This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/collision.c
Brecht Van Lommel f7c4dd6d56 Merge back a few cloth solver fixes from the render branch:
* Disable openmp for dot product, this gives different results each
  time due to non-commutative floating point add.
* Disable openmp with few vertices, the extra thread overhead only
  slows things down then.
* Replace the hack that would divide stepsPerFrame and then set it
  back, now it simply uses the timescale in the collision function.
  This was incorrect because stepsPerFrame is an int, but we don't
  want this to be rounded.
* Extra out of bounds check for hair velocity smoothing grid.
2010-05-25 13:33:59 +00:00

1707 lines
46 KiB
C

/* collision.c
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "MEM_guardedalloc.h"
#include "BKE_cloth.h"
#include "DNA_cloth_types.h"
#include "DNA_group_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_scene_types.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#ifdef USE_BULLET
#include "Bullet-C-Api.h"
#endif
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object ( CollisionModifierData *collmd, float step, float prevstep )
{
float tv[3] = {0, 0, 0};
unsigned int i = 0;
for ( i = 0; i < collmd->numverts; i++ )
{
VECSUB ( tv, collmd->xnew[i].co, collmd->x[i].co );
VECADDS ( collmd->current_x[i].co, collmd->x[i].co, tv, prevstep );
VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
VECSUB ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
}
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
}
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon )
{
BVHTree *tree;
float co[12];
int i;
MFace *tface = mfaces;
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
// fill tree
for ( i = 0; i < numfaces; i++, tface++ )
{
VECCOPY ( &co[0*3], x[tface->v1].co );
VECCOPY ( &co[1*3], x[tface->v2].co );
VECCOPY ( &co[2*3], x[tface->v3].co );
if ( tface->v4 )
VECCOPY ( &co[3*3], x[tface->v4].co );
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
}
// balance tree
BLI_bvhtree_balance ( tree );
return tree;
}
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int numverts, int moving )
{
int i;
MFace *mfaces = faces;
float co[12], co_moving[12];
int ret = 0;
if ( !bvhtree )
return;
if ( x )
{
for ( i = 0; i < numfaces; i++, mfaces++ )
{
VECCOPY ( &co[0*3], x[mfaces->v1].co );
VECCOPY ( &co[1*3], x[mfaces->v2].co );
VECCOPY ( &co[2*3], x[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co[3*3], x[mfaces->v4].co );
// copy new locations into array
if ( moving && xnew )
{
// update moving positions
VECCOPY ( &co_moving[0*3], xnew[mfaces->v1].co );
VECCOPY ( &co_moving[1*3], xnew[mfaces->v2].co );
VECCOPY ( &co_moving[2*3], xnew[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co_moving[3*3], xnew[mfaces->v4].co );
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
}
else
{
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
}
// check if tree is already full
if ( !ret )
break;
}
BLI_bvhtree_update_tree ( bvhtree );
}
}
/***********************************
Collision modifier code end
***********************************/
/**
* gsl_poly_solve_cubic -
*
* copied from SOLVE_CUBIC.C --> GSL
*/
#define mySWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
int
gsl_poly_solve_cubic (double a, double b, double c,
double *x0, double *x1, double *x2)
{
double q = (a * a - 3 * b);
double r = (2 * a * a * a - 9 * a * b + 27 * c);
double Q = q / 9;
