513 lines
13 KiB
C++
513 lines
13 KiB
C++
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2009 Blender Foundation.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): André Pinto.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/render/intern/raytrace/rayobject_rtbuild.cpp
|
|
* \ingroup render
|
|
*/
|
|
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <algorithm>
|
|
|
|
#include "rayobject_rtbuild.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
static bool selected_node(RTBuilder::Object *node)
|
|
{
|
|
return node->selected;
|
|
}
|
|
|
|
static void rtbuild_init(RTBuilder *b)
|
|
{
|
|
b->split_axis = -1;
|
|
b->primitives.begin = NULL;
|
|
b->primitives.end = NULL;
|
|
b->primitives.maxsize = 0;
|
|
|
|
for (int i = 0; i < RTBUILD_MAX_CHILDS; i++)
|
|
b->child_offset[i] = 0;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
b->sorted_begin[i] = b->sorted_end[i] = NULL;
|
|
|
|
INIT_MINMAX(b->bb, b->bb + 3);
|
|
}
|
|
|
|
RTBuilder *rtbuild_create(int size)
|
|
{
|
|
RTBuilder *builder = (RTBuilder *) MEM_mallocN(sizeof(RTBuilder), "RTBuilder");
|
|
RTBuilder::Object *memblock = (RTBuilder::Object *)MEM_mallocN(sizeof(RTBuilder::Object) * size, "RTBuilder.objects");
|
|
|
|
|
|
rtbuild_init(builder);
|
|
|
|
builder->primitives.begin = builder->primitives.end = memblock;
|
|
builder->primitives.maxsize = size;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
builder->sorted_begin[i] = (RTBuilder::Object **)MEM_mallocN(sizeof(RTBuilder::Object *) * size, "RTBuilder.sorted_objects");
|
|
builder->sorted_end[i] = builder->sorted_begin[i];
|
|
}
|
|
|
|
|
|
return builder;
|
|
}
|
|
|
|
void rtbuild_free(RTBuilder *b)
|
|
{
|
|
if (b->primitives.begin) MEM_freeN(b->primitives.begin);
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
if (b->sorted_begin[i])
|
|
MEM_freeN(b->sorted_begin[i]);
|
|
|
|
MEM_freeN(b);
|
|
}
|
|
|
|
void rtbuild_add(RTBuilder *b, RayObject *o)
|
|
{
|
|
float bb[6];
|
|
|
|
assert(b->primitives.begin + b->primitives.maxsize != b->primitives.end);
|
|
|
|
INIT_MINMAX(bb, bb + 3);
|
|
RE_rayobject_merge_bb(o, bb, bb + 3);
|
|
|
|
/* skip objects with invalid bounding boxes, nan causes DO_MINMAX
|
|
* to do nothing, so we get these invalid values. this shouldn't
|
|
* happen usually, but bugs earlier in the pipeline can cause it. */
|
|
if (bb[0] > bb[3] || bb[1] > bb[4] || bb[2] > bb[5])
|
|
return;
|
|
/* skip objects with inf bounding boxes */
|
|
if (!finite(bb[0]) || !finite(bb[1]) || !finite(bb[2]))
|
|
return;
|
|
if (!finite(bb[3]) || !finite(bb[4]) || !finite(bb[5]))
|
|
return;
|
|
/* skip objects with zero bounding box, they are of no use, and
|
|
* will give problems in rtbuild_heuristic_object_split later */
|
|
if (bb[0] == bb[3] && bb[1] == bb[4] && bb[2] == bb[5])
|
|
return;
|
|
|
|
copy_v3_v3(b->primitives.end->bb, bb);
