This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/node_runtime.cc
Hans Goudey 05ddc7daa2 Nodes: Avoid small allocations for internal links
Since internal links are only runtime data, we have the flexibility to
allocating every link individually. Instead we can store links directly
in the node runtime vector. This allows avoiding many small allocations
when copying and changing node trees.

In the future we could use a smaller type like a pair of sockets
instead of `bNodeLink` to save memory.

Differential Revision: https://developer.blender.org/D16960
2023-01-09 23:29:58 -05:00

457 lines
16 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BKE_node.h"
#include "BKE_node_runtime.hh"
#include "DNA_node_types.h"
#include "BLI_function_ref.hh"
#include "BLI_stack.hh"
#include "BLI_task.hh"
#include "BLI_timeit.hh"
#include "NOD_geometry_nodes_lazy_function.hh"
namespace blender::bke::node_tree_runtime {
void preprocess_geometry_node_tree_for_evaluation(bNodeTree &tree_cow)
{
BLI_assert(tree_cow.type == NTREE_GEOMETRY);
/* Rebuild geometry nodes lazy function graph. */
tree_cow.runtime->geometry_nodes_lazy_function_graph_info.reset();
blender::nodes::ensure_geometry_nodes_lazy_function_graph(tree_cow);
}
static void update_interface_sockets(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
tree_runtime.interface_inputs = ntree.inputs;
tree_runtime.interface_outputs = ntree.outputs;
}
static void update_node_vector(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
const Span<bNode *> nodes = tree_runtime.nodes_by_id;
tree_runtime.group_nodes.clear();
tree_runtime.has_undefined_nodes_or_sockets = false;
for (const int i : nodes.index_range()) {
bNode &node = *nodes[i];
node.runtime->index_in_tree = i;
node.runtime->owner_tree = const_cast<bNodeTree *>(&ntree);
tree_runtime.has_undefined_nodes_or_sockets |= node.typeinfo == &NodeTypeUndefined;
if (node.is_group()) {
tree_runtime.group_nodes.append(&node);
}
}
}
static void update_link_vector(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
tree_runtime.links.clear();
LISTBASE_FOREACH (bNodeLink *, link, &ntree.links) {
/* Check that the link connects nodes within this tree. */
BLI_assert(tree_runtime.nodes_by_id.contains(link->fromnode));
BLI_assert(tree_runtime.nodes_by_id.contains(link->tonode));
tree_runtime.links.append(link);
}
}
static void update_socket_vectors_and_owner_node(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
tree_runtime.sockets.clear();
tree_runtime.input_sockets.clear();
tree_runtime.output_sockets.clear();
for (bNode *node : tree_runtime.nodes_by_id) {
bNodeRuntime &node_runtime = *node->runtime;
node_runtime.inputs.clear();
node_runtime.outputs.clear();
LISTBASE_FOREACH (bNodeSocket *, socket, &node->inputs) {
socket->runtime->index_in_node = node_runtime.inputs.append_and_get_index(socket);
socket->runtime->index_in_all_sockets = tree_runtime.sockets.append_and_get_index(socket);
socket->runtime->index_in_inout_sockets = tree_runtime.input_sockets.append_and_get_index(
socket);
socket->runtime->owner_node = node;
tree_runtime.has_undefined_nodes_or_sockets |= socket->typeinfo == &NodeSocketTypeUndefined;
}
LISTBASE_FOREACH (bNodeSocket *, socket, &node->outputs) {
socket->runtime->index_in_node = node_runtime.outputs.append_and_get_index(socket);
socket->runtime->index_in_all_sockets = tree_runtime.sockets.append_and_get_index(socket);
socket->runtime->index_in_inout_sockets = tree_runtime.output_sockets.append_and_get_index(
socket);
socket->runtime->owner_node = node;
tree_runtime.has_undefined_nodes_or_sockets |= socket->typeinfo == &NodeSocketTypeUndefined;
}
}
}
static void update_internal_link_inputs(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
for (bNode *node : tree_runtime.nodes_by_id) {