double R = r / 54;
double Q3 = Q * Q * Q;
double R2 = R * R;
double CR2 = 729 * r * r;
double CQ3 = 2916 * q * q * q;
if (R == 0 && Q == 0)
{
*x0 = - a / 3 ;
*x1 = - a / 3 ;
*x2 = - a / 3 ;
return 3 ;
}
else if (CR2 == CQ3)
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
/* Due to finite precision some double roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
double sqrtQ = sqrt (Q);
if (R > 0)
{
*x0 = -2 * sqrtQ - a / 3;
*x1 = sqrtQ - a / 3;
*x2 = sqrtQ - a / 3;
}
else
{
*x0 = - sqrtQ - a / 3;
*x1 = - sqrtQ - a / 3;
*x2 = 2 * sqrtQ - a / 3;
}
return 3 ;
}
else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
{
double sqrtQ = sqrt (Q);
double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
double theta = acos (R / sqrtQ3);
double norm = -2 * sqrtQ;
*x0 = norm * cos (theta / 3) - a / 3;
*x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
*x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
/* Sort *x0, *x1, *x2 into increasing order */
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
if (*x1 > *x2)
{
mySWAP(*x1, *x2) ;
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
}
return 3;
}
else
{
double sgnR = (R >= 0 ? 1 : -1);
double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
double B = Q / A ;
*x0 = A + B - a / 3;
return 1;
}
}
/**
* gsl_poly_solve_quadratic
*
* copied from GSL
*/
int
gsl_poly_solve_quadratic (double a, double b, double c,
double *x0, double *x1)
{
double disc = b * b - 4 * a * c;
if (a == 0) /* Handle linear case */
{
if (b == 0)
{
return 0;
}
else
{
*x0 = -c / b;
return 1;
};
}
if (disc > 0)
{
if (b == 0)
{
double r = fabs (0.5 * sqrt (disc) / a);
*x0 = -r;
*x1 = r;
}
else
{
double sgnb = (b > 0 ? 1 : -1);
double temp = -0.5 * (b + sgnb * sqrt (disc));
double r1 = temp / a ;
double r2 = c / temp ;
if (r1 < r2)
{
*x0 = r1 ;
*x1 = r2 ;
}
else
{
*x0 = r2 ;
*x1 = r1 ;
}
}
return 2;
}
else if (disc == 0)
{
*x0 = -0.5 * b / a ;
*x1 = -0.5 * b / a ;
return 2 ;
}
else
{
return 0;
}
}
/*
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
* page 4, left column
*/
#if 0
static int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
{
int num_sols = 0;
// x^0 - checked
double g = a[0] * c[1] * e[2] - a[0] * c[2] * e[1] +
a[1] * c[2] * e[0] - a[1] * c[0] * e[2] +
a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
// x^1
double h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
// x^2
double i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
b[2] * c[0] * f[1] - b[0] * c[2] * f[1] +
a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
// x^3 - checked
double j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
/*
printf("r1: %lf\n", a[0] * c[1] * e[2] - a[0] * c[2] * e[1]);
printf("r2: %lf\n", a[1] * c[2] * e[0] - a[1] * c[0] * e[2]);
printf("r3: %lf\n", a[2] * c[0] * e[1] - a[2] * c[1] * e[0]);
printf("x1 x: %f, y: %f, z: %f\n", a[0], a[1], a[2]);
printf("x2 x: %f, y: %f, z: %f\n", c[0], c[1], c[2]);
printf("x3 x: %f, y: %f, z: %f\n", e[0], e[1], e[2]);
printf("v1 x: %f, y: %f, z: %f\n", b[0], b[1], b[2]);
printf("v2 x: %f, y: %f, z: %f\n", d[0], d[1], d[2]);
printf("v3 x: %f, y: %f, z: %f\n", f[0], f[1], f[2]);
printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
*/
// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
if ( ABS ( j ) > DBL_EPSILON )
{
i /= j;
h /= j;
g /= j;
num_sols = gsl_poly_solve_cubic ( i, h, g, &solution[0], &solution[1], &solution[2] );
}
else
{
