template<typename NullaryOp, typename PlainObjectType>
class CwiseNullaryOp : internal::no_assignment_operator,
public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type
{
public:
typedef typename internal::dense_xpr_base<CwiseNullaryOp>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp)
EIGEN_DEVICE_FUNC
CwiseNullaryOp(Index rows, Index cols, const NullaryOp& func = NullaryOp())
: m_rows(rows), m_cols(cols), m_functor(func)
CwiseNullaryOp(Index nbRows, Index nbCols, const NullaryOp& func = NullaryOp())
: m_rows(nbRows), m_cols(nbCols), m_functor(func)
{
eigen_assert(rows >= 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
eigen_assert(nbRows >= 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows)
&& nbCols >= 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); }
EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
{
return m_functor(rowId, colId);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return m_functor.packetOp(rowId, colId);
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return m_functor(index);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return m_functor.packetOp(index);
}
/** \returns the functor representing the nullary operation */
EIGEN_DEVICE_FUNC
const NullaryOp& functor() const { return m_functor; }
protected:
@@ -105,10 +113,10 @@ class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(rows, cols, func);
return CwiseNullaryOp<CustomNullaryOp, Derived>(rows, cols, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
@@ -124,19 +132,16 @@ DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& f
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* Here is an example with C++11 random generators: \include random_cpp11.cpp
* Output: \verbinclude random_cpp11.out
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, PlainObject>(1, size, func);
else return CwiseNullaryOp<CustomNullaryOp, PlainObject>(size, 1, func);
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, Derived>(1, size, func);
else return CwiseNullaryOp<CustomNullaryOp, Derived>(size, 1, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
@@ -150,19 +155,19 @@ DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, Derived>
DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(RowsAtCompileTime, ColsAtCompileTime, func);
return CwiseNullaryOp<CustomNullaryOp, Derived>(RowsAtCompileTime, ColsAtCompileTime, func);
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* The parameters \a nbRows and \a nbCols are the number of rows and of columns of
* the returned matrix. Must be compatible with this DenseBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* it is redundant to pass \a nbRows and \a nbCols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
@@ -171,9 +176,9 @@ DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index rows, Index cols, const Scalar& value)
DenseBase<Derived>::Constant(Index nbRows, Index nbCols, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_constant_op<Scalar>(value));
return DenseBase<Derived>::NullaryExpr(nbRows, nbCols, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
@@ -192,7 +197,7 @@ DenseBase<Derived>::Constant(Index rows, Index cols, const Scalar& value)
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index size, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
@@ -208,40 +213,53 @@ DenseBase<Derived>::Constant(Index size, const Scalar& value)
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(const Scalar& value)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
}
/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(Index,const Scalar&,const Scalar&)
/**
* \brief Sets a linearly space vector.
*
* \sa LinSpaced(Index,Scalar,Scalar), setLinSpaced(Index,const Scalar&,const Scalar&)
* The function generates 'size' equally spaced values in the closed interval [low,high].
* This particular version of LinSpaced() uses sequential access, i.e. vector access is
* assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization
* and yields faster code than the random access version.
*
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced_seq.cpp
* Output: \verbinclude DenseBase_LinSpaced_seq.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar>(low,high,size));
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,false>(low,high,size));
}
/** \deprecated because of accuracy loss. In Eigen 3.3, it is an alias for LinSpaced(const Scalar&,const Scalar&)
*
* \sa LinSpaced(Scalar,Scalar)
/**
* \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar>(low,high,Derived::SizeAtCompileTime));
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,false>(low,high,Derived::SizeAtCompileTime));
}
/**
* \brief Sets a linearly spaced vector.
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
@@ -251,24 +269,14 @@ DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& hig
* Example: \include DenseBase_LinSpaced.cpp
* Output: \verbinclude DenseBase_LinSpaced.out
*
* For integer scalar types, an even spacing is possible if and only if the length of the range,
* i.e., \c high-low is a scalar multiple of \c size-1, or if \c size is a scalar multiple of the
* number of values \c high-low+1 (meaning each value can be repeated the same number of time).
