This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/geometry/intern/subdivide_curves.cc
Hans Goudey 7fc395354c Cleanup: Use offset indices arguments for curves utilities
Make the functions more flexible and more generic by changing the curves
arguments to the curve offsets. This way, theoretically they could become
normal utility functions in the future. Also do a consistency pass over
the algorithms that generate new curves geometry for naming and
code ordering, and use of utility functions. The functions are really
quite similar, and it's much easier to tell this way.
2023-01-23 14:43:04 -06:00

452 lines
22 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BKE_attribute_math.hh"
#include "BKE_curves.hh"
#include "BKE_curves_utils.hh"
#include "BKE_geometry_set.hh"
#include "BLI_task.hh"
#include "GEO_subdivide_curves.hh"
namespace blender::geometry {
static void calculate_result_offsets(const bke::CurvesGeometry &src_curves,
const IndexMask selection,
const Span<IndexRange> unselected_ranges,
const VArray<int> &cuts,
const Span<bool> cyclic,
MutableSpan<int> dst_curve_offsets,
MutableSpan<int> dst_point_offsets)
{
/* Fill the array with each curve's point count, then accumulate them to the offsets. */
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
bke::curves::copy_curve_sizes(src_points_by_curve, unselected_ranges, dst_curve_offsets);
threading::parallel_for(selection.index_range(), 1024, [&](IndexRange range) {
for (const int curve_i : selection.slice(range)) {
const IndexRange src_points = src_points_by_curve[curve_i];
const IndexRange src_segments = bke::curves::per_curve_point_offsets_range(src_points,
curve_i);
MutableSpan<int> point_offsets = dst_point_offsets.slice(src_segments);
MutableSpan<int> point_counts = point_offsets.drop_back(1);
if (src_points.size() == 1) {
point_counts.first() = 1;
}
else {
cuts.materialize_compressed(src_points, point_counts);
for (int &count : point_counts) {
/* Make sure there at least one cut, and add one for the existing point. */
count = std::max(count, 0) + 1;
}
if (!cyclic[curve_i]) {
/* The last point only has a segment to be subdivided if the curve isn't cyclic. */
point_counts.last() = 1;
}
}
offset_indices::accumulate_counts_to_offsets(point_offsets);
dst_curve_offsets[curve_i] = point_offsets.last();
}
});
offset_indices::accumulate_counts_to_offsets(dst_curve_offsets);
}
template<typename T>
static inline void linear_interpolation(const T &a, const T &b, MutableSpan<T> dst)
{
dst.first() = a;
const float step = 1.0f / dst.size();
for (const int i : dst.index_range().drop_front(1)) {
dst[i] = attribute_math::mix2(i * step, a, b);
}
}
template<typename T>
static void subdivide_attribute_linear(const OffsetIndices<int> src_points_by_curve,
const OffsetIndices<int> dst_points_by_curve,
const IndexMask selection,
const Span<int> all_point_offsets,
const Span<T> src,
MutableSpan<T> dst)
{
threading::parallel_for(selection.index_range(), 512, [&](IndexRange selection_range) {
for (const int curve_i : selection.slice(selection_range)) {
const IndexRange src_points = src_points_by_curve[curve_i];
const IndexRange src_segments = bke::curves::per_curve_point_offsets_range(src_points,
curve_i);
const OffsetIndices<int> curve_offsets = all_point_offsets.slice(src_segments);
const IndexRange dst_points = dst_points_by_curve[curve_i];
const Span<T> curve_src = src.slice(src_points);
MutableSpan<T> curve_dst = dst.slice(dst_points);
threading::parallel_for(curve_src.index_range().drop_back(1), 1024, [&](IndexRange range) {
for (const int i : range) {
const IndexRange segment_points = curve_offsets[i];
linear_interpolation(curve_src[i], curve_src[i + 1], curve_dst.slice(segment_points));
}
});
const IndexRange dst_last_segment = dst_points.slice(curve_offsets[src_points.size() - 1]);
linear_interpolation(curve_src.last(), curve_src.first(), dst.slice(dst_last_segment));
}
});
}
static void subdivide_attribute_linear(const OffsetIndices<int> src_points_by_curve,