num_sols = gsl_poly_solve_quadratic ( i, h, g, &solution[0], &solution[1] );
solution[2] = -1.0;
}
// printf("num_sols: %d, sol1: %lf, sol2: %lf, sol3: %lf\n", num_sols, solution[0], solution[1], solution[2]);
// Discard negative solutions
if ( ( num_sols >= 1 ) && ( solution[0] < DBL_EPSILON ) )
{
--num_sols;
solution[0] = solution[num_sols];
}
if ( ( num_sols >= 2 ) && ( solution[1] < DBL_EPSILON ) )
{
--num_sols;
solution[1] = solution[num_sols];
}
if ( ( num_sols == 3 ) && ( solution[2] < DBL_EPSILON ) )
{
--num_sols;
}
// Sort
if ( num_sols == 2 )
{
if ( solution[0] > solution[1] )
{
double tmp = solution[0];
solution[0] = solution[1];
solution[1] = tmp;
}
}
else if ( num_sols == 3 )
{
// Bubblesort
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
if ( solution[1] > solution[2] )
{
double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
}
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
}
return num_sols;
}
#endif
// w3 is not perfect
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
double tempV1[3], tempV2[3], tempV4[3];
double a,b,c,d,e,f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
if ( ABS ( d ) < ALMOST_ZERO )
{
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
}
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
to[0] = to[1] = to[2] = 0;
VECADDMUL ( to, v1, w1 );
VECADDMUL ( to, v2, w2 );
VECADDMUL ( to, v3, w3 );
}
int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle static collisions here
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // 2.0 *
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
result = 1;
}
}
return result;
}
//Determines collisions on overlap, collisions are writen to collpair[i] and collision+number_collision_found is returned
CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap, CollPair *collpair )
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
MFace *face1=NULL, *face2 = NULL;
#ifdef USE_BULLET
ClothVertex *verts1 = clmd->clothObject->verts;
#endif
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
int i;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else
i++;
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
#ifdef USE_BULLET
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * ( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
if ( distance <= ( epsilon1 + epsilon2 + ALMOST_ZERO ) )
{
VECCOPY ( collpair->normal, collpair->vector );
normalize_v3( collpair->normal );
collpair->distance = distance;
collpair->flag = 0;
collpair++;
}/*
else
{
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
// calc relative velocity
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
verts1[collpair->ap1].txold,
verts1[collpair->ap2].txold,
verts1[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
if(sqrt(INPR(relativeVelocity, relativeVelocity)) >= distance)
{
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
collpair++;
}
}*/
}
return collpair;
}
#if 0
static int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
/*
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
*/
result = 1;
}
}
return result;
}
#endif
#if 0
static float projectPointOntoLine(float *p, float *a, float *b)
{
float ba[3], pa[3];
VECSUB(ba, b, a);
VECSUB(pa, p, a);
return INPR(pa, ba) / INPR(ba, ba);
}
static void calculateEENormal(float *np1, float *np2, float *np3, float *np4,float *out_normal)
{
float line1[3], line2[3];
float length;
VECSUB(line1, np2, np1);
VECSUB(line2, np3, np1);