* If one of these two considions is not satisfied, then \c high is lowered to the largest value
* satisfying one of this constraint.
* Here are some examples:
*
* Example: \include DenseBase_LinSpacedInt.cpp
* Output: \verbinclude DenseBase_LinSpacedInt.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar>(low,high,size));
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,true>(low,high,size));
}
/**
@@ -276,23 +284,22 @@ DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar>(low,high,Derived::SizeAtCompileTime));
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,true>(low,high,Derived::SizeAtCompileTime));
}
/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
template<typename Derived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isApproxToConstant
bool DenseBase<Derived>::isApproxToConstant
(const Scalar& val, const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isApprox(self.coeff(i, j), val, prec))
if(!internal::isApprox(this->coeff(i, j), val, prec))
return false;
return true;
}
@@ -301,7 +308,7 @@ EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isApproxToConstant
*
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
template<typename Derived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isConstant
bool DenseBase<Derived>::isConstant
(const Scalar& val, const RealScalar& prec) const
{
return isApproxToConstant(val, prec);
@@ -312,22 +319,22 @@ EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isConstant
* \sa setConstant(), Constant(), class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
{
setConstant(val);
}
/** Sets all coefficients in this expression to value \a val.
/** Sets all coefficients in this expression to \a value.
*
* \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
{
return derived() = Constant(rows(), cols(), val);
}
/** Resizes to the given \a size, and sets all coefficients in this expression to the given value \a val.
/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
*
* \only_for_vectors
*
@@ -337,17 +344,17 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(c
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
{
resize(size);
return setConstant(val);
}
/** Resizes to the given size, and sets all coefficients in this expression to the given value \a val.
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
*
* \param rows the new number of rows
* \param cols the new number of columns
* \param nbRows the new number of rows
* \param nbCols the new number of columns
* \param val the value to which all coefficients are set
*
* Example: \include Matrix_setConstant_int_int.cpp
@@ -356,15 +363,15 @@ PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& val)
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index nbRows, Index nbCols, const Scalar& val)
{
resize(rows, cols);
resize(nbRows, nbCols);
return setConstant(val);
}
/**
* \brief Sets a linearly spaced vector.
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
@@ -374,33 +381,27 @@ PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& val)
* Example: \include DenseBase_setLinSpaced.cpp
* Output: \verbinclude DenseBase_setLinSpaced.out
*
* For integer scalar types, do not miss the explanations on the definition
* of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink.
*
* \sa LinSpaced(Index,const Scalar&,const Scalar&), CwiseNullaryOp
* \sa CwiseNullaryOp
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,PacketScalar>(low,high,newSize));
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,false>(low,high,newSize));
}
/**
* \brief Sets a linearly spaced vector.
* \brief Sets a linearly space vector.
*
* The function fills \c *this with equally spaced values in the closed interval [low,high].
* The function fill *this with equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* For integer scalar types, do not miss the explanations on the definition
* of \link LinSpaced(Index,const Scalar&,const Scalar&) even spacing \endlink.
*
* \sa LinSpaced(Index,const Scalar&,const Scalar&), setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
* \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return setLinSpaced(size(), low, high);
@@ -423,10 +424,10 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(
* \sa Zero(), Zero(Index)
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index rows, Index cols)
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index nbRows, Index nbCols)
{
return Constant(rows, cols, Scalar(0));
return Constant(nbRows, nbCols, Scalar(0));
}
/** \returns an expression of a zero vector.
