This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/gpu/shaders/material/gpu_shader_material_principled.glsl
Campbell Barton 91346755ce Cleanup: use '#' prefix for issues instead of 'T'
Match the convention from Gitea instead of Phabricator's T for tasks.
2023-02-12 14:56:05 +11:00

189 lines
7.3 KiB
GLSL

vec3 tint_from_color(vec3 color)
{
float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */
return (lum > 0.0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */
}
float principled_sheen(float NV)
{
float f = 1.0 - NV;
/* Empirical approximation (manual curve fitting). Can be refined. */
float sheen = f * f * f * 0.077 + f * 0.01 + 0.00026;
return sheen;
}
void node_bsdf_principled(vec4 base_color,
float subsurface,
vec3 subsurface_radius,
vec4 subsurface_color,
float subsurface_ior,
float subsurface_anisotropy,
float metallic,
float specular,
float specular_tint,
float roughness,
float anisotropic,
float anisotropic_rotation,
float sheen,
float sheen_tint,
float clearcoat,
float clearcoat_roughness,
float ior,
float transmission,
float transmission_roughness,
vec4 emission,
float emission_strength,
float alpha,
vec3 N,
vec3 CN,
vec3 T,
float weight,
const float do_diffuse,
const float do_clearcoat,
const float do_refraction,
const float do_multiscatter,
float do_sss,
out Closure result)
{
/* Match cycles. */
metallic = clamp(metallic, 0.0, 1.0);
transmission = clamp(transmission, 0.0, 1.0) * (1.0 - metallic);
float diffuse_weight = (1.0 - transmission) * (1.0 - metallic);
float specular_weight = (1.0 - transmission);
float clearcoat_weight = max(clearcoat, 0.0) * 0.25;
transmission_roughness = 1.0 - (1.0 - roughness) * (1.0 - transmission_roughness);
specular = max(0.0, specular);
N = safe_normalize(N);
CN = safe_normalize(CN);
vec3 V = cameraVec(g_data.P);
float NV = dot(N, V);
float fresnel = (do_multiscatter != 0.0) ? btdf_lut(NV, roughness, ior).y : F_eta(ior, NV);
float glass_reflection_weight = fresnel * transmission;
float glass_transmission_weight = (1.0 - fresnel) * transmission;
vec3 base_color_tint = tint_from_color(base_color.rgb);
vec2 split_sum = brdf_lut(NV, roughness);
ClosureTransparency transparency_data;
transparency_data.weight = weight;
transparency_data.transmittance = vec3(1.0 - alpha);
transparency_data.holdout = 0.0;
weight *= alpha;
ClosureEmission emission_data;
emission_data.weight = weight;
emission_data.emission = emission.rgb * emission_strength;
/* Diffuse. */
ClosureDiffuse diffuse_data;
diffuse_data.weight = diffuse_weight * weight;
diffuse_data.color = mix(base_color.rgb, subsurface_color.rgb, subsurface);
/* Sheen Coarse approximation: We reuse the diffuse radiance and just scale it. */
vec3 sheen_color = mix(vec3(1.0), base_color_tint, sheen_tint);
diffuse_data.color += sheen * sheen_color * principled_sheen(NV);
diffuse_data.N = N;
diffuse_data.sss_radius = subsurface_radius * subsurface;
diffuse_data.sss_id = uint(do_sss);
/* NOTE(@fclem): We need to blend the reflection color but also need to avoid applying the
* weights so we compute the ratio. */
float reflection_weight = specular_weight + glass_reflection_weight;
float reflection_weight_inv = safe_rcp(reflection_weight);
specular_weight *= reflection_weight_inv;
glass_reflection_weight *= reflection_weight_inv;
/* Reflection. */
ClosureReflection reflection_data;
reflection_data.weight = reflection_weight * weight;
reflection_data.N = N;
reflection_data.roughness = roughness;
if (true) {
vec3 dielectric_f0_color = mix(vec3(1.0), base_color_tint, specular_tint);
vec3 metallic_f0_color = base_color.rgb;
vec3 f0 = mix((0.08 * specular) * dielectric_f0_color, metallic_f0_color, metallic);
/* Cycles does this blending using the microfacet fresnel factor. However, our fresnel
* is already baked inside the split sum LUT. We approximate by changing the f90 color
* directly in a non linear fashion. */
vec3 f90 = mix(f0, vec3(1.0), fast_sqrt(specular));
vec3 reflection_brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) :
F_brdf_single_scatter(f0, f90, split_sum);
reflection_data.color = reflection_brdf * specular_weight;
}
if (true) {
/* Poor approximation since we baked the LUT using a fixed IOR. */
vec3 f0 = mix(vec3(1.0), base_color.rgb, specular_tint);
vec3 f90 = vec3(1.0);
vec3 glass_brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) :
F_brdf_single_scatter(f0, f90, split_sum);
/* Avoid 3 glossy evaluation. Use the same closure for glass reflection. */
reflection_data.color += glass_brdf * glass_reflection_weight;
}
ClosureReflection clearcoat_data;
clearcoat_data.weight = clearcoat_weight * weight;
clearcoat_data.N = CN;
clearcoat_data.roughness = clearcoat_roughness;
if (true) {
float NV = dot(clearcoat_data.N, V);
vec2 split_sum = brdf_lut(NV, clearcoat_data.roughness);
vec3 brdf = F_brdf_single_scatter(vec3(0.04), vec3(1.0), split_sum);
clearcoat_data.color = brdf;
}
/* Refraction. */
ClosureRefraction refraction_data;
refraction_data.weight = glass_transmission_weight * weight;
float btdf = (do_multiscatter != 0.0) ? 1.0 : btdf_lut(NV, roughness, ior).x;
refraction_data.color = base_color.rgb * btdf;
refraction_data.N = N;
refraction_data.roughness = do_multiscatter != 0.0 ? roughness :
max(roughness, transmission_roughness);
refraction_data.ior = ior;
/* Ref. #98190: Defines are optimizations for old compilers.
* Might become unnecessary with EEVEE-Next. */
if (do_diffuse == 0.0 && do_refraction == 0.0 && do_clearcoat != 0.0) {
#ifdef PRINCIPLED_CLEARCOAT
/* Metallic & Clearcoat case. */
result = closure_eval(reflection_data, clearcoat_data);
#endif
}
else if (do_diffuse == 0.0 && do_refraction == 0.0 && do_clearcoat == 0.0) {
#ifdef PRINCIPLED_METALLIC
/* Metallic case. */
result = closure_eval(reflection_data);
#endif
}
else if (do_diffuse != 0.0 && do_refraction == 0.0 && do_clearcoat == 0.0) {
#ifdef PRINCIPLED_DIELECTRIC
/* Dielectric case. */
result = closure_eval(diffuse_data, reflection_data);
#endif
}
else if (do_diffuse == 0.0 && do_refraction != 0.0 && do_clearcoat == 0.0) {
#ifdef PRINCIPLED_GLASS
/* Glass case. */
result = closure_eval(reflection_data, refraction_data);
#endif
}
else {
#ifdef PRINCIPLED_ANY
/* Un-optimized case. */
result = closure_eval(diffuse_data, reflection_data, clearcoat_data, refraction_data);
#endif
}
Closure emission_cl = closure_eval(emission_data);
Closure transparency_cl = closure_eval(transparency_data);
result = closure_add(result, emission_cl);
result = closure_add(result, transparency_cl);
}