This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/sculpt_paint/sculpt_multiplane_scrape.c
2021-03-12 22:29:37 +01:00

473 lines
16 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2020 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup edsculpt
*/
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "DNA_brush_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "BKE_brush.h"
#include "BKE_ccg.h"
#include "BKE_colortools.h"
#include "BKE_context.h"
#include "BKE_mesh.h"
#include "BKE_multires.h"
#include "BKE_node.h"
#include "BKE_object.h"
#include "BKE_paint.h"
#include "BKE_pbvh.h"
#include "BKE_scene.h"
#include "paint_intern.h"
#include "sculpt_intern.h"
#include "GPU_immediate.h"
#include "GPU_immediate_util.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "bmesh.h"
#include <math.h>
#include <stdlib.h>
typedef struct MultiplaneScrapeSampleData {
float area_cos[2][3];
float area_nos[2][3];
int area_count[2];
} MultiplaneScrapeSampleData;
static void calc_multiplane_scrape_surface_task_cb(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict tls)
{
SculptThreadedTaskData *data = userdata;
SculptSession *ss = data->ob->sculpt;
const Brush *brush = data->brush;
MultiplaneScrapeSampleData *mssd = tls->userdata_chunk;
float(*mat)[4] = data->mat;
PBVHVertexIter vd;
SculptBrushTest test;
SculptBrushTestFn sculpt_brush_test_sq_fn = SCULPT_brush_test_init_with_falloff_shape(
ss, &test, brush->falloff_shape);
const int thread_id = BLI_task_parallel_thread_id(tls);
/* Apply the brush normal radius to the test before sampling. */
float test_radius = sqrtf(test.radius_squared);
test_radius *= brush->normal_radius_factor;
test.radius_squared = test_radius * test_radius;
BKE_pbvh_vertex_iter_begin (ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE) {
if (!sculpt_brush_test_sq_fn(&test, vd.co)) {
continue;
}
float local_co[3];
float normal[3];
if (vd.no) {
normal_short_to_float_v3(normal, vd.no);
}
else {
copy_v3_v3(normal, vd.fno);
}
mul_v3_m4v3(local_co, mat, vd.co);
/* Use the brush falloff to weight the sampled normals. */
const float fade = SCULPT_brush_strength_factor(ss,
brush,
vd.co,
sqrtf(test.dist),
vd.no,
vd.fno,
vd.mask ? *vd.mask : 0.0f,
vd.index,
thread_id);
/* Sample the normal and area of the +X and -X axis individually. */
if (local_co[0] > 0.0f) {
madd_v3_v3fl(mssd->area_nos[0], normal, fade);
add_v3_v3(mssd->area_cos[0], vd.co);
mssd->area_count[0]++;
}
else {
madd_v3_v3fl(mssd->area_nos[1], normal, fade);
add_v3_v3(mssd->area_cos[1], vd.co);
mssd->area_count[1]++;
}
BKE_pbvh_vertex_iter_end;
}
}
static void calc_multiplane_scrape_surface_reduce(const void *__restrict UNUSED(userdata),
void *__restrict chunk_join,
void *__restrict chunk)
{
MultiplaneScrapeSampleData *join = chunk_join;
MultiplaneScrapeSampleData *mssd = chunk;
add_v3_v3(join->area_cos[0], mssd->area_cos[0]);
add_v3_v3(join->area_cos[1], mssd->area_cos[1]);
add_v3_v3(join->area_nos[0], mssd->area_nos[0]);
add_v3_v3(join->area_nos[1], mssd->area_nos[1]);
join->area_count[0] += mssd->area_count[0];
join->area_count[1] += mssd->area_count[1];
}
static void do_multiplane_scrape_brush_task_cb_ex(void *__restrict userdata,
const int n,
const TaskParallelTLS *__restrict tls)
{
SculptThreadedTaskData *data = userdata;
SculptSession *ss = data->ob->sculpt;
const Brush *brush = data->brush;
float(*mat)[4] = data->mat;
float(*scrape_planes)[4] = data->multiplane_scrape_planes;