@@ -446,7 +447,7 @@ DenseBase<Derived>::Zero(Index rows, Index cols)
* \sa Zero(), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index size)
{
return Constant(size, Scalar(0));
@@ -463,7 +464,7 @@ DenseBase<Derived>::Zero(Index size)
* \sa Zero(Index), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero()
{
return Constant(Scalar(0));
@@ -478,12 +479,11 @@ DenseBase<Derived>::Zero()
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isZero(const RealScalar& prec) const
bool DenseBase<Derived>::isZero(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast<Scalar>(1), prec))
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<Scalar>(1), prec))
return false;
return true;
}
@@ -496,7 +496,7 @@ EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isZero(const RealScalar& prec) const
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
{
return setConstant(Scalar(0));
}
@@ -511,7 +511,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
* \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index newSize)
{
resize(newSize);
@@ -520,8 +520,8 @@ PlainObjectBase<Derived>::setZero(Index newSize)
/** Resizes to the given size, and sets all coefficients in this expression to zero.
*
* \param rows the new number of rows
* \param cols the new number of columns
* \param nbRows the new number of rows
* \param nbCols the new number of columns
*
* Example: \include Matrix_setZero_int_int.cpp
* Output: \verbinclude Matrix_setZero_int_int.out
@@ -529,10 +529,10 @@ PlainObjectBase<Derived>::setZero(Index newSize)
* \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index rows, Index cols)
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index nbRows, Index nbCols)
{
resize(rows, cols);
resize(nbRows, nbCols);
return setConstant(Scalar(0));
}
@@ -540,7 +540,7 @@ PlainObjectBase<Derived>::setZero(Index rows, Index cols)
/** \returns an expression of a matrix where all coefficients equal one.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* The parameters \a nbRows and \a nbCols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
@@ -553,10 +553,10 @@ PlainObjectBase<Derived>::setZero(Index rows, Index cols)
* \sa Ones(), Ones(Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index rows, Index cols)
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index nbRows, Index nbCols)
{
return Constant(rows, cols, Scalar(1));
return Constant(nbRows, nbCols, Scalar(1));
}
/** \returns an expression of a vector where all coefficients equal one.
@@ -576,7 +576,7 @@ DenseBase<Derived>::Ones(Index rows, Index cols)
* \sa Ones(), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index newSize)
{
return Constant(newSize, Scalar(1));
@@ -593,7 +593,7 @@ DenseBase<Derived>::Ones(Index newSize)
* \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones()
{
return Constant(Scalar(1));
@@ -608,7 +608,7 @@ DenseBase<Derived>::Ones()
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isOnes
bool DenseBase<Derived>::isOnes
(const RealScalar& prec) const
{
return isApproxToConstant(Scalar(1), prec);
@@ -622,7 +622,7 @@ EIGEN_DEVICE_FUNC bool DenseBase<Derived>::isOnes
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
{
return setConstant(Scalar(1));
}
@@ -637,7 +637,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
* \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index newSize)
{
resize(newSize);
@@ -646,8 +646,8 @@ PlainObjectBase<Derived>::setOnes(Index newSize)
/** Resizes to the given size, and sets all coefficients in this expression to one.
*
* \param rows the new number of rows
* \param cols the new number of columns
* \param nbRows the new number of rows
* \param nbCols the new number of columns
*
* Example: \include Matrix_setOnes_int_int.cpp
* Output: \verbinclude Matrix_setOnes_int_int.out
@@ -655,10 +655,10 @@ PlainObjectBase<Derived>::setOnes(Index newSize)
* \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index nbRows, Index nbCols)
{
resize(rows, cols);
resize(nbRows, nbCols);
return setConstant(Scalar(1));
}
@@ -666,7 +666,7 @@ PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
/** \returns an expression of the identity matrix (not necessarily square).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* The parameters \a nbRows and \a nbCols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
@@ -679,10 +679,10 @@ PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
* \sa Identity(), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity(Index rows, Index cols)
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity(Index nbRows, Index nbCols)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_identity_op<Scalar>());
return DenseBase<Derived>::NullaryExpr(nbRows, nbCols, internal::scalar_identity_op<Scalar>());
}
/** \returns an expression of the identity matrix (not necessarily square).
