Also added matrix.median_scale attribute to get the average scale from the matrix, use for scaling bone envalopes.
846 lines
24 KiB
C
846 lines
24 KiB
C
/*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Contributor(s): Joseph Gilbert
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "Mathutils.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BKE_utildefines.h"
|
|
#include "BLI_blenlib.h"
|
|
|
|
|
|
//-------------------------DOC STRINGS ---------------------------
|
|
|
|
static PyObject *Quaternion_Identity( QuaternionObject * self );
|
|
static PyObject *Quaternion_Negate( QuaternionObject * self );
|
|
static PyObject *Quaternion_Conjugate( QuaternionObject * self );
|
|
static PyObject *Quaternion_Inverse( QuaternionObject * self );
|
|
static PyObject *Quaternion_Normalize( QuaternionObject * self );
|
|
static PyObject *Quaternion_ToEuler( QuaternionObject * self, PyObject *args );
|
|
static PyObject *Quaternion_ToMatrix( QuaternionObject * self );
|
|
static PyObject *Quaternion_Cross( QuaternionObject * self, QuaternionObject * value );
|
|
static PyObject *Quaternion_Dot( QuaternionObject * self, QuaternionObject * value );
|
|
static PyObject *Quaternion_copy( QuaternionObject * self );
|
|
|
|
//-----------------------METHOD DEFINITIONS ----------------------
|
|
static struct PyMethodDef Quaternion_methods[] = {
|
|
{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, NULL},
|
|
{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, NULL},
|
|
{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, NULL},
|
|
{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, NULL},
|
|
{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, NULL},
|
|
{"toEuler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, NULL},
|
|
{"toMatrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, NULL},
|
|
{"cross", (PyCFunction) Quaternion_Cross, METH_O, NULL},
|
|
{"dot", (PyCFunction) Quaternion_Dot, METH_O, NULL},
|
|
{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, NULL},
|
|
{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, NULL},
|
|
{NULL, NULL, 0, NULL}
|
|
};
|
|
|
|
//----------------------------------Mathutils.Quaternion() --------------
|
|
static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *listObject = NULL, *n, *q;
|
|
int size, i;
|
|
float quat[4];
|
|
double angle = 0.0f;
|
|
|
|
size = PyTuple_GET_SIZE(args);
|
|
if (size == 1 || size == 2) { //seq?
|
|
listObject = PyTuple_GET_ITEM(args, 0);
|
|
if (PySequence_Check(listObject)) {
|
|
size = PySequence_Length(listObject);
|
|
if ((size == 4 && PySequence_Length(args) !=1) ||
|
|
(size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
|
|
// invalid args/size
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
if(size == 3){ //get angle in axis/angle
|
|
n = PySequence_GetItem(args, 1);
|
|
if(n == NULL) { // parsed item not a number or getItem fail
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
|
|
angle = PyFloat_AsDouble(n);
|
|
Py_DECREF(n);
|
|
|
|
if (angle==-1 && PyErr_Occurred()) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
}else{
|
|
listObject = PyTuple_GET_ITEM(args, 1);
|
|
if (size>1 && PySequence_Check(listObject)) {
|
|
size = PySequence_Length(listObject);
|
|
if (size != 3) {
|
|
// invalid args/size
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
angle = PyFloat_AsDouble(PyTuple_GET_ITEM(args, 0));
|
|
|
|
if (angle==-1 && PyErr_Occurred()) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
} else { // argument was not a sequence
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
} else if (size == 0) { //returns a new empty quat
|
|
return newQuaternionObject(NULL, Py_NEW, NULL);
|
|
} else {
|
|
listObject = args;
|
|
}
|
|
|
|
if (size == 3) { // invalid quat size
|
|
if(PySequence_Length(args) != 2){
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
}else{
|
|
if(size != 4){
|
|
PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
for (i=0; i<size; i++) { //parse
|
|
q = PySequence_GetItem(listObject, i);
|
|
if (q == NULL) { // Failed to read sequence
|
|
PyErr_SetString(PyExc_RuntimeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
|
|
quat[i] = PyFloat_AsDouble(q);
|
|
Py_DECREF(q);
|
|
|
|
if (quat[i]==-1 && PyErr_Occurred()) {
|
|
PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if(size == 3) //calculate the quat based on axis/angle
|
|
#ifdef USE_MATHUTILS_DEG
|
|
axis_angle_to_quat(quat, quat, angle * (Py_PI / 180));
|
|
#else
|
|
axis_angle_to_quat(quat, quat, angle);
|
|
#endif
|
|
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
|
|
//-----------------------------METHODS------------------------------
|
|
//----------------------------Quaternion.toEuler()------------------
|
|
//return the quat as a euler
|
|
static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
|
|
{
|