for (bNodeSocket *socket : node->runtime->outputs) {
socket->runtime->internal_link_input = nullptr;
}
for (bNodeLink &link : node->runtime->internal_links) {
link.tosock->runtime->internal_link_input = link.fromsock;
}
}
}
static void update_directly_linked_links_and_sockets(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
for (bNode *node : tree_runtime.nodes_by_id) {
for (bNodeSocket *socket : node->runtime->inputs) {
socket->runtime->directly_linked_links.clear();
socket->runtime->directly_linked_sockets.clear();
}
for (bNodeSocket *socket : node->runtime->outputs) {
socket->runtime->directly_linked_links.clear();
socket->runtime->directly_linked_sockets.clear();
}
node->runtime->has_available_linked_inputs = false;
node->runtime->has_available_linked_outputs = false;
}
for (bNodeLink *link : tree_runtime.links) {
link->fromsock->runtime->directly_linked_links.append(link);
link->fromsock->runtime->directly_linked_sockets.append(link->tosock);
link->tosock->runtime->directly_linked_links.append(link);
if (link->is_available()) {
link->fromnode->runtime->has_available_linked_outputs = true;
link->tonode->runtime->has_available_linked_inputs = true;
}
}
for (bNodeSocket *socket : tree_runtime.input_sockets) {
if (socket->flag & SOCK_MULTI_INPUT) {
std::sort(socket->runtime->directly_linked_links.begin(),
socket->runtime->directly_linked_links.end(),
[&](const bNodeLink *a, const bNodeLink *b) {
return a->multi_input_socket_index > b->multi_input_socket_index;
});
}
}
for (bNodeSocket *socket : tree_runtime.input_sockets) {
for (bNodeLink *link : socket->runtime->directly_linked_links) {
/* Do this after sorting the input links. */
socket->runtime->directly_linked_sockets.append(link->fromsock);
}
}
}
static void find_logical_origins_for_socket_recursive(
bNodeSocket &input_socket,
bool only_follow_first_input_link,
Vector<bNodeSocket *, 16> &sockets_in_current_chain,
Vector<bNodeSocket *> &r_logical_origins,
Vector<bNodeSocket *> &r_skipped_origins)
{
if (sockets_in_current_chain.contains(&input_socket)) {
/* Protect against reroute recursions. */
return;
}
sockets_in_current_chain.append(&input_socket);
Span<bNodeLink *> links_to_check = input_socket.runtime->directly_linked_links;
if (only_follow_first_input_link) {
links_to_check = links_to_check.take_front(1);
}
for (bNodeLink *link : links_to_check) {
if (link->is_muted()) {
continue;
}
if (!link->is_available()) {
continue;
}
bNodeSocket &origin_socket = *link->fromsock;
bNode &origin_node = *link->fromnode;
if (!origin_socket.is_available()) {
/* Non available sockets are ignored. */
continue;
}
if (origin_node.type == NODE_REROUTE) {
bNodeSocket &reroute_input = *origin_node.runtime->inputs[0];
bNodeSocket &reroute_output = *origin_node.runtime->outputs[0];
r_skipped_origins.append(&reroute_input);
r_skipped_origins.append(&reroute_output);
find_logical_origins_for_socket_recursive(
reroute_input, false, sockets_in_current_chain, r_logical_origins, r_skipped_origins);
continue;
}
if (origin_node.is_muted()) {
if (bNodeSocket *mute_input = origin_socket.runtime->internal_link_input) {
r_skipped_origins.append(&origin_socket);
r_skipped_origins.append(mute_input);
find_logical_origins_for_socket_recursive(
*mute_input, true, sockets_in_current_chain, r_logical_origins, r_skipped_origins);
}
continue;
}
r_logical_origins.append(&origin_socket);
}
sockets_in_current_chain.pop_last();
}
static void update_logical_origins(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
Span<bNode *> nodes = tree_runtime.nodes_by_id;
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
for (const int i : range) {
bNode &node = *nodes[i];
for (bNodeSocket *socket : node.runtime->inputs) {
Vector<bNodeSocket *, 16> sockets_in_current_chain;
socket->runtime->logically_linked_sockets.clear();