float angle = data->multiplane_scrape_angle;
PBVHVertexIter vd;
float(*proxy)[3];
const float bstrength = fabsf(ss->cache->bstrength);
proxy = BKE_pbvh_node_add_proxy(ss->pbvh, data->nodes[n])->co;
SculptBrushTest test;
SculptBrushTestFn sculpt_brush_test_sq_fn = SCULPT_brush_test_init_with_falloff_shape(
ss, &test, data->brush->falloff_shape);
const int thread_id = BLI_task_parallel_thread_id(tls);
BKE_pbvh_vertex_iter_begin (ss->pbvh, data->nodes[n], vd, PBVH_ITER_UNIQUE) {
if (!sculpt_brush_test_sq_fn(&test, vd.co)) {
continue;
}
float local_co[3];
bool deform = false;
mul_v3_m4v3(local_co, mat, vd.co);
if (local_co[0] > 0.0f) {
deform = !SCULPT_plane_point_side(vd.co, scrape_planes[0]);
}
else {
deform = !SCULPT_plane_point_side(vd.co, scrape_planes[1]);
}
if (angle < 0.0f) {
deform = true;
}
if (!deform) {
continue;
}
float intr[3];
float val[3];
if (local_co[0] > 0.0f) {
closest_to_plane_normalized_v3(intr, scrape_planes[0], vd.co);
}
else {
closest_to_plane_normalized_v3(intr, scrape_planes[1], vd.co);
}
sub_v3_v3v3(val, intr, vd.co);
if (!SCULPT_plane_trim(ss->cache, brush, val)) {
continue;
}
/* Deform the local space along the Y axis to avoid artifacts on curved strokes. */
/* This produces a not round brush tip. */
local_co[1] *= 2.0f;
const float fade = bstrength * SCULPT_brush_strength_factor(ss,
brush,
vd.co,
len_v3(local_co),
vd.no,
vd.fno,
vd.mask ? *vd.mask : 0.0f,
vd.index,
thread_id);
mul_v3_v3fl(proxy[vd.i], val, fade);
if (vd.mvert) {
vd.mvert->flag |= ME_VERT_PBVH_UPDATE;
}
}
BKE_pbvh_vertex_iter_end;
}
/* Public functions. */
/* Main Brush Function. */
void SCULPT_do_multiplane_scrape_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode)
{
SculptSession *ss = ob->sculpt;
Brush *brush = BKE_paint_brush(&sd->paint);
const bool flip = (ss->cache->bstrength < 0.0f);
const float radius = flip ? -ss->cache->radius : ss->cache->radius;
const float offset = SCULPT_brush_plane_offset_get(sd, ss);
const float displace = -radius * offset;
/* The sculpt-plane normal (whatever its set to) */
float area_no_sp[3];
/* Geometry normal. */
float area_no[3];
float area_co[3];
float temp[3];
float mat[4][4];
SCULPT_calc_brush_plane(sd, ob, nodes, totnode, area_no_sp, area_co);
if (brush->sculpt_plane != SCULPT_DISP_DIR_AREA || (brush->flag & BRUSH_ORIGINAL_NORMAL)) {
SCULPT_calc_area_normal(sd, ob, nodes, totnode, area_no);
}
else {
copy_v3_v3(area_no, area_no_sp);
}
/* Delay the first daub because grab delta is not setup. */
if (SCULPT_stroke_is_first_brush_step_of_symmetry_pass(ss->cache)) {
ss->cache->multiplane_scrape_angle = 0.0f;
return;
}
if (is_zero_v3(ss->cache->grab_delta_symmetry)) {
return;
}
mul_v3_v3v3(temp, area_no_sp, ss->cache->scale);
mul_v3_fl(temp, displace);
add_v3_v3(area_co, temp);
/* Init brush local space matrix. */
cross_v3_v3v3(mat[0], area_no, ss->cache->grab_delta_symmetry);
mat[0][3] = 0.0f;
cross_v3_v3v3(mat[1], area_no, mat[0]);
mat[1][3] = 0.0f;
copy_v3_v3(mat[2], area_no);
mat[2][3] = 0.0f;
copy_v3_v3(mat[3], ss->cache->location);
mat[3][3] = 1.0f;
normalize_m4(mat);
invert_m4(mat);
/* Update matrix for the cursor preview. */
if (ss->cache->mirror_symmetry_pass == 0 && ss->cache->radial_symmetry_pass == 0) {
copy_m4_m4(ss->cache->stroke_local_mat, mat);
}
/* Dynamic mode. */
if (brush->flag2 & BRUSH_MULTIPLANE_SCRAPE_DYNAMIC) {
/* Sample the individual normal and area center of the two areas at both sides of the cursor.
