This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/lattice.c
Ton Roosendaal 197fdd2e36 Curve and Lattice deform Modifiers now accept optional Vertex Group name
to finetune deform further as well.
Note that curve deform requires object buttons 'track' and 'up' axes set
properly. Curve deform can twist/flip a lot, making Vertex Group based
deform hard to set up.
2005-10-20 18:52:29 +00:00

787 lines
17 KiB
C

/**
* lattice.c
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_armature_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_lattice_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "BKE_anim.h"
#include "BKE_armature.h"
#include "BKE_curve.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_key.h"
#include "BKE_lattice.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "BKE_screen.h"
#include "BKE_utildefines.h"
#include "BIF_editdeform.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "blendef.h"
Lattice *editLatt=0;
static Lattice *deformLatt=0;
static float *latticedata=0, latmat[4][4];
void calc_lat_fudu(int flag, int res, float *fu, float *du)
{
if(res==1) {
*fu= 0.0;
*du= 0.0;
}
else if(flag & LT_GRID) {
*fu= -0.5f*(res-1);
*du= 1.0f;
}
else {
*fu= -1.0f;
*du= 2.0f/(res-1);
}
}
void resizelattice(Lattice *lt, int uNew, int vNew, int wNew, Object *ltOb)
{
BPoint *bp;
int i, u, v, w;
float fu, fv, fw, uc, vc, wc, du=0.0, dv=0.0, dw=0.0;
float *co, (*vertexCos)[3] = NULL;
while(uNew*vNew*wNew > 32000) {
if( uNew>=vNew && uNew>=wNew) uNew--;
else if( vNew>=uNew && vNew>=wNew) vNew--;
else wNew--;
}
vertexCos = MEM_mallocN(sizeof(*vertexCos)*uNew*vNew*wNew, "tmp_vcos");
calc_lat_fudu(lt->flag, uNew, &fu, &du);
calc_lat_fudu(lt->flag, vNew, &fv, &dv);
calc_lat_fudu(lt->flag, wNew, &fw, &dw);
/* If old size is different then resolution changed in interface,
* try to do clever reinit of points. Pretty simply idea, we just
* deform new verts by old lattice, but scaling them to match old
* size first.
*/
if (ltOb) {
if (uNew!=1 && lt->pntsu!=1) {
fu = lt->fu;
du = (lt->pntsu-1)*lt->du/(uNew-1);
}
if (vNew!=1 && lt->pntsv!=1) {
fv = lt->fv;
dv = (lt->pntsv-1)*lt->dv/(vNew-1);
}
if (wNew!=1 && lt->pntsw!=1) {
fw = lt->fw;
dw = (lt->pntsw-1)*lt->dw/(wNew-1);
}
}
co = vertexCos[0];
for(w=0,wc=fw; w<wNew; w++,wc+=dw) {
for(v=0,vc=fv; v<vNew; v++,vc+=dv) {
for(u=0,uc=fu; u<uNew; u++,co+=3,uc+=du) {
co[0] = uc;
co[1] = vc;
co[2] = wc;
}
}
}
if (ltOb) {
float mat[4][4];
int typeu = lt->typeu, typev = lt->typev, typew = lt->typew;
/* works best if we force to linear type (endpoints match) */
lt->typeu = lt->typev = lt->typew = KEY_LINEAR;
/* prevent using deformed locations */
freedisplist(&ltOb->disp);
Mat4CpyMat4(mat, ltOb->obmat);
Mat4One(ltOb->obmat);
lattice_deform_verts(ltOb, NULL, vertexCos, uNew*vNew*wNew, NULL);
Mat4CpyMat4(ltOb->obmat, mat);
lt->typeu = typeu;
lt->typev = typev;
lt->typew = typew;
}
lt->fu = fu;
lt->fv = fv;
lt->fw = fw;
lt->du = du;
lt->dv = dv;
lt->dw = dw;
lt->pntsu = uNew;
lt->pntsv = vNew;
lt->pntsw = wNew;
MEM_freeN(lt->def);
lt->def= MEM_callocN(lt->pntsu*lt->pntsv*lt->pntsw*sizeof(BPoint), "lattice bp");