const OffsetIndices<int> dst_points_by_curve,
const IndexMask selection,
const Span<int> all_point_offsets,
const GSpan src,
GMutableSpan dst)
{
attribute_math::convert_to_static_type(dst.type(), [&](auto dummy) {
using T = decltype(dummy);
subdivide_attribute_linear(src_points_by_curve,
dst_points_by_curve,
selection,
all_point_offsets,
src.typed<T>(),
dst.typed<T>());
});
}
template<typename T>
static void subdivide_attribute_catmull_rom(const OffsetIndices<int> src_points_by_curve,
const OffsetIndices<int> dst_points_by_curve,
const IndexMask selection,
const Span<int> all_point_offsets,
const Span<bool> cyclic,
const Span<T> src,
MutableSpan<T> dst)
{
threading::parallel_for(selection.index_range(), 512, [&](IndexRange selection_range) {
for (const int curve_i : selection.slice(selection_range)) {
const IndexRange src_points = src_points_by_curve[curve_i];
const IndexRange src_segments = bke::curves::per_curve_point_offsets_range(src_points,
curve_i);
const IndexRange dst_points = dst_points_by_curve[curve_i];
bke::curves::catmull_rom::interpolate_to_evaluated(src.slice(src_points),
cyclic[curve_i],
all_point_offsets.slice(src_segments),
dst.slice(dst_points));
}
});
}
static void subdivide_attribute_catmull_rom(const OffsetIndices<int> src_points_by_curve,
const OffsetIndices<int> dst_points_by_curve,
const IndexMask selection,
const Span<int> all_point_offsets,
const Span<bool> cyclic,
const GSpan src,
GMutableSpan dst)
{
attribute_math::convert_to_static_type(dst.type(), [&](auto dummy) {
using T = decltype(dummy);
subdivide_attribute_catmull_rom(src_points_by_curve,
dst_points_by_curve,
selection,
all_point_offsets,
cyclic,
src.typed<T>(),
dst.typed<T>());
});
}
static void subdivide_bezier_segment(const float3 &position_prev,
const float3 &handle_prev,
const float3 &handle_next,
const float3 &position_next,
const HandleType type_prev,
const HandleType type_next,
const IndexRange segment_points,
MutableSpan<float3> dst_positions,
MutableSpan<float3> dst_handles_l,
MutableSpan<float3> dst_handles_r,
MutableSpan<int8_t> dst_types_l,
MutableSpan<int8_t> dst_types_r,
const bool is_last_cyclic_segment)
{
auto fill_segment_handle_types = [&](const HandleType type) {
/* Also change the left handle of the control point following the segment's points. And don't
* change the left handle of the first point, since that is part of the previous segment. */
dst_types_l.slice_safe(segment_points.shift(1)).fill(type);
dst_types_r.slice(segment_points).fill(type);
};
if (bke::curves::bezier::segment_is_vector(type_prev, type_next)) {
linear_interpolation(position_prev, position_next, dst_positions.slice(segment_points));
fill_segment_handle_types(BEZIER_HANDLE_VECTOR);
}
else {
/* The first point in the segment is always copied. */
dst_positions[segment_points.first()] = position_prev;
/* Non-vector segments in the result curve are given free handles. This could possibly be
* improved with another pass that sets handles to aligned where possible, but currently that
* does not provide much benefit for the increased complexity. */
fill_segment_handle_types(BEZIER_HANDLE_FREE);
/* In order to generate a Bezier curve with the same shape as the input curve, apply the
* De Casteljau algorithm iteratively for the provided number of cuts, constantly updating the
* previous result point's right handle and the left handle at the end of the segment. */
float3 segment_start = position_prev;
float3 segment_handle_prev = handle_prev;
float3 segment_handle_next = handle_next;
const float3 segment_end = position_next;
for (const int i : IndexRange(segment_points.size() - 1)) {
const float parameter = 1.0f / (segment_points.size() - i);
const int point_i = segment_points[i];
bke::curves::bezier::Insertion insert = bke::curves::bezier::insert(
segment_start, segment_handle_prev, segment_handle_next, segment_end, parameter);
/* Copy relevant temporary data to the result. */
dst_handles_r[point_i] = insert.handle_prev;
dst_handles_l[point_i + 1] = insert.left_handle;