*/
SculptThreadedTaskData sample_data = {
.sd = NULL,
.ob = ob,
.brush = brush,
.nodes = nodes,
.totnode = totnode,
.mat = mat,
};
MultiplaneScrapeSampleData mssd = {{{0}}};
TaskParallelSettings sample_settings;
BKE_pbvh_parallel_range_settings(&sample_settings, true, totnode);
sample_settings.func_reduce = calc_multiplane_scrape_surface_reduce;
sample_settings.userdata_chunk = &mssd;
sample_settings.userdata_chunk_size = sizeof(MultiplaneScrapeSampleData);
BLI_task_parallel_range(
0, totnode, &sample_data, calc_multiplane_scrape_surface_task_cb, &sample_settings);
float sampled_plane_normals[2][3];
float sampled_plane_co[2][3];
float sampled_cv[2][3];
float mid_co[3];
/* Use the area center of both planes to detect if we are sculpting along a concave or convex
* edge. */
mul_v3_v3fl(sampled_plane_co[0], mssd.area_cos[0], 1.0f / (float)mssd.area_count[0]);
mul_v3_v3fl(sampled_plane_co[1], mssd.area_cos[1], 1.0f / (float)mssd.area_count[1]);
mid_v3_v3v3(mid_co, sampled_plane_co[0], sampled_plane_co[1]);
/* Calculate the scrape planes angle based on the sampled normals. */
mul_v3_v3fl(sampled_plane_normals[0], mssd.area_nos[0], 1.0f / (float)mssd.area_count[0]);
mul_v3_v3fl(sampled_plane_normals[1], mssd.area_nos[1], 1.0f / (float)mssd.area_count[1]);
normalize_v3(sampled_plane_normals[0]);
normalize_v3(sampled_plane_normals[1]);
float sampled_angle = angle_v3v3(sampled_plane_normals[0], sampled_plane_normals[1]);
copy_v3_v3(sampled_cv[0], area_no);
sub_v3_v3v3(sampled_cv[1], ss->cache->location, mid_co);
sampled_angle += DEG2RADF(brush->multiplane_scrape_angle) * ss->cache->pressure;
/* Invert the angle if we are sculpting along a concave edge. */
if (dot_v3v3(sampled_cv[0], sampled_cv[1]) < 0.0f) {
sampled_angle = -sampled_angle;
}
/* In dynamic mode, set the angle to 0 when inverting the brush, so you can trim plane
* surfaces without changing the brush. */
if (flip) {
sampled_angle = 0.0f;
}
else {
copy_v3_v3(area_co, ss->cache->location);
}
/* Interpolate between the previous and new sampled angles to avoid artifacts when if angle
* difference between two samples is too big. */
ss->cache->multiplane_scrape_angle = interpf(
RAD2DEGF(sampled_angle), ss->cache->multiplane_scrape_angle, 0.2f);
}
else {
/* Standard mode: Scrape with the brush property fixed angle. */
copy_v3_v3(area_co, ss->cache->location);
ss->cache->multiplane_scrape_angle = brush->multiplane_scrape_angle;
if (flip) {
ss->cache->multiplane_scrape_angle *= -1.0f;
}
}
SculptThreadedTaskData data = {
.sd = sd,
.ob = ob,
.brush = brush,
.nodes = nodes,
.mat = mat,
.multiplane_scrape_angle = ss->cache->multiplane_scrape_angle,
};
/* Calculate the final left and right scrape planes. */
float plane_no[3];
float plane_no_rot[3];
const float y_axis[3] = {0.0f, 1.0f, 0.0f};
float mat_inv[4][4];
invert_m4_m4(mat_inv, mat);
mul_v3_mat3_m4v3(plane_no, mat, area_no);
rotate_v3_v3v3fl(
plane_no_rot, plane_no, y_axis, DEG2RADF(-ss->cache->multiplane_scrape_angle * 0.5f));
mul_v3_mat3_m4v3(plane_no, mat_inv, plane_no_rot);
normalize_v3(plane_no);
plane_from_point_normal_v3(data.multiplane_scrape_planes[1], area_co, plane_no);