bp= lt->def;
for (i=0; i<lt->pntsu*lt->pntsv*lt->pntsw; i++,bp++) {
VECCOPY(bp->vec, vertexCos[i]);
}
MEM_freeN(vertexCos);
}
Lattice *add_lattice()
{
Lattice *lt;
lt= alloc_libblock(&G.main->latt, ID_LT, "Lattice");
lt->flag= LT_GRID;
lt->typeu= lt->typev= lt->typew= KEY_BSPLINE;
lt->def= MEM_callocN(sizeof(BPoint), "lattvert"); /* temporary */
resizelattice(lt, 2, 2, 2, NULL); /* creates a uniform lattice */
return lt;
}
Lattice *copy_lattice(Lattice *lt)
{
Lattice *ltn;
ltn= copy_libblock(lt);
ltn->def= MEM_dupallocN(lt->def);
id_us_plus((ID *)ltn->ipo);
ltn->key= copy_key(ltn->key);
if(ltn->key) ltn->key->from= (ID *)ltn;
return ltn;
}
void free_lattice(Lattice *lt)
{
if(lt->def) MEM_freeN(lt->def);
}
void make_local_lattice(Lattice *lt)
{
Object *ob;
Lattice *ltn;
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(lt->id.lib==0) return;
if(lt->id.us==1) {
lt->id.lib= 0;
lt->id.flag= LIB_LOCAL;
new_id(0, (ID *)lt, 0);
return;
}
ob= G.main->object.first;
while(ob) {
if(ob->data==lt) {
if(ob->id.lib) lib= 1;
else local= 1;
}
ob= ob->id.next;
}
if(local && lib==0) {
lt->id.lib= 0;
lt->id.flag= LIB_LOCAL;
new_id(0, (ID *)lt, 0);
}
else if(local && lib) {
ltn= copy_lattice(lt);
ltn->id.us= 0;
ob= G.main->object.first;
while(ob) {
if(ob->data==lt) {
if(ob->id.lib==0) {
ob->data= ltn;
ltn->id.us++;
lt->id.us--;
}
}
ob= ob->id.next;
}
}
}
void init_latt_deform(Object *oblatt, Object *ob)
{
/* we make an array with all differences */
Lattice *lt = deformLatt = (oblatt==G.obedit)?editLatt:oblatt->data;
BPoint *bp = lt->def;
DispList *dl = find_displist(&oblatt->disp, DL_VERTS);
float *co = dl?dl->verts:NULL;
float *fp, imat[4][4];
float fu, fv, fw;
int u, v, w;
fp= latticedata= MEM_mallocN(sizeof(float)*3*deformLatt->pntsu*deformLatt->pntsv*deformLatt->pntsw, "latticedata");
/* for example with a particle system: ob==0 */
if(ob==0) {
/* in deformspace, calc matrix */
Mat4Invert(latmat, oblatt->obmat);
/* back: put in deform array */
Mat4Invert(imat, latmat);
}
else {
/* in deformspace, calc matrix */
Mat4Invert(imat, oblatt->obmat);
Mat4MulMat4(latmat, ob->obmat, imat);
/* back: put in deform array */
Mat4Invert(imat, latmat);
}
for(w=0,fw=lt->fw; w<lt->pntsw; w++,fw+=lt->dw) {
for(v=0,fv=lt->fv; v<lt->pntsv; v++, fv+=lt->dv) {
for(u=0,fu=lt->fu; u<lt->pntsu; u++, bp++, co+=3, fp+=3, fu+=lt->du) {
if (dl) {
fp[0] = co[0] - fu;
fp[1] = co[1] - fv;
fp[2] = co[2] - fw;
} else {
fp[0] = bp->vec[0] - fu;
fp[1] = bp->vec[1] - fv;
fp[2] = bp->vec[2] - fw;
}
Mat4Mul3Vecfl(imat, fp);
}
}
}
}
void calc_latt_deform(float *co, float weight)
{
Lattice *lt;
float u, v, w, tu[4], tv[4], tw[4];
float *fpw, *fpv, *fpu, vec[3];
int ui, vi, wi, uu, vv, ww;
if(latticedata==0) return;
lt= deformLatt; /* just for shorter notation! */
/* co is in local coords, treat with latmat */
VECCOPY(vec, co);
Mat4MulVecfl(latmat, vec);
/* u v w coords */
if(lt->pntsu>1) {
u= (vec[0]-lt->fu)/lt->du;
ui= (int)floor(u);
u -= ui;
set_four_ipo(u, tu, lt->typeu);
}
else {
tu[0]= tu[2]= tu[3]= 0.0; tu[1]= 1.0;
ui= 0;
}
if(lt->pntsv>1) {
v= (vec[1]-lt->fv)/lt->dv;