|
float eul[3];
|
|
EulerObject *eul_compat = NULL;
|
|
|
|
if(!PyArg_ParseTuple(args, "|O!:toEuler", &euler_Type, &eul_compat))
|
|
return NULL;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
if(eul_compat) {
|
|
float mat[3][3];
|
|
|
|
if(!BaseMath_ReadCallback(eul_compat))
|
|
return NULL;
|
|
|
|
quat_to_mat3( mat,self->quat);
|
|
|
|
#ifdef USE_MATHUTILS_DEG
|
|
{
|
|
float eul_compatf[3];
|
|
int x;
|
|
|
|
for(x = 0; x < 3; x++) {
|
|
eul_compatf[x] = eul_compat->eul[x] * ((float)Py_PI / 180);
|
|
}
|
|
mat3_to_compatible_eul( eul, eul_compatf,mat);
|
|
}
|
|
#else
|
|
mat3_to_compatible_eul( eul, eul_compat->eul,mat);
|
|
#endif
|
|
}
|
|
else {
|
|
quat_to_eul( eul,self->quat);
|
|
}
|
|
|
|
#ifdef USE_MATHUTILS_DEG
|
|
{
|
|
int x;
|
|
|
|
for(x = 0; x < 3; x++) {
|
|
eul[x] *= (180 / (float)Py_PI);
|
|
}
|
|
}
|
|
#endif
|
|
return newEulerObject(eul, Py_NEW, NULL);
|
|
}
|
|
//----------------------------Quaternion.toMatrix()------------------
|
|
//return the quat as a matrix
|
|
static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
|
|
{
|
|
float mat[9]; /* all values are set */
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
quat_to_mat3( (float (*)[3]) mat,self->quat);
|
|
return newMatrixObject(mat, 3, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
//----------------------------Quaternion.cross(other)------------------
|
|
//return the cross quat
|
|
static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value)
|
|
{
|
|
float quat[4];
|
|
|
|
if (!QuaternionObject_Check(value)) {
|
|
PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
|
return NULL;
|
|
|
|
mul_qt_qtqt(quat, self->quat, value->quat);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
|
|
//----------------------------Quaternion.dot(other)------------------
|
|
//return the dot quat
|
|
static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value)
|
|
{
|
|
if (!QuaternionObject_Check(value)) {
|
|
PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" );
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
|
|
return NULL;
|
|
|
|
return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat));
|
|
}
|
|
|
|
//----------------------------Quaternion.normalize()----------------
|
|
//normalize the axis of rotation of [theta,vector]
|
|
static PyObject *Quaternion_Normalize(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
normalize_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.inverse()------------------
|
|
//invert the quat
|
|
static PyObject *Quaternion_Inverse(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
invert_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.identity()-----------------
|
|
//generate the identity quaternion
|
|
static PyObject *Quaternion_Identity(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
unit_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.negate()-------------------
|
|
//negate the quat
|
|
static PyObject *Quaternion_Negate(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
mul_qt_fl(self->quat, -1.0f);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.conjugate()----------------
|
|
//negate the vector part
|
|
static PyObject *Quaternion_Conjugate(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
conjugate_qt(self->quat);
|
|
|
|
BaseMath_WriteCallback(self);
|
|
Py_INCREF(self);
|
|
return (PyObject*)self;
|
|
}
|
|
//----------------------------Quaternion.copy()----------------
|
|
//return a copy of the quat
|
|
static PyObject *Quaternion_copy(QuaternionObject * self)
|
|
{
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self));
|
|
}
|
|
|
|
//----------------------------print object (internal)--------------
|
|
//print the object to screen
|
|
static PyObject *Quaternion_repr(QuaternionObject * self)
|
|
{
|
|
char str[64];
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
sprintf(str, "[%.6f, %.6f, %.6f, %.6f](quaternion)", self->quat[0], self->quat[1], self->quat[2], self->quat[3]);
|
|
return PyUnicode_FromString(str);
|
|
}
|
|
//------------------------tp_richcmpr
|
|
//returns -1 execption, 0 false, 1 true
|
|
static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
|
|
{
|
|
QuaternionObject *quatA = NULL, *quatB = NULL;
|
|
int result = 0;
|
|
|
|
if(QuaternionObject_Check(objectA)) {
|
|
quatA = (QuaternionObject*)objectA;
|
|
if(!BaseMath_ReadCallback(quatA))
|
|
return NULL;
|
|
}
|
|
if(QuaternionObject_Check(objectB)) {
|
|
quatB = (QuaternionObject*)objectB;
|
|
if(!BaseMath_ReadCallback(quatB))
|
|
return NULL;
|
|
}
|
|
|
|
if (!quatA || !quatB){
|
|
if (comparison_type == Py_NE){
|
|
Py_RETURN_TRUE;
|
|
}else{
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
switch (comparison_type){
|
|
case Py_EQ:
|
|
result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
|
|
break;
|
|
case Py_NE:
|
|