dst_positions[point_i + 1] = insert.position;
/* Update the segment to prepare it for the next subdivision. */
segment_start = insert.position;
segment_handle_prev = insert.right_handle;
segment_handle_next = insert.handle_next;
}
/* Copy the handles for the last segment from the working variables. */
const int i_segment_last = is_last_cyclic_segment ? 0 : segment_points.one_after_last();
dst_handles_r[segment_points.last()] = segment_handle_prev;
dst_handles_l[i_segment_last] = segment_handle_next;
}
}
static void subdivide_bezier_positions(const Span<float3> src_positions,
const Span<int8_t> src_types_l,
const Span<int8_t> src_types_r,
const Span<float3> src_handles_l,
const Span<float3> src_handles_r,
const OffsetIndices<int> evaluated_offsets,
const bool cyclic,
MutableSpan<float3> dst_positions,
MutableSpan<int8_t> dst_types_l,
MutableSpan<int8_t> dst_types_r,
MutableSpan<float3> dst_handles_l,
MutableSpan<float3> dst_handles_r)
{
threading::parallel_for(src_positions.index_range().drop_back(1), 512, [&](IndexRange range) {
for (const int segment_i : range) {
const IndexRange segment = evaluated_offsets[segment_i];
subdivide_bezier_segment(src_positions[segment_i],
src_handles_r[segment_i],
src_handles_l[segment_i + 1],
src_positions[segment_i + 1],
HandleType(src_types_r[segment_i]),
HandleType(src_types_l[segment_i + 1]),
segment,
dst_positions,
dst_handles_l,
dst_handles_r,
dst_types_l,
dst_types_r,
false);
}
});
if (cyclic) {
const int last_index = src_positions.index_range().last();
const IndexRange segment = evaluated_offsets[last_index];
const HandleType type_prev = HandleType(src_types_r.last());
const HandleType type_next = HandleType(src_types_l.first());
subdivide_bezier_segment(src_positions.last(),
src_handles_r.last(),
src_handles_l.first(),
src_positions.first(),
type_prev,
type_next,
segment,
dst_positions,
dst_handles_l,
dst_handles_r,
dst_types_l,
dst_types_r,
true);
if (bke::curves::bezier::segment_is_vector(type_prev, type_next)) {
dst_types_l.first() = BEZIER_HANDLE_VECTOR;
dst_types_r.last() = BEZIER_HANDLE_VECTOR;
}
else {
dst_types_l.first() = BEZIER_HANDLE_FREE;
dst_types_r.last() = BEZIER_HANDLE_FREE;
}
}
else {
dst_positions.last() = src_positions.last();
dst_types_l.first() = src_types_l.first();
dst_types_r.last() = src_types_r.last();
dst_handles_l.first() = src_handles_l.first();
dst_handles_r.last() = src_handles_r.last();
}
/* TODO: It would be possible to avoid calling this for all segments besides vector segments. */
bke::curves::bezier::calculate_auto_handles(
cyclic, dst_types_l, dst_types_r, dst_positions, dst_handles_l, dst_handles_r);
}
bke::CurvesGeometry subdivide_curves(
const bke::CurvesGeometry &src_curves,
const IndexMask selection,
const VArray<int> &cuts,
const bke::AnonymousAttributePropagationInfo &propagation_info)
{
const OffsetIndices src_points_by_curve = src_curves.points_by_curve();
/* Cyclic is accessed a lot, it's probably worth it to make sure it's a span. */
const VArraySpan<bool> cyclic{src_curves.cyclic()};
const Vector<IndexRange> unselected_ranges = selection.extract_ranges_invert(
src_curves.curves_range());
bke::CurvesGeometry dst_curves = bke::curves::copy_only_curve_domain(src_curves);
/* For each point, this contains the point offset in the corresponding result curve,
* starting at zero. For example for two curves with four points each, the values might
* look like this:
*
* | | Curve 0 | Curve 1 |
* | ------------------- |---|---|---|---|---|---|---|---|---|----|
* | Cuts | 0 | 3 | 0 | 0 | - | 2 | 0 | 0 | 4 | - |
* | New Point Count | 1 | 4 | 1 | 1 | - | 3 | 1 | 1 | 5 | - |
* | Accumulated Offsets | 0 | 1 | 5 | 6 | 7 | 0 | 3 | 4 | 5 | 10 |
*
* Storing the leading zero is unnecessary but makes the array a bit simpler to use by avoiding
* a check for the first segment, and because some existing utilities also use leading zeros. */
Array<int> all_point_offset_data(src_curves.points_num() + src_curves.curves_num());
#ifdef DEBUG
all_point_offset_data.fill(-1);