vi= (int)floor(v);
v -= vi;
set_four_ipo(v, tv, lt->typev);
}
else {
tv[0]= tv[2]= tv[3]= 0.0; tv[1]= 1.0;
vi= 0;
}
if(lt->pntsw>1) {
w= (vec[2]-lt->fw)/lt->dw;
wi= (int)floor(w);
w -= wi;
set_four_ipo(w, tw, lt->typew);
}
else {
tw[0]= tw[2]= tw[3]= 0.0; tw[1]= 1.0;
wi= 0;
}
for(ww= wi-1; ww<=wi+2; ww++) {
w= tw[ww-wi+1];
if(w!=0.0) {
if(ww>0) {
if(ww<lt->pntsw) fpw= latticedata + 3*ww*lt->pntsu*lt->pntsv;
else fpw= latticedata + 3*(lt->pntsw-1)*lt->pntsu*lt->pntsv;
}
else fpw= latticedata;
for(vv= vi-1; vv<=vi+2; vv++) {
v= w*tv[vv-vi+1];
if(v!=0.0) {
if(vv>0) {
if(vv<lt->pntsv) fpv= fpw + 3*vv*lt->pntsu;
else fpv= fpw + 3*(lt->pntsv-1)*lt->pntsu;
}
else fpv= fpw;
for(uu= ui-1; uu<=ui+2; uu++) {
u= weight*v*tu[uu-ui+1];
if(u!=0.0) {
if(uu>0) {
if(uu<lt->pntsu) fpu= fpv + 3*uu;
else fpu= fpv + 3*(lt->pntsu-1);
}
else fpu= fpv;
co[0]+= u*fpu[0];
co[1]+= u*fpu[1];
co[2]+= u*fpu[2];
}
}
}
}
}
}
}
void end_latt_deform()
{
MEM_freeN(latticedata);
latticedata= 0;
}
/* calculations is in local space of deformed object
so we store in latmat transform from path coord inside object
*/
typedef struct {
float dmin[3], dmax[3], dsize, dloc[3];
float curvespace[4][4], objectspace[4][4];
} CurveDeform;
static void init_curve_deform(Object *par, Object *ob, CurveDeform *cd)
{
Mat4Invert(ob->imat, ob->obmat);
Mat4MulMat4(cd->objectspace, par->obmat, ob->imat);
Mat4Invert(cd->curvespace, cd->objectspace);
// offset vector for 'no smear'
Mat4Invert(par->imat, par->obmat);
VecMat4MulVecfl(cd->dloc, par->imat, ob->obmat[3]);
}
/* this makes sure we can extend for non-cyclic. *vec needs 4 items! */
static int where_on_path_deform(Object *ob, float ctime, float *vec, float *dir) /* returns OK */
{
Curve *cu= ob->data;
BevList *bl;
float ctime1;
int cycl=0;
/* test for cyclic */
bl= cu->bev.first;
if(bl && bl->poly> -1) cycl= 1;
if(cycl==0) {
ctime1= CLAMPIS(ctime, 0.0, 1.0);
}
else ctime1= ctime;
/* vec needs 4 items */
if(where_on_path(ob, ctime1, vec, dir)) {
if(cycl==0) {
Path *path= cu->path;
float dvec[3];
if(ctime < 0.0) {
VecSubf(dvec, path->data+4, path->data);
VecMulf(dvec, ctime*(float)path->len);
VECADD(vec, vec, dvec);
}
else if(ctime > 1.0) {
VecSubf(dvec, path->data+4*path->len-4, path->data+4*path->len-8);
VecMulf(dvec, (ctime-1.0)*(float)path->len);
VECADD(vec, vec, dvec);
}
}
return 1;
}
return 0;
}
/* for each point, rotate & translate to curve */
/* use path, since it has constant distances */
/* co: local coord, result local too */
static void calc_curve_deform(Object *par, float *co, short axis, CurveDeform *cd)
{
Curve *cu= par->data;
float fac, loc[4], dir[3], *quat, q[4], mat[3][3], cent[3];
short upflag, index;
if(axis==OB_POSX || axis==OB_NEGX) {
upflag= OB_POSZ;
cent[0]= 0.0;
cent[1]= co[1];
cent[2]= co[2];
index= 0;
}
else if(axis==OB_POSY || axis==OB_NEGY) {
upflag= OB_POSZ;
cent[0]= co[0];
cent[1]= 0.0;
cent[2]= co[2];
index= 1;
}
else {
upflag= OB_POSY;
cent[0]= co[0];
cent[1]= co[1];
cent[2]= 0.0;
index= 2;
}
/* to be sure */
if(cu->path==NULL) {
calc_curvepath(par);
if(cu->path==NULL) return; // happens on append...