|
|
copy_v3_v3(b->primitives.end->bb + 3, bb + 3);
|
|
b->primitives.end->obj = o;
|
|
b->primitives.end->cost = RE_rayobject_cost(o);
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
*(b->sorted_end[i]) = b->primitives.end;
|
|
b->sorted_end[i]++;
|
|
}
|
|
b->primitives.end++;
|
|
}
|
|
|
|
int rtbuild_size(RTBuilder *b)
|
|
{
|
|
return b->sorted_end[0] - b->sorted_begin[0];
|
|
}
|
|
|
|
|
|
template<class Obj, int Axis>
|
|
static bool obj_bb_compare(const Obj &a, const Obj &b)
|
|
{
|
|
if (a->bb[Axis] != b->bb[Axis])
|
|
return a->bb[Axis] < b->bb[Axis];
|
|
return a->obj < b->obj;
|
|
}
|
|
|
|
template<class Item>
|
|
static void object_sort(Item *begin, Item *end, int axis)
|
|
{
|
|
if (axis == 0) return std::sort(begin, end, obj_bb_compare<Item, 0> );
|
|
if (axis == 1) return std::sort(begin, end, obj_bb_compare<Item, 1> );
|
|
if (axis == 2) return std::sort(begin, end, obj_bb_compare<Item, 2> );
|
|
assert(false);
|
|
}
|
|
|
|
void rtbuild_done(RTBuilder *b, RayObjectControl *ctrl)
|
|
{
|
|
for (int i = 0; i < 3; i++) {
|
|
if (b->sorted_begin[i]) {
|
|
if (RE_rayobjectcontrol_test_break(ctrl)) break;
|
|
object_sort(b->sorted_begin[i], b->sorted_end[i], i);
|
|
}
|
|
}
|
|
}
|
|
|
|
RayObject *rtbuild_get_primitive(RTBuilder *b, int index)
|
|
{
|
|
return b->sorted_begin[0][index]->obj;
|
|
}
|
|
|
|
RTBuilder *rtbuild_get_child(RTBuilder *b, int child, RTBuilder *tmp)
|
|
{
|
|
rtbuild_init(tmp);
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
if (b->sorted_begin[i]) {
|
|
tmp->sorted_begin[i] = b->sorted_begin[i] + b->child_offset[child];
|
|
tmp->sorted_end[i] = b->sorted_begin[i] + b->child_offset[child + 1];
|
|
}
|
|
else {
|
|
tmp->sorted_begin[i] = NULL;
|
|
tmp->sorted_end[i] = NULL;
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
static void rtbuild_calc_bb(RTBuilder *b)
|
|
{
|
|
if (b->bb[0] == 1.0e30f) {
|
|
for (RTBuilder::Object **index = b->sorted_begin[0]; index != b->sorted_end[0]; index++)
|
|
RE_rayobject_merge_bb( (*index)->obj, b->bb, b->bb + 3);
|
|
}
|
|
}
|
|
|
|
void rtbuild_merge_bb(RTBuilder *b, float min[3], float max[3])
|
|
{
|
|
rtbuild_calc_bb(b);
|
|
DO_MIN(b->bb, min);
|
|
DO_MAX(b->bb + 3, max);
|
|
}
|
|
|
|
#if 0
|
|
int rtbuild_get_largest_axis(RTBuilder *b)
|
|
{
|
|
rtbuild_calc_bb(b);
|
|
return bb_largest_axis(b->bb, b->bb + 3);
|
|
}
|
|
|
|
//Left balanced tree
|
|
int rtbuild_mean_split(RTBuilder *b, int nchilds, int axis)
|
|
{
|
|
int i;
|
|
int mleafs_per_child, Mleafs_per_child;
|
|
int tot_leafs = rtbuild_size(b);
|
|
int missing_leafs;
|
|
|
|
long long s;
|
|
|
|
assert(nchilds <= RTBUILD_MAX_CHILDS);
|
|
|
|
//TODO optimize calc of leafs_per_child
|
|
for (s = nchilds; s < tot_leafs; s *= nchilds) ;
|
|
Mleafs_per_child = s / nchilds;
|
|
mleafs_per_child = Mleafs_per_child / nchilds;