#endif
calculate_result_offsets(src_curves,
selection,
unselected_ranges,
cuts,
cyclic,
dst_curves.offsets_for_write(),
all_point_offset_data);
const OffsetIndices dst_points_by_curve = dst_curves.points_by_curve();
const Span<int> all_point_offsets(all_point_offset_data);
dst_curves.resize(dst_curves.offsets().last(), dst_curves.curves_num());
const bke::AttributeAccessor src_attributes = src_curves.attributes();
bke::MutableAttributeAccessor dst_attributes = dst_curves.attributes_for_write();
auto subdivide_catmull_rom = [&](IndexMask selection) {
for (auto &attribute : bke::retrieve_attributes_for_transfer(
src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT, propagation_info)) {
subdivide_attribute_catmull_rom(src_points_by_curve,
dst_points_by_curve,
selection,
all_point_offsets,
cyclic,
attribute.src,
attribute.dst.span);
attribute.dst.finish();
}
};
auto subdivide_poly = [&](IndexMask selection) {
for (auto &attribute : bke::retrieve_attributes_for_transfer(
src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT, propagation_info)) {
subdivide_attribute_linear(src_points_by_curve,
dst_points_by_curve,
selection,
all_point_offsets,
attribute.src,
attribute.dst.span);
attribute.dst.finish();
}
};
auto subdivide_bezier = [&](IndexMask selection) {
const Span<float3> src_positions = src_curves.positions();
const VArraySpan<int8_t> src_types_l{src_curves.handle_types_left()};
const VArraySpan<int8_t> src_types_r{src_curves.handle_types_right()};
const Span<float3> src_handles_l = src_curves.handle_positions_left();
const Span<float3> src_handles_r = src_curves.handle_positions_right();
MutableSpan<float3> dst_positions = dst_curves.positions_for_write();
MutableSpan<int8_t> dst_types_l = dst_curves.handle_types_left_for_write();
MutableSpan<int8_t> dst_types_r = dst_curves.handle_types_right_for_write();
MutableSpan<float3> dst_handles_l = dst_curves.handle_positions_left_for_write();
MutableSpan<float3> dst_handles_r = dst_curves.handle_positions_right_for_write();
const OffsetIndices<int> dst_points_by_curve = dst_curves.points_by_curve();
threading::parallel_for(selection.index_range(), 512, [&](IndexRange range) {
for (const int curve_i : selection.slice(range)) {
const IndexRange src_points = src_points_by_curve[curve_i];
const IndexRange src_segments = bke::curves::per_curve_point_offsets_range(src_points,
curve_i);
const IndexRange dst_points = dst_points_by_curve[curve_i];
subdivide_bezier_positions(src_positions.slice(src_points),
src_types_l.slice(src_points),
src_types_r.slice(src_points),
src_handles_l.slice(src_points),
src_handles_r.slice(src_points),
all_point_offsets.slice(src_segments),
cyclic[curve_i],
dst_positions.slice(dst_points),
dst_types_l.slice(dst_points),
dst_types_r.slice(dst_points),
dst_handles_l.slice(dst_points),
dst_handles_r.slice(dst_points));
}
});
for (auto &attribute : bke::retrieve_attributes_for_transfer(src_attributes,
dst_attributes,
ATTR_DOMAIN_MASK_POINT,
propagation_info,
{"position",
"handle_type_left",
"handle_type_right",
"handle_right",
"handle_left"})) {
subdivide_attribute_linear(src_points_by_curve,
dst_points_by_curve,
selection,
all_point_offsets,
attribute.src,
attribute.dst.span);
attribute.dst.finish();
}
};
/* NURBS curves are just treated as poly curves. NURBS subdivision that maintains
* their shape may be possible, but probably wouldn't work with the "cuts" input. */
auto subdivide_nurbs = subdivide_poly;
bke::curves::foreach_curve_by_type(src_curves.curve_types(),
src_curves.curve_type_counts(),
selection,
subdivide_catmull_rom,
subdivide_poly,
subdivide_bezier,
subdivide_nurbs);
if (!unselected_ranges.is_empty()) {
for (auto &attribute : bke::retrieve_attributes_for_transfer(
src_attributes, dst_attributes, ATTR_DOMAIN_MASK_POINT, propagation_info)) {
bke::curves::copy_point_data(src_points_by_curve,
dst_points_by_curve,
unselected_ranges,
attribute.src,
attribute.dst.span);
attribute.dst.finish();
}
}
return dst_curves;
}
} // namespace blender::geometry