}
/* options */
if(cu->flag & CU_STRETCH)
fac= (co[index]-cd->dmin[index])/(cd->dmax[index] - cd->dmin[index]);
else
fac= (cd->dloc[index])/(cu->path->totdist) + (co[index]-cd->dmin[index])/(cu->path->totdist);
if( where_on_path_deform(par, fac, loc, dir)) { /* returns OK */
quat= vectoquat(dir, axis, upflag);
/* the tilt */
if(loc[3]!=0.0) {
Normalise(dir);
q[0]= (float)cos(0.5*loc[3]);
fac= (float)sin(0.5*loc[3]);
q[1]= -fac*dir[0];
q[2]= -fac*dir[1];
q[3]= -fac*dir[2];
QuatMul(quat, q, quat);
}
QuatToMat3(quat, mat);
/* local rotation */
Mat3MulVecfl(mat, cent);
/* translation */
VECADD(co, cent, loc);
}
}
void curve_deform_verts(Object *cuOb, Object *target, float (*vertexCos)[3], int numVerts, char *vgroup)
{
Curve *cu = cuOb->data;
int a, flag = cu->flag;
CurveDeform cd;
cu->flag |= (CU_PATH|CU_FOLLOW); // needed for path & bevlist
init_curve_deform(cuOb, target, &cd);
INIT_MINMAX(cd.dmin, cd.dmax);
for(a=0; a<numVerts; a++) {
Mat4MulVecfl(cd.curvespace, vertexCos[a]);
DO_MINMAX(vertexCos[a], cd.dmin, cd.dmax);
}
if(vgroup && vgroup[0] && target->type==OB_MESH) {
bDeformGroup *curdef;
Mesh *me= target->data;
int index= 0;
/* find the group (weak loop-in-loop) */
for (curdef = target->defbase.first; curdef; curdef=curdef->next, index++)
if (!strcmp(curdef->name, vgroup))
break;
/* check for numVerts because old files can have modifier over subsurf still */
if(curdef && me->dvert && numVerts==me->totvert) {
MDeformVert *dvert= me->dvert;
float vec[3];
int j;
for(a=0; a<numVerts; a++, dvert++) {
for(j=0; j<dvert->totweight; j++) {
if (dvert->dw[j].def_nr == index) {
VECCOPY(vec, vertexCos[a]);
calc_curve_deform(cuOb, vec, target->trackflag, &cd);
VecLerpf(vertexCos[a], vertexCos[a], vec, dvert->dw[j].weight);
Mat4MulVecfl(cd.objectspace, vertexCos[a]);
}
}
}
}
}
else {
for(a=0; a<numVerts; a++) {
calc_curve_deform(cuOb, vertexCos[a], target->trackflag, &cd);
Mat4MulVecfl(cd.objectspace, vertexCos[a]);
}
}
cu->flag = flag;
}
void lattice_deform_verts(Object *laOb, Object *target, float (*vertexCos)[3], int numVerts, char *vgroup)
{
int a;
init_latt_deform(laOb, target);
if(vgroup && vgroup[0] && target->type==OB_MESH) {
bDeformGroup *curdef;
Mesh *me= target->data;
int index= 0;
/* find the group (weak loop-in-loop) */
for (curdef = target->defbase.first; curdef; curdef=curdef->next, index++)
if (!strcmp(curdef->name, vgroup))
break;
/* check for numVerts because old files can have modifier over subsurf still */
if(curdef && me->dvert && numVerts==me->totvert) {
MDeformVert *dvert= me->dvert;
int j;
for(a=0; a<numVerts; a++, dvert++) {
for(j=0; j<dvert->totweight; j++) {
if (dvert->dw[j].def_nr == index) {
calc_latt_deform(vertexCos[a], dvert->dw[j].weight);
}
}
}
}
}
else {
for(a=0; a<numVerts; a++) {
calc_latt_deform(vertexCos[a], 1.0f);
}
}
end_latt_deform();
}
int object_deform_mball(Object *ob)