mul_v3_mat3_m4v3(plane_no, mat, area_no);
rotate_v3_v3v3fl(
plane_no_rot, plane_no, y_axis, DEG2RADF(ss->cache->multiplane_scrape_angle * 0.5f));
mul_v3_mat3_m4v3(plane_no, mat_inv, plane_no_rot);
normalize_v3(plane_no);
plane_from_point_normal_v3(data.multiplane_scrape_planes[0], area_co, plane_no);
TaskParallelSettings settings;
BKE_pbvh_parallel_range_settings(&settings, true, totnode);
BLI_task_parallel_range(0, totnode, &data, do_multiplane_scrape_brush_task_cb_ex, &settings);
}
void SCULPT_multiplane_scrape_preview_draw(const uint gpuattr,
Brush *brush,
SculptSession *ss,
const float outline_col[3],
const float outline_alpha)
{
if (!(brush->flag2 & BRUSH_MULTIPLANE_SCRAPE_PLANES_PREVIEW)) {
return;
}
float local_mat_inv[4][4];
invert_m4_m4(local_mat_inv, ss->cache->stroke_local_mat);
GPU_matrix_mul(local_mat_inv);
float angle = ss->cache->multiplane_scrape_angle;
if (ss->cache->pen_flip || ss->cache->invert) {
angle = -angle;
}
float offset = ss->cache->radius * 0.25f;
const float p[3] = {0.0f, 0.0f, ss->cache->radius};
const float y_axis[3] = {0.0f, 1.0f, 0.0f};
float p_l[3];
float p_r[3];
const float area_center[3] = {0.0f, 0.0f, 0.0f};
rotate_v3_v3v3fl(p_r, p, y_axis, DEG2RADF((angle + 180) * 0.5f));
rotate_v3_v3v3fl(p_l, p, y_axis, DEG2RADF(-(angle + 180) * 0.5f));
immBegin(GPU_PRIM_LINES, 14);
immVertex3f(gpuattr, area_center[0], area_center[1] + offset, area_center[2]);
immVertex3f(gpuattr, p_r[0], p_r[1] + offset, p_r[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] + offset, area_center[2]);
immVertex3f(gpuattr, p_l[0], p_l[1] + offset, p_l[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] - offset, area_center[2]);
immVertex3f(gpuattr, p_r[0], p_r[1] - offset, p_r[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] - offset, area_center[2]);
immVertex3f(gpuattr, p_l[0], p_l[1] - offset, p_l[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] - offset, area_center[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] + offset, area_center[2]);
immVertex3f(gpuattr, p_r[0], p_r[1] - offset, p_r[2]);
immVertex3f(gpuattr, p_r[0], p_r[1] + offset, p_r[2]);
immVertex3f(gpuattr, p_l[0], p_l[1] - offset, p_l[2]);
immVertex3f(gpuattr, p_l[0], p_l[1] + offset, p_l[2]);
immEnd();
immUniformColor3fvAlpha(outline_col, outline_alpha * 0.1f);
immBegin(GPU_PRIM_TRIS, 12);
immVertex3f(gpuattr, area_center[0], area_center[1] + offset, area_center[2]);
immVertex3f(gpuattr, p_r[0], p_r[1] + offset, p_r[2]);
immVertex3f(gpuattr, p_r[0], p_r[1] - offset, p_r[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] + offset, area_center[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] - offset, area_center[2]);
immVertex3f(gpuattr, p_r[0], p_r[1] - offset, p_r[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] + offset, area_center[2]);
immVertex3f(gpuattr, p_l[0], p_l[1] + offset, p_l[2]);
immVertex3f(gpuattr, p_l[0], p_l[1] - offset, p_l[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] + offset, area_center[2]);
immVertex3f(gpuattr, area_center[0], area_center[1] - offset, area_center[2]);
immVertex3f(gpuattr, p_l[0], p_l[1] - offset, p_l[2]);
immEnd();
}