socket->runtime->logically_linked_skipped_sockets.clear();
find_logical_origins_for_socket_recursive(
*socket,
false,
sockets_in_current_chain,
socket->runtime->logically_linked_sockets,
socket->runtime->logically_linked_skipped_sockets);
}
}
});
}
static void update_nodes_by_type(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
tree_runtime.nodes_by_type.clear();
for (bNode *node : tree_runtime.nodes_by_id) {
tree_runtime.nodes_by_type.add(node->typeinfo, node);
}
}
static void update_sockets_by_identifier(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
Span<bNode *> nodes = tree_runtime.nodes_by_id;
threading::parallel_for(nodes.index_range(), 128, [&](const IndexRange range) {
for (bNode *node : nodes.slice(range)) {
node->runtime->inputs_by_identifier.clear();
node->runtime->outputs_by_identifier.clear();
for (bNodeSocket *socket : node->runtime->inputs) {
node->runtime->inputs_by_identifier.add_new(socket->identifier, socket);
}
for (bNodeSocket *socket : node->runtime->outputs) {
node->runtime->outputs_by_identifier.add_new(socket->identifier, socket);
}
}
});
}
enum class ToposortDirection {
LeftToRight,
RightToLeft,
};
struct ToposortNodeState {
bool is_done = false;
bool is_in_stack = false;
};
static void toposort_from_start_node(const ToposortDirection direction,
bNode &start_node,
MutableSpan<ToposortNodeState> node_states,
Vector<bNode *> &r_sorted_nodes,
bool &r_cycle_detected)
{
struct Item {
bNode *node;
int socket_index = 0;
int link_index = 0;
};
Stack<Item, 64> nodes_to_check;
nodes_to_check.push({&start_node});
node_states[start_node.index()].is_in_stack = true;
while (!nodes_to_check.is_empty()) {
Item &item = nodes_to_check.peek();
bNode &node = *item.node;
const Span<bNodeSocket *> sockets = (direction == ToposortDirection::LeftToRight) ?
node.runtime->inputs :
node.runtime->outputs;
while (true) {
if (item.socket_index == sockets.size()) {
/* All sockets have already been visited. */
break;
}
bNodeSocket &socket = *sockets[item.socket_index];
const Span<bNodeLink *> linked_links = socket.runtime->directly_linked_links;
if (item.link_index == linked_links.size()) {
/* All links connected to this socket have already been visited. */
item.socket_index++;
item.link_index = 0;
continue;
}
bNodeLink &link = *linked_links[item.link_index];
if (!link.is_available()) {
/* Ignore unavailable links. */
item.link_index++;
continue;
}
bNodeSocket &linked_socket = *socket.runtime->directly_linked_sockets[item.link_index];
bNode &linked_node = *linked_socket.runtime->owner_node;
ToposortNodeState &linked_node_state = node_states[linked_node.index()];
if (linked_node_state.is_done) {
/* The linked node has already been visited. */
item.link_index++;
continue;
}
if (linked_node_state.is_in_stack) {
r_cycle_detected = true;
}
else {
nodes_to_check.push({&linked_node});
linked_node_state.is_in_stack = true;
}
break;
}
/* If no other element has been pushed, the current node can be pushed to the sorted list. */
if (&item == &nodes_to_check.peek()) {
ToposortNodeState &node_state = node_states[node.index()];
node_state.is_done = true;
node_state.is_in_stack = false;
r_sorted_nodes.append(&node);
nodes_to_check.pop();
}
}
}
static void update_toposort(const bNodeTree &ntree,
const ToposortDirection direction,
Vector<bNode *> &r_sorted_nodes,
bool &r_cycle_detected)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
r_sorted_nodes.clear();
r_sorted_nodes.reserve(tree_runtime.nodes_by_id.size());
r_cycle_detected = false;
Array<ToposortNodeState> node_states(tree_runtime.nodes_by_id.size());
for (bNode *node : tree_runtime.nodes_by_id) {
if (node_states[node->index()].is_done) {
/* Ignore nodes that are done already. */
continue;
}
if ((direction == ToposortDirection::LeftToRight) ?