|
|
|
|
//split min leafs per child
|
|
b->child_offset[0] = 0;
|
|
for (i = 1; i <= nchilds; i++)
|
|
b->child_offset[i] = mleafs_per_child;
|
|
|
|
//split remaining leafs
|
|
missing_leafs = tot_leafs - mleafs_per_child * nchilds;
|
|
for (i = 1; i <= nchilds; i++)
|
|
{
|
|
if (missing_leafs > Mleafs_per_child - mleafs_per_child)
|
|
{
|
|
b->child_offset[i] += Mleafs_per_child - mleafs_per_child;
|
|
missing_leafs -= Mleafs_per_child - mleafs_per_child;
|
|
}
|
|
else {
|
|
b->child_offset[i] += missing_leafs;
|
|
missing_leafs = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//adjust for accumulative offsets
|
|
for (i = 1; i <= nchilds; i++)
|
|
b->child_offset[i] += b->child_offset[i - 1];
|
|
|
|
//Count created childs
|
|
for (i = nchilds; b->child_offset[i] == b->child_offset[i - 1]; i--) ;
|
|
split_leafs(b, b->child_offset, i, axis);
|
|
|
|
assert(b->child_offset[0] == 0 && b->child_offset[i] == tot_leafs);
|
|
return i;
|
|
}
|
|
|
|
|
|
int rtbuild_mean_split_largest_axis(RTBuilder *b, int nchilds)
|
|
{
|
|
int axis = rtbuild_get_largest_axis(b);
|
|
return rtbuild_mean_split(b, nchilds, axis);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* "separators" is an array of dim NCHILDS-1
|
|
* and indicates where to cut the childs
|
|
*/
|
|
#if 0
|
|
int rtbuild_median_split(RTBuilder *b, float *separators, int nchilds, int axis)
|
|
{
|
|
int size = rtbuild_size(b);
|
|
|
|
assert(nchilds <= RTBUILD_MAX_CHILDS);
|
|
if (size <= nchilds)
|
|
{
|
|
return rtbuild_mean_split(b, nchilds, axis);
|
|
}
|
|
else {
|
|
int i;
|
|
|
|
b->split_axis = axis;
|
|
|
|
//Calculate child offsets
|
|
b->child_offset[0] = 0;
|
|
for (i = 0; i < nchilds - 1; i++)
|
|
b->child_offset[i + 1] = split_leafs_by_plane(b, b->child_offset[i], size, separators[i]);
|
|
b->child_offset[nchilds] = size;
|
|
|
|
for (i = 0; i < nchilds; i++)
|
|
if (b->child_offset[i + 1] - b->child_offset[i] == size)
|
|
return rtbuild_mean_split(b, nchilds, axis);
|
|
|
|
return nchilds;
|
|
}
|
|
}
|
|
|
|
int rtbuild_median_split_largest_axis(RTBuilder *b, int nchilds)
|
|
{
|
|
int la, i;
|
|
float separators[RTBUILD_MAX_CHILDS];
|
|
|
|
rtbuild_calc_bb(b);
|
|
|
|
la = bb_largest_axis(b->bb, b->bb + 3);
|
|
for (i = 1; i < nchilds; i++)
|
|
separators[i - 1] = (b->bb[la + 3] - b->bb[la]) * i / nchilds;
|
|
|
|
return rtbuild_median_split(b, separators, nchilds, la);
|
|
}
|
|
#endif
|
|
|
|
//Heuristics Object Splitter
|
|
|
|
|
|
struct SweepCost {
|
|
float bb[6];
|
|
float cost;
|
|
};
|
|
|
|
/* Object Surface Area Heuristic splitter */
|
|
int rtbuild_heuristic_object_split(RTBuilder *b, int nchilds)
|
|
{
|
|
int size = rtbuild_size(b);
|
|
assert(nchilds == 2);
|
|
assert(size > 1);
|
|
int baxis = -1, boffset = 0;
|
|
|
|
if (size > nchilds) {
|
|
float bcost = FLT_MAX;