@@ -696,7 +696,7 @@ MatrixBase<Derived>::Identity(Index rows, Index cols)
* \sa Identity(Index,Index), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity()
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
@@ -716,19 +716,18 @@ template<typename Derived>
bool MatrixBase<Derived>::isIdentity
(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
{
for(Index i = 0; i < rows(); ++i)
{
if(i == j)
{
if(!internal::isApprox(self.coeff(i, j), static_cast<Scalar>(1), prec))
if(!internal::isApprox(this->coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
else
{
if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast<RealScalar>(1), prec))
if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast<RealScalar>(1), prec))
return false;
}
}
@@ -741,7 +740,6 @@ namespace internal {
template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
struct setIdentity_impl
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
return m = Derived::Identity(m.rows(), m.cols());
@@ -751,11 +749,11 @@ struct setIdentity_impl
template<typename Derived>
struct setIdentity_impl<Derived, true>
{
EIGEN_DEVICE_FUNC
typedef typename Derived::Index Index;
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
m.setZero();
const Index size = numext::mini(m.rows(), m.cols());
const Index size = (std::min)(m.rows(), m.cols());
for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
return m;
}
@@ -771,15 +769,15 @@ struct setIdentity_impl<Derived, true>
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
{
return internal::setIdentity_impl<Derived>::run(derived());
}
/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
*
* \param rows the new number of rows
* \param cols the new number of columns
* \param nbRows the new number of rows
* \param nbCols the new number of columns
*
* Example: \include Matrix_setIdentity_int_int.cpp
* Output: \verbinclude Matrix_setIdentity_int_int.out
@@ -787,9 +785,9 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index cols)
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index nbRows, Index nbCols)
{
derived().resize(rows, cols);
derived().resize(nbRows, nbCols);
return setIdentity();
}
@@ -800,7 +798,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(
* \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i);
@@ -815,7 +813,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisR
* \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(),i);
@@ -828,7 +826,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisR
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
{ return Derived::Unit(0); }
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
@@ -838,7 +836,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisR
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
{ return Derived::Unit(1); }
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
@@ -848,7 +846,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisR
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
{ return Derived::Unit(2); }
/** \returns an expression of the W axis unit vector (0,0,0,1)
@@ -858,7 +856,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisR
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
{ return Derived::Unit(3); }
} // end namespace Eigen

View File

@@ -1,197 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2016 Eugene Brevdo <ebrevdo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_TERNARY_OP_H
#define EIGEN_CWISE_TERNARY_OP_H
namespace Eigen {
namespace internal {
template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3>
struct traits<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > {
// we must not inherit from traits<Arg1> since it has
// the potential to cause problems with MSVC
typedef typename remove_all<Arg1>::type Ancestor;
typedef typename traits<Ancestor>::XprKind XprKind;
enum {
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
};
// even though we require Arg1, Arg2, and Arg3 to have the same scalar type
// (see CwiseTernaryOp constructor),
// we still want to handle the case when the result type is different.
typedef typename result_of<TernaryOp(
const typename Arg1::Scalar&, const typename Arg2::Scalar&,
const typename Arg3::Scalar&)>::type Scalar;
typedef typename internal::traits<Arg1>::StorageKind StorageKind;
typedef typename internal::traits<Arg1>::StorageIndex StorageIndex;
typedef typename Arg1::Nested Arg1Nested;
typedef typename Arg2::Nested Arg2Nested;
typedef typename Arg3::Nested Arg3Nested;
typedef typename remove_reference<Arg1Nested>::type _Arg1Nested;
typedef typename remove_reference<Arg2Nested>::type _Arg2Nested;
typedef typename remove_reference<Arg3Nested>::type _Arg3Nested;
enum { Flags = _Arg1Nested::Flags & RowMajorBit };
};
} // end namespace internal
template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3,
typename StorageKind>
class CwiseTernaryOpImpl;
/** \class CwiseTernaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise ternary operator is
* applied to two expressions
*
* \tparam TernaryOp template functor implementing the operator
* \tparam Arg1Type the type of the first argument
* \tparam Arg2Type the type of the second argument
* \tparam Arg3Type the type of the third argument
*
* This class represents an expression where a coefficient-wise ternary
* operator is applied to three expressions.