node->runtime->has_available_linked_outputs :
node->runtime->has_available_linked_inputs) {
/* Ignore non-start nodes. */
continue;
}
toposort_from_start_node(direction, *node, node_states, r_sorted_nodes, r_cycle_detected);
}
if (r_sorted_nodes.size() < tree_runtime.nodes_by_id.size()) {
r_cycle_detected = true;
for (bNode *node : tree_runtime.nodes_by_id) {
if (node_states[node->index()].is_done) {
/* Ignore nodes that are done already. */
continue;
}
/* Start toposort at this node which is somewhere in the middle of a loop. */
toposort_from_start_node(direction, *node, node_states, r_sorted_nodes, r_cycle_detected);
}
}
BLI_assert(tree_runtime.nodes_by_id.size() == r_sorted_nodes.size());
}
static void update_root_frames(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
Span<bNode *> nodes = tree_runtime.nodes_by_id;
tree_runtime.root_frames.clear();
for (bNode *node : nodes) {
if (!node->parent && node->is_frame()) {
tree_runtime.root_frames.append(node);
}
}
}
static void update_direct_frames_childrens(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
Span<bNode *> nodes = tree_runtime.nodes_by_id;
for (bNode *node : nodes) {
node->runtime->direct_children_in_frame.clear();
}
for (bNode *node : nodes) {
if (const bNode *frame = node->parent) {
frame->runtime->direct_children_in_frame.append(node);
}
}
}
static void update_group_output_node(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
const bNodeType *node_type = nodeTypeFind("NodeGroupOutput");
const Span<bNode *> group_output_nodes = tree_runtime.nodes_by_type.lookup(node_type);
if (group_output_nodes.is_empty()) {
tree_runtime.group_output_node = nullptr;
}
else if (group_output_nodes.size() == 1) {
tree_runtime.group_output_node = group_output_nodes[0];
}
else {
for (bNode *group_output : group_output_nodes) {
if (group_output->flag & NODE_DO_OUTPUT) {
tree_runtime.group_output_node = group_output;
break;
}
}
}
}
static void ensure_topology_cache(const bNodeTree &ntree)
{
bNodeTreeRuntime &tree_runtime = *ntree.runtime;
tree_runtime.topology_cache_mutex.ensure([&]() {
update_interface_sockets(ntree);
update_node_vector(ntree);
update_link_vector(ntree);
update_socket_vectors_and_owner_node(ntree);
update_internal_link_inputs(ntree);
update_directly_linked_links_and_sockets(ntree);
threading::parallel_invoke(
tree_runtime.nodes_by_id.size() > 32,
[&]() { update_logical_origins(ntree); },
[&]() { update_nodes_by_type(ntree); },
[&]() { update_sockets_by_identifier(ntree); },
[&]() {
update_toposort(ntree,
ToposortDirection::LeftToRight,
tree_runtime.toposort_left_to_right,
tree_runtime.has_available_link_cycle);
},
[&]() {
bool dummy;
update_toposort(
ntree, ToposortDirection::RightToLeft, tree_runtime.toposort_right_to_left, dummy);
},
[&]() { update_root_frames(ntree); },
[&]() { update_direct_frames_childrens(ntree); });
update_group_output_node(ntree);
tree_runtime.topology_cache_exists = true;
});
}
} // namespace blender::bke::node_tree_runtime
void bNodeTree::ensure_topology_cache() const
{
blender::bke::node_tree_runtime::ensure_topology_cache(*this);
}