|
|
baxis = -1, boffset = size / 2;
|
|
|
|
SweepCost *sweep = (SweepCost *)MEM_mallocN(sizeof(SweepCost) * size, "RTBuilder.HeuristicSweep");
|
|
|
|
for (int axis = 0; axis < 3; axis++) {
|
|
SweepCost sweep_left;
|
|
|
|
RTBuilder::Object **obj = b->sorted_begin[axis];
|
|
|
|
// float right_cost = 0;
|
|
for (int i = size - 1; i >= 0; i--) {
|
|
if (i == size - 1) {
|
|
copy_v3_v3(sweep[i].bb, obj[i]->bb);
|
|
copy_v3_v3(sweep[i].bb + 3, obj[i]->bb + 3);
|
|
sweep[i].cost = obj[i]->cost;
|
|
}
|
|
else {
|
|
sweep[i].bb[0] = min_ff(obj[i]->bb[0], sweep[i + 1].bb[0]);
|
|
sweep[i].bb[1] = min_ff(obj[i]->bb[1], sweep[i + 1].bb[1]);
|
|
sweep[i].bb[2] = min_ff(obj[i]->bb[2], sweep[i + 1].bb[2]);
|
|
sweep[i].bb[3] = max_ff(obj[i]->bb[3], sweep[i + 1].bb[3]);
|
|
sweep[i].bb[4] = max_ff(obj[i]->bb[4], sweep[i + 1].bb[4]);
|
|
sweep[i].bb[5] = max_ff(obj[i]->bb[5], sweep[i + 1].bb[5]);
|
|
sweep[i].cost = obj[i]->cost + sweep[i + 1].cost;
|
|
}
|
|
// right_cost += obj[i]->cost;
|
|
}
|
|
|
|
sweep_left.bb[0] = obj[0]->bb[0];
|
|
sweep_left.bb[1] = obj[0]->bb[1];
|
|
sweep_left.bb[2] = obj[0]->bb[2];
|
|
sweep_left.bb[3] = obj[0]->bb[3];
|
|
sweep_left.bb[4] = obj[0]->bb[4];
|
|
sweep_left.bb[5] = obj[0]->bb[5];
|
|
sweep_left.cost = obj[0]->cost;
|
|
|
|
// right_cost -= obj[0]->cost; if (right_cost < 0) right_cost = 0;
|
|
|
|
for (int i = 1; i < size; i++) {
|
|
//Worst case heuristic (cost of each child is linear)
|
|
float hcost, left_side, right_side;
|
|
|
|
// not using log seems to have no impact on raytracing perf, but
|
|
// makes tree construction quicker, left out for now to test (brecht)
|
|
// left_side = bb_area(sweep_left.bb, sweep_left.bb + 3) * (sweep_left.cost + logf((float)i));
|
|
// right_side = bb_area(sweep[i].bb, sweep[i].bb + 3) * (sweep[i].cost + logf((float)size - i));
|
|
left_side = bb_area(sweep_left.bb, sweep_left.bb + 3) * (sweep_left.cost);
|
|
right_side = bb_area(sweep[i].bb, sweep[i].bb + 3) * (sweep[i].cost);
|
|
hcost = left_side + right_side;
|
|
|
|
assert(left_side >= 0);
|
|
assert(right_side >= 0);
|
|
|
|
if (left_side > bcost) break; //No way we can find a better heuristic in this axis
|
|
|
|
assert(hcost >= 0);
|
|
// this makes sure the tree built is the same whatever is the order of the sorting axis
|
|
if (hcost < bcost || (hcost == bcost && axis < baxis)) {
|
|
bcost = hcost;
|
|
baxis = axis;
|
|
boffset = i;
|
|
}
|
|
DO_MIN(obj[i]->bb, sweep_left.bb);
|
|
DO_MAX(obj[i]->bb + 3, sweep_left.bb + 3);
|
|
|
|
sweep_left.cost += obj[i]->cost;
|
|
// right_cost -= obj[i]->cost; if (right_cost < 0) right_cost = 0;
|
|
}
|
|
|
|
//assert(baxis >= 0 && baxis < 3);
|
|
if (!(baxis >= 0 && baxis < 3))
|
|
baxis = 0;
|
|
}
|
|
|
|
|
|
MEM_freeN(sweep);
|
|
}
|
|
else if (size == 2) {
|
|
baxis = 0;
|
|
boffset = 1;
|
|
}
|
|