// printf("l1: %f, l1: %f, l2: %f, l2: %f\n", line1[0], line1[1], line2[0], line2[1]);
cross_v3_v3v3(out_normal, line1, line2);
length = normalize_v3(out_normal);
if (length <= FLT_EPSILON)
{ // lines are collinear
VECSUB(out_normal, np2, np1);
normalize_v3(out_normal);
}
}
static void findClosestPointsEE(float *x1, float *x2, float *x3, float *x4, float *w1, float *w2)
{
float temp[3], temp2[3];
double a, b, c, e, f;
VECSUB(temp, x2, x1);
a = INPR(temp, temp);
VECSUB(temp2, x4, x3);
b = -INPR(temp, temp2);
c = INPR(temp2, temp2);
VECSUB(temp2, x3, x1);
e = INPR(temp, temp2);
VECSUB(temp, x4, x3);
f = -INPR(temp, temp2);
*w1 = (e * c - b * f) / (a * c - b * b);
*w2 = (f - b * *w1) / c;
}
// calculates the distance of 2 edges
static float edgedge_distance(float np11[3], float np12[3], float np21[3], float np22[3], float *out_a1, float *out_a2, float *out_normal)
{
float line1[3], line2[3], cross[3];
float length;
float temp[3], temp2[3];
float dist_a1, dist_a2;
VECSUB(line1, np12, np11);
VECSUB(line2, np22, np21);
cross_v3_v3v3(cross, line1, line2);
length = INPR(cross, cross);
if (length < FLT_EPSILON)
{
*out_a2 = projectPointOntoLine(np11, np21, np22);
if ((*out_a2 >= -FLT_EPSILON) && (*out_a2 <= 1.0 + FLT_EPSILON))
{
*out_a1 = 0;
calculateEENormal(np11, np12, np21, np22, out_normal);
VECSUB(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(temp2, temp, np21);
VECADD(temp2, temp2, np11);
return INPR(temp2, temp2);
}
CLAMP(*out_a2, 0.0, 1.0);
if (*out_a2 > .5)
{ // == 1.0
*out_a1 = projectPointOntoLine(np22, np11, np12);
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
{
calculateEENormal(np11, np12, np21, np22, out_normal);
// return (np22 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
VECSUB(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(temp2, temp, np11);
VECSUB(temp2, np22, temp2);
return INPR(temp2, temp2);
}
}
else
{ // == 0.0
*out_a1 = projectPointOntoLine(np21, np11, np12);
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
{
calculateEENormal(np11, np11, np21, np22, out_normal);
// return (np21 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
VECSUB(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(temp2, temp, np11);
VECSUB(temp2, np21, temp2);
return INPR(temp2, temp2);
}
}
CLAMP(*out_a1, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
if(*out_a1 > .5)
{
if(*out_a2 > .5)
{
VECSUB(temp, np12, np22);
}
else
{
VECSUB(temp, np12, np21);
}
}
else
{
if(*out_a2 > .5)
{
VECSUB(temp, np11, np22);
}
else
{
VECSUB(temp, np11, np21);
}
}
return INPR(temp, temp);
}
else
{
// If the lines aren't parallel (but coplanar) they have to intersect
findClosestPointsEE(np11, np12, np21, np22, out_a1, out_a2);
// If both points are on the finite edges, we're done.
if (*out_a1 >= 0.0 && *out_a1 <= 1.0 && *out_a2 >= 0.0 && *out_a2 <= 1.0)
{
float p1[3], p2[3];
// p1= np11 + (np12 - np11) * out_a1;
VECSUB(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(p1, np11, temp);
// p2 = np21 + (np22 - np21) * out_a2;
VECSUB(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(p2, np21, temp);
calculateEENormal(np11, np12, np21, np22, out_normal);
VECSUB(temp, p1, p2);
return INPR(temp, temp);
}
/*
* Clamp both points to the finite edges.
* The one that moves most during clamping is one part of the solution.
*/
dist_a1 = *out_a1;
CLAMP(dist_a1, 0.0, 1.0);
dist_a2 = *out_a2;
CLAMP(dist_a2, 0.0, 1.0);
// Now project the "most clamped" point on the other line.
if (dist_a1 > dist_a2)
{
/* keep out_a1 */
float p1[3];
// p1 = np11 + (np12 - np11) * out_a1;
VECSUB(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(p1, np11, temp);
*out_a2 = projectPointOntoLine(p1, np21, np22);
CLAMP(*out_a2, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
// return (p1 - (np21 + (np22 - np21) * out_a2)).lengthSquared();
VECSUB(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(temp, temp, np21);
VECSUB(temp, p1, temp);
return INPR(temp, temp);
}
else
{
/* keep out_a2 */
float p2[3];
// p2 = np21 + (np22 - np21) * out_a2;
VECSUB(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(p2, np21, temp);
*out_a1 = projectPointOntoLine(p2, np11, np12);
CLAMP(*out_a1, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
// return ((np11 + (np12 - np11) * out_a1) - p2).lengthSquared();
VECSUB(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(temp, temp, np11);
VECSUB(temp, temp, p2);
return INPR(temp, temp);
}
}
printf("Error in edgedge_distance: end of function\n");
return 0;
}
static int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
{
EdgeCollPair edgecollpair;
Cloth *cloth1=NULL;
ClothVertex *verts1=NULL;
unsigned int i = 0, k = 0;
int numsolutions = 0;
double x1[3], v1[3], x2[3], v2[3], x3[3], v3[3];
double solution[3], solution2[3];
MVert *verts2 = collmd->current_x; // old x
MVert *velocity2 = collmd->current_v; // velocity
float distance = 0;
float triA[3][3], triB[3][3];
int result = 0;
cloth1 = clmd->clothObject;
verts1 = cloth1->verts;
for(i = 0; i < 9; i++)
{
// 9 edge - edge possibilities
if(i == 0) // cloth edge: 1-2; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 1) // cloth edge: 1-2; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 2) // cloth edge: 1-2; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 3) // cloth edge: 2-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 4) // cloth edge: 2-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 5) // cloth edge: 2-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i ==6) // cloth edge: 1-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i ==7) // cloth edge: 1-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 8) // cloth edge: 1-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
/*
if((edgecollpair.p11 == 3) && (edgecollpair.p12 == 16))
printf("Ahier!\n");
if((edgecollpair.p11 == 16) && (edgecollpair.p12 == 3))
printf("Ahier!\n");
*/
// if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
{
// always put coll points in p21/p22
VECSUB ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
VECSUB ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
VECSUB ( x2, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
VECSUB ( v2, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
VECSUB ( x3, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
VECSUB ( v3, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].tv );
numsolutions = cloth_get_collision_time ( x1, v1, x2, v2, x3, v3, solution );
if((edgecollpair.p11 == 3 && edgecollpair.p12==16)|| (edgecollpair.p11==16 && edgecollpair.p12==3))
{
if(edgecollpair.p21==6 || edgecollpair.p22 == 6)
{
printf("dist: %f, sol[k]: %lf, sol2[k]: %lf\n", distance, solution[k], solution2[k]);
printf("a1: %f, a2: %f, b1: %f, b2: %f\n", x1[0], x2[0], x3[0], v1[0]);
printf("b21: %d, b22: %d\n", edgecollpair.p21, edgecollpair.p22);
}
}
for ( k = 0; k < numsolutions; k++ )
{
// printf("sol %d: %lf\n", k, solution[k]);
if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) && ( solution[k] > ALMOST_ZERO))
{
float a,b;
float out_normal[3];
float distance;
float impulse = 0;
float I_mag;
// move verts
VECADDS(triA[0], verts1[edgecollpair.p11].txold, verts1[edgecollpair.p11].tv, solution[k]);
VECADDS(triA[1], verts1[edgecollpair.p12].txold, verts1[edgecollpair.p12].tv, solution[k]);
VECADDS(triB[0], collmd->current_x[edgecollpair.p21].co, collmd->current_v[edgecollpair.p21].co, solution[k]);
VECADDS(triB[1], collmd->current_x[edgecollpair.p22].co, collmd->current_v[edgecollpair.p22].co, solution[k]);
// TODO: check for collisions
distance = edgedge_distance(triA[0], triA[1], triB[0], triB[1], &a, &b, out_normal);
if ((distance <= clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO) && (INPR(out_normal, out_normal) > 0))
{
float vrel_1_to_2[3], temp[3], temp2[3], out_normalVelocity;
float desiredVn;
VECCOPY(vrel_1_to_2, verts1[edgecollpair.p11].tv);
mul_v3_fl(vrel_1_to_2, 1.0 - a);
VECCOPY(temp, verts1[edgecollpair.p12].tv);
mul_v3_fl(temp, a);
VECADD(vrel_1_to_2, vrel_1_to_2, temp);
VECCOPY(temp, verts1[edgecollpair.p21].tv);
mul_v3_fl(temp, 1.0 - b);
VECCOPY(temp2, verts1[edgecollpair.p22].tv);
mul_v3_fl(temp2, b);
VECADD(temp, temp, temp2);
VECSUB(vrel_1_to_2, vrel_1_to_2, temp);
out_normalVelocity = INPR(vrel_1_to_2, out_normal);
/*
// this correction results in wrong normals sometimes?
if(out_normalVelocity < 0.0)
{
out_normalVelocity*= -1.0;
negate_v3(out_normal);
}
*/
/* Inelastic repulsion impulse. */
// Calculate which normal velocity we need.
desiredVn = (out_normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(distance)) - ALMOST_ZERO);
// Now calculate what impulse we need to reach that velocity.
I_mag = (out_normalVelocity - desiredVn) / 2.0; // / (1/m1 + 1/m2);
// Finally apply that impulse.
impulse = (2.0 * -I_mag) / (a*a + (1.0-a)*(1.0-a) + b*b + (1.0-b)*(1.0-b));
VECADDMUL ( verts1[edgecollpair.p11].impulse, out_normal, (1.0-a) * impulse );
verts1[edgecollpair.p11].impulse_count++;
VECADDMUL ( verts1[edgecollpair.p12].impulse, out_normal, a * impulse );
verts1[edgecollpair.p12].impulse_count++;
// return true;
result = 1;
break;
}
else
{
// missing from collision.hpp
}
// mintime = MIN2(mintime, (float)solution[k]);
break;
}
}
}
}
return result;
}
static int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
Cloth *cloth1;
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle moving collisions here
if (!( collpair->flag & COLLISION_IN_FUTURE ))
continue;
cloth_collision_moving_edges ( clmd, collmd, collpair);
// cloth_collision_moving_tris ( clmd, collmd, collpair);
}
return 1;
}
#endif
static void add_collision_object(Object ***objs, int *numobj, int *maxobj, Object *ob, Object *self, int level)
{
CollisionModifierData *cmd= NULL;
if(ob == self)
return;
/* only get objects with collision modifier */
if(ob->pd && ob->pd->deflect)
cmd= (CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
if(cmd) {
/* extend array */
if(*numobj >= *maxobj) {
*maxobj *= 2;
*objs= MEM_reallocN(*objs, sizeof(Object*)*(*maxobj));
}
(*objs)[*numobj] = ob;
(*numobj)++;
}
/* objects in dupli groups, one level only for now */
if(ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
/* add objects */
for(go= group->gobject.first; go; go= go->next)
add_collision_object(objs, numobj, maxobj, go->ob, self, level+1);
}
}
// return all collision objects in scene
// collision object will exclude self
Object **get_collisionobjects(Scene *scene, Object *self, Group *group, int *numcollobj)
{
Base *base;
Object **objs;
GroupObject *go;
int numobj= 0, maxobj= 100;
objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
/* gather all collision objects */
if(group) {
/* use specified group */
for(go= group->gobject.first; go; go= go->next)
add_collision_object(&objs, &numobj, &maxobj, go->ob, self, 0);
}
else {
/* add objects in same layer in scene */
for(base = scene->base.first; base; base = base->next)
if(base->lay & self->lay)
add_collision_object(&objs, &numobj, &maxobj, base->object, self, 0);
}
*numcollobj= numobj;
return objs;
}
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
{
CollisionModifierData *cmd= NULL;
ColliderCache *col;
if(ob == self)
return;
if(ob->pd && ob->pd->deflect)
cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
if(cmd && cmd->bvhtree) {
if(*objs == NULL)
*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
col->ob = ob;
col->collmd = cmd;
/* make sure collider is properly set up */
collision_move_object(cmd, 1.0, 0.0);
BLI_addtail(*objs, col);
}
/* objects in dupli groups, one level only for now */
if(ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
/* add objects */
for(go= group->gobject.first; go; go= go->next)
add_collider_cache_object(objs, go->ob, self, level+1);
}
}
ListBase *get_collider_cache(Scene *scene, Object *self, Group *group)
{
Base *base;
GroupObject *go;
ListBase *objs= NULL;
/* add object in same layer in scene */
if(group) {
for(go= group->gobject.first; go; go= go->next)
add_collider_cache_object(&objs, go->ob, self, 0);
}
else {
for(base = scene->base.first; base; base = base->next)
if(!self || (base->lay & self->lay))
add_collider_cache_object(&objs, base->object, self, 0);
}
return objs;
}
void free_collider_cache(ListBase **colliders)
{
if(*colliders) {
BLI_freelistN(*colliders);
MEM_freeN(*colliders);
*colliders = NULL;
}
}