* It is the return type of ternary operators, by which we mean only those
* ternary operators where
* all three arguments are Eigen expressions.
* For example, the return type of betainc(matrix1, matrix2, matrix3) is a
* CwiseTernaryOp.
*
* Most of the time, this is the only way that it is used, so you typically
* don't have to name
* CwiseTernaryOp types explicitly.
*
* \sa MatrixBase::ternaryExpr(const MatrixBase<Argument2> &, const
* MatrixBase<Argument3> &, const CustomTernaryOp &) const, class CwiseBinaryOp,
* class CwiseUnaryOp, class CwiseNullaryOp
*/
template <typename TernaryOp, typename Arg1Type, typename Arg2Type,
typename Arg3Type>
class CwiseTernaryOp : public CwiseTernaryOpImpl<
TernaryOp, Arg1Type, Arg2Type, Arg3Type,
typename internal::traits<Arg1Type>::StorageKind>,
internal::no_assignment_operator
{
public:
typedef typename internal::remove_all<Arg1Type>::type Arg1;
typedef typename internal::remove_all<Arg2Type>::type Arg2;
typedef typename internal::remove_all<Arg3Type>::type Arg3;
typedef typename CwiseTernaryOpImpl<
TernaryOp, Arg1Type, Arg2Type, Arg3Type,
typename internal::traits<Arg1Type>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseTernaryOp)
typedef typename internal::ref_selector<Arg1Type>::type Arg1Nested;
typedef typename internal::ref_selector<Arg2Type>::type Arg2Nested;
typedef typename internal::ref_selector<Arg3Type>::type Arg3Nested;
typedef typename internal::remove_reference<Arg1Nested>::type _Arg1Nested;
typedef typename internal::remove_reference<Arg2Nested>::type _Arg2Nested;
typedef typename internal::remove_reference<Arg3Nested>::type _Arg3Nested;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CwiseTernaryOp(const Arg1& a1, const Arg2& a2,
const Arg3& a3,
const TernaryOp& func = TernaryOp())
: m_arg1(a1), m_arg2(a2), m_arg3(a3), m_functor(func) {
// require the sizes to match
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg2)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Arg1, Arg3)
// The index types should match
EIGEN_STATIC_ASSERT((internal::is_same<
typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg2Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
EIGEN_STATIC_ASSERT((internal::is_same<
typename internal::traits<Arg1Type>::StorageKind,
typename internal::traits<Arg3Type>::StorageKind>::value),
STORAGE_KIND_MUST_MATCH)
eigen_assert(a1.rows() == a2.rows() && a1.cols() == a2.cols() &&
a1.rows() == a3.rows() && a1.cols() == a3.cols());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const {
// return the fixed size type if available to enable compile time
// optimizations
if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
RowsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg2Nested>::type>::
RowsAtCompileTime == Dynamic)
return m_arg3.rows();
else if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
RowsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg3Nested>::type>::
RowsAtCompileTime == Dynamic)
return m_arg2.rows();
else
return m_arg1.rows();
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const {
// return the fixed size type if available to enable compile time
// optimizations
if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
ColsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg2Nested>::type>::
ColsAtCompileTime == Dynamic)
return m_arg3.cols();
else if (internal::traits<typename internal::remove_all<Arg1Nested>::type>::
ColsAtCompileTime == Dynamic &&
internal::traits<typename internal::remove_all<Arg3Nested>::type>::
ColsAtCompileTime == Dynamic)
return m_arg2.cols();
else
return m_arg1.cols();
}
/** \returns the first argument nested expression */
EIGEN_DEVICE_FUNC
const _Arg1Nested& arg1() const { return m_arg1; }
/** \returns the first argument nested expression */
EIGEN_DEVICE_FUNC
const _Arg2Nested& arg2() const { return m_arg2; }
/** \returns the third argument nested expression */
EIGEN_DEVICE_FUNC
const _Arg3Nested& arg3() const { return m_arg3; }
/** \returns the functor representing the ternary operation */
EIGEN_DEVICE_FUNC
const TernaryOp& functor() const { return m_functor; }
protected:
Arg1Nested m_arg1;
Arg2Nested m_arg2;
Arg3Nested m_arg3;
const TernaryOp m_functor;
};
// Generic API dispatcher
template <typename TernaryOp, typename Arg1, typename Arg2, typename Arg3,
typename StorageKind>
class CwiseTernaryOpImpl
: public internal::generic_xpr_base<
CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >::type {