else if (size == 1) {
|
|
b->child_offset[0] = 0;
|
|
b->child_offset[1] = 1;
|
|
return 1;
|
|
}
|
|
|
|
b->child_offset[0] = 0;
|
|
b->child_offset[1] = boffset;
|
|
b->child_offset[2] = size;
|
|
|
|
|
|
/* Adjust sorted arrays for childs */
|
|
for (int i = 0; i < boffset; i++) b->sorted_begin[baxis][i]->selected = true;
|
|
for (int i = boffset; i < size; i++) b->sorted_begin[baxis][i]->selected = false;
|
|
for (int i = 0; i < 3; i++)
|
|
std::stable_partition(b->sorted_begin[i], b->sorted_end[i], selected_node);
|
|
|
|
return nchilds;
|
|
}
|
|
|
|
/*
|
|
* Helper code
|
|
* PARTITION code / used on mean-split
|
|
* basically this a std::nth_element (like on C++ STL algorithm)
|
|
*/
|
|
#if 0
|
|
static void split_leafs(RTBuilder *b, int *nth, int partitions, int split_axis)
|
|
{
|
|
int i;
|
|
b->split_axis = split_axis;
|
|
|
|
for (i = 0; i < partitions - 1; i++)
|
|
{
|
|
assert(nth[i] < nth[i + 1] && nth[i + 1] < nth[partitions]);
|
|
|
|
if (split_axis == 0) std::nth_element(b, nth[i], nth[i + 1], nth[partitions], obj_bb_compare<RTBuilder::Object, 0>);
|
|
if (split_axis == 1) std::nth_element(b, nth[i], nth[i + 1], nth[partitions], obj_bb_compare<RTBuilder::Object, 1>);
|
|
if (split_axis == 2) std::nth_element(b, nth[i], nth[i + 1], nth[partitions], obj_bb_compare<RTBuilder::Object, 2>);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Bounding Box utils
|
|
*/
|
|
float bb_volume(const float min[3], const float max[3])
|
|
{
|
|
return (max[0] - min[0]) * (max[1] - min[1]) * (max[2] - min[2]);
|
|
}
|
|
|
|
float bb_area(const float min[3], const float max[3])
|
|
{
|
|
float sub[3], a;
|
|
sub[0] = max[0] - min[0];
|
|
sub[1] = max[1] - min[1];
|
|
sub[2] = max[2] - min[2];
|
|
|
|
a = (sub[0] * sub[1] + sub[0] * sub[2] + sub[1] * sub[2]) * 2.0f;
|
|
/* used to have an assert() here on negative results
|
|
* however, in this case its likely some overflow or ffast math error.
|
|
* so just return 0.0f instead. */
|
|
return a < 0.0f ? 0.0f : a;
|
|
}
|
|
|
|
int bb_largest_axis(const float min[3], const float max[3])
|
|
{
|
|
float sub[3];
|
|
|
|
sub[0] = max[0] - min[0];
|
|
sub[1] = max[1] - min[1];
|
|
sub[2] = max[2] - min[2];
|
|
if (sub[0] > sub[1]) {
|
|
if (sub[0] > sub[2])
|
|
return 0;
|
|
else
|
|
return 2;
|
|
}
|
|
else {
|
|
if (sub[1] > sub[2])
|
|
return 1;
|
|
else
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
/* only returns 0 if merging inner and outerbox would create a box larger than outer box */
|
|
int bb_fits_inside(const float outer_min[3], const float outer_max[3],
|
|
const float inner_min[3], const float inner_max[3])
|
|
{
|
|
int i;
|
|
for (i = 0; i < 3; i++)
|
|
if (outer_min[i] > inner_min[i]) return 0;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
if (outer_max[i] < inner_max[i]) return 0;
|
|
|
|
return 1;
|
|
}
|