{
if(ob->parent && ob->parent->type==OB_LATTICE && ob->partype==PARSKEL) {
DispList *dl;
for (dl=ob->disp.first; dl; dl=dl->next) {
lattice_deform_verts(ob->parent, ob, (float(*)[3]) dl->verts, dl->nr, NULL);
}
return 1;
} else {
return 0;
}
}
static BPoint *latt_bp(Lattice *lt, int u, int v, int w)
{
return lt->def+ u + v*lt->pntsu + w*lt->pntsu*lt->pntsv;
}
void outside_lattice(Lattice *lt)
{
BPoint *bp, *bp1, *bp2;
int u, v, w;
float fac1, du=0.0, dv=0.0, dw=0.0;
bp= lt->def;
if(lt->pntsu>1) du= 1.0f/((float)lt->pntsu-1);
if(lt->pntsv>1) dv= 1.0f/((float)lt->pntsv-1);
if(lt->pntsw>1) dw= 1.0f/((float)lt->pntsw-1);
for(w=0; w<lt->pntsw; w++) {
for(v=0; v<lt->pntsv; v++) {
for(u=0; u<lt->pntsu; u++, bp++) {
if(u==0 || v==0 || w==0 || u==lt->pntsu-1 || v==lt->pntsv-1 || w==lt->pntsw-1);
else {
bp->hide= 1;
bp->f1 &= ~SELECT;
/* u extrema */
bp1= latt_bp(lt, 0, v, w);
bp2= latt_bp(lt, lt->pntsu-1, v, w);
fac1= du*u;
bp->vec[0]= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
/* v extrema */
bp1= latt_bp(lt, u, 0, w);
bp2= latt_bp(lt, u, lt->pntsv-1, w);
fac1= dv*v;
bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
/* w extrema */
bp1= latt_bp(lt, u, v, 0);
bp2= latt_bp(lt, u, v, lt->pntsw-1);
fac1= dw*w;
bp->vec[0]+= (1.0f-fac1)*bp1->vec[0] + fac1*bp2->vec[0];
bp->vec[1]+= (1.0f-fac1)*bp1->vec[1] + fac1*bp2->vec[1];
bp->vec[2]+= (1.0f-fac1)*bp1->vec[2] + fac1*bp2->vec[2];
VecMulf(bp->vec, 0.3333333f);
}
}
}
}
}
float (*lattice_getVertexCos(struct Object *ob, int *numVerts_r))[3]
{
Lattice *lt = (G.obedit==ob)?editLatt:ob->data;
int i, numVerts = *numVerts_r = lt->pntsu*lt->pntsv*lt->pntsw;
float (*vertexCos)[3] = MEM_mallocN(sizeof(*vertexCos)*numVerts,"lt_vcos");
for (i=0; i<numVerts; i++) {
VECCOPY(vertexCos[i], lt->def[i].vec);
}
return vertexCos;
}
void lattice_applyVertexCos(struct Object *ob, float (*vertexCos)[3])
{
Lattice *lt = ob->data;
int i, numVerts = lt->pntsu*lt->pntsv*lt->pntsw;
for (i=0; i<numVerts; i++) {
VECCOPY(lt->def[i].vec, vertexCos[i]);
}
}
void lattice_calc_modifiers(Object *ob)
{
float (*vertexCos)[3] = NULL;
ModifierData *md = modifiers_getVirtualModifierList(ob);
int numVerts, editmode = G.obedit==ob;
freedisplist(&ob->disp);
if (!editmode) {
do_ob_key(ob);
}
for (; md; md=md->next) {
ModifierTypeInfo *mti = modifierType_getInfo(md->type);
if (!(md->mode&(1<<0))) continue;
if (editmode && !(md->mode&eModifierMode_Editmode)) continue;
if (mti->isDisabled && mti->isDisabled(md)) continue;
if (mti->type!=eModifierTypeType_OnlyDeform) continue;
if (!vertexCos) vertexCos = lattice_getVertexCos(ob, &numVerts);
mti->deformVerts(md, ob, NULL, vertexCos, numVerts);
}
if (vertexCos) {
DispList *dl = MEM_callocN(sizeof(*dl), "lt_dl");
dl->type = DL_VERTS;
dl->parts = 1;
dl->nr = numVerts;
dl->verts = (float*) vertexCos;
BLI_addtail(&ob->disp, dl);
}
}