public:
typedef typename internal::generic_xpr_base<
CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> >::type Base;
};
} // end namespace Eigen
#endif // EIGEN_CWISE_TERNARY_OP_H

View File

@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -13,32 +13,13 @@
namespace Eigen {
namespace internal {
template<typename UnaryOp, typename XprType>
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
: traits<XprType>
{
typedef typename result_of<
UnaryOp(const typename XprType::Scalar&)
>::type Scalar;
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
Flags = _XprTypeNested::Flags & RowMajorBit
};
};
}
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
/** \class CwiseUnaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
*
* \tparam UnaryOp template functor implementing the operator
* \tparam XprType the type of the expression to which we are applying the unary operator
* \param UnaryOp template functor implementing the operator
* \param XprType the type of the expression to which we are applying the unary operator
*
* This class represents an expression where a unary operator is applied to an expression.
* It is the return type of all operations taking exactly 1 input expression, regardless of the
@@ -51,51 +32,93 @@ class CwiseUnaryOpImpl;
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename UnaryOp, typename XprType>
class CwiseUnaryOp : public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>, internal::no_assignment_operator
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
: traits<XprType>
{
typedef typename result_of<
UnaryOp(typename XprType::Scalar)
>::type Scalar;
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
Flags = _XprTypeNested::Flags & (
HereditaryBits | LinearAccessBit | AlignedBit
| (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
CoeffReadCost = EIGEN_ADD_COST(_XprTypeNested::CoeffReadCost, functor_traits<UnaryOp>::Cost)
};
};
}
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
template<typename UnaryOp, typename XprType>
class CwiseUnaryOp : internal::no_assignment_operator,
public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>
{
public:
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
typedef typename internal::ref_selector<XprType>::type XprTypeNested;
typedef typename internal::remove_all<XprType>::type NestedExpression;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
: m_xpr(xpr), m_functor(func) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Index rows() const { return m_xpr.rows(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Index cols() const { return m_xpr.cols(); }
EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); }
/** \returns the functor representing the unary operation */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const UnaryOp& functor() const { return m_functor; }
/** \returns the nested expression */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const typename internal::remove_all<XprTypeNested>::type&
const typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() const { return m_xpr; }
/** \returns the nested expression */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
typename internal::remove_all<XprTypeNested>::type&
nestedExpression() { return m_xpr; }
typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() { return m_xpr.const_cast_derived(); }
protected:
XprTypeNested m_xpr;
typename XprType::Nested m_xpr;
const UnaryOp m_functor;
};
// Generic API dispatcher
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl
: public internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
// This is the generic implementation for dense storage.
// It can be used for any expression types implementing the dense concept.
template<typename UnaryOp, typename XprType>
class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
: public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
public:
typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
{
return derived().functor()(derived().nestedExpression().coeff(rowId, colId));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(rowId, colId));
}
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return derived().functor()(derived().nestedExpression().coeff(index));
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
}
};
} // end namespace Eigen

Some files were not shown because too many files have changed in this diff Show More