result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
|
|
if (result == 0){
|
|
result = 1;
|
|
}else{
|
|
result = 0;
|
|
}
|
|
break;
|
|
default:
|
|
printf("The result of the comparison could not be evaluated");
|
|
break;
|
|
}
|
|
if (result == 1){
|
|
Py_RETURN_TRUE;
|
|
}else{
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
//---------------------SEQUENCE PROTOCOLS------------------------
|
|
//----------------------------len(object)------------------------
|
|
//sequence length
|
|
static int Quaternion_len(QuaternionObject * self)
|
|
{
|
|
return 4;
|
|
}
|
|
//----------------------------object[]---------------------------
|
|
//sequence accessor (get)
|
|
static PyObject *Quaternion_item(QuaternionObject * self, int i)
|
|
{
|
|
if(i<0) i= 4-i;
|
|
|
|
if(i < 0 || i >= 4) {
|
|
PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n");
|
|
return NULL;
|
|
}
|
|
|
|
if(!BaseMath_ReadIndexCallback(self, i))
|
|
return NULL;
|
|
|
|
return PyFloat_FromDouble(self->quat[i]);
|
|
|
|
}
|
|
//----------------------------object[]-------------------------
|
|
//sequence accessor (set)
|
|
static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
|
|
{
|
|
float scalar= (float)PyFloat_AsDouble(ob);
|
|
if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
|
|
PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n");
|
|
return -1;
|
|
}
|
|
|
|
if(i<0) i= 4-i;
|
|
|
|
if(i < 0 || i >= 4){
|
|
PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n");
|
|
return -1;
|
|
}
|
|
self->quat[i] = scalar;
|
|
|
|
if(!BaseMath_WriteIndexCallback(self, i))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (get)
|
|
static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
|
|
{
|
|
PyObject *list = NULL;
|
|
int count;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return NULL;
|
|
|
|
CLAMP(begin, 0, 4);
|
|
if (end<0) end= 5+end;
|
|
CLAMP(end, 0, 4);
|
|
begin = MIN2(begin,end);
|
|
|
|
list = PyList_New(end - begin);
|
|
for(count = begin; count < end; count++) {
|
|
PyList_SetItem(list, count - begin,
|
|
PyFloat_FromDouble(self->quat[count]));
|
|
}
|
|
|
|
return list;
|
|
}
|
|
//----------------------------object[z:y]------------------------
|
|
//sequence slice (set)
|
|
static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq)
|
|
{
|
|
int i, y, size = 0;
|
|
float quat[4];
|
|
PyObject *q;
|
|
|
|
if(!BaseMath_ReadCallback(self))
|
|
return -1;
|
|
|
|
CLAMP(begin, 0, 4);
|
|
if (end<0) end= 5+end;
|
|
CLAMP(end, 0, 4);
|
|
begin = MIN2(begin,end);
|
|
|
|
size = PySequence_Length(seq);
|
|
if(size != (end - begin)){
|
|
PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
q = PySequence_GetItem(seq, i);
|
|
if (q == NULL) { // Failed to read sequence
|
|
PyErr_SetString(PyExc_RuntimeError, "quaternion[begin:end] = []: unable to read sequence\n");
|
|
return -1;
|
|
}
|
|
|
|
quat[i]= (float)PyFloat_AsDouble(q);
|
|
Py_DECREF(q);
|
|
|
|
if(quat[i]==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
|
|
PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: sequence argument not a number\n");
|
|
return -1;
|
|
}
|
|
}
|
|
//parsed well - now set in vector
|
|
for(y = 0; y < size; y++)
|
|
self->quat[begin + y] = quat[y];
|
|
|
|
BaseMath_WriteCallback(self);
|
|
return 0;
|
|
}
|
|
//------------------------NUMERIC PROTOCOLS----------------------
|
|
//------------------------obj + obj------------------------------
|
|
//addition
|
|
static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
|
|
{
|
|
float quat[4];
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
|
|
if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
|
|
PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
|
|
return NULL;
|
|
}
|
|
quat1 = (QuaternionObject*)q1;
|
|
quat2 = (QuaternionObject*)q2;
|
|
|
|
if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
|
|
return NULL;
|
|
|
|
add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
//------------------------obj - obj------------------------------
|
|
//subtraction
|
|
static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
|
|
{
|
|
int x;
|
|
float quat[4];
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
|
|
if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
|
|
PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
|
|
return NULL;
|
|
}
|
|
|
|
quat1 = (QuaternionObject*)q1;
|
|
quat2 = (QuaternionObject*)q2;
|
|
|
|
if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
|
|
return NULL;
|
|
|
|
for(x = 0; x < 4; x++) {
|
|
quat[x] = quat1->quat[x] - quat2->quat[x];
|
|
}
|
|
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
//------------------------obj * obj------------------------------
|
|
//mulplication
|
|
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
|
|
{
|
|
float quat[4], scalar;
|
|
QuaternionObject *quat1 = NULL, *quat2 = NULL;
|
|
VectorObject *vec = NULL