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap)
{
int i;
*collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 4, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, overlap+i, *collisions_index );
}
}
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
{
Cloth *cloth = clmd->clothObject;
int i=0, j = 0, numfaces = 0, numverts = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
float tnull[3] = {0,0,0};
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
{
result = 0;
if ( collmd->bvhtree )
{
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
if ( result )
{
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if ( verts[i].impulse_count )
{
VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECCOPY ( verts[i].impulse, tnull );
verts[i].impulse_count = 0;
ret++;
}
}
}
}
}
return ret;
}
// cloth - object collisions
int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, float dt )
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh= cloth->bvhtree;
int i=0, numfaces = 0, numverts = 0, k, l, j;
int rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
int numcollobj = 0;
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
return 0;
verts = cloth->verts;
numfaces = cloth->numfaces;
numverts = cloth->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj);
if(!collobjs)
return 0;
do
{
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
// check all collision objects
for(i = 0; i < numcollobj; i++)
{
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
int result = 0;
if(!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
// go to next object if no overlap is there
if( result && overlap ) {
/* check if collisions really happen (costly near check) */
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i], &collisions_index[i], result, overlap);
// resolve nearby collisions
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
ret2 += ret;
}
if ( overlap )
MEM_freeN ( overlap );
}
rounds++;
for(i = 0; i < numcollobj; i++)
{
if ( collisions[i] ) MEM_freeN ( collisions[i] );
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for ( i = 0; i < numverts; i++ )
{
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
{
for(l = 0; l < clmd->coll_parms->self_loop_count; l++)
{
// TODO: add coll quality rounds again
BVHTreeOverlap *overlap = NULL;
int result = 0;
// collisions = 1;
verts = cloth->verts; // needed for openMP
numfaces = cloth->numfaces;
numverts = cloth->numverts;
verts = cloth->verts;
if ( cloth->bvhselftree )
{
// search for overlapping collision pairs
overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
// #pragma omp parallel for private(k, i, j) schedule(static)
for ( k = 0; k < result; k++ )
{
float temp[3];
float length = 0;
float mindistance;
i = overlap[k].indexA;
j = overlap[k].indexB;
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
VECSUB ( temp, verts[i].tx, verts[j].tx );
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
// check for adjacent points (i must be smaller j)
if ( BLI_edgehash_haskey ( cloth->edgehash, MIN2(i, j), MAX2(i, j) ) )
{
continue;
}
length = normalize_v3( temp );
if ( length < mindistance )
{
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
mul_v3_fl( temp, -correction );
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
{
mul_v3_fl( temp, correction );
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else
{
mul_v3_fl( temp, -correction*0.5 );
VECADD ( verts[j].tx, verts[j].tx, temp );
VECSUB ( verts[i].tx, verts[i].tx, temp );
}
ret = 1;
ret2 += ret;
}
else
{
// check for approximated time collisions
}
}
if ( overlap )
MEM_freeN ( overlap );
}
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if ( ret2 )
{
for ( i = 0; i < cloth->numverts; i++ )
{
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
{
VECSUB ( verts[i].tv, verts[i].tx, verts[i].txold );
}
}
}
////////////////////////////////////////////////////////////
}
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if(collobjs)
MEM_freeN(collobjs);
return MIN2 ( ret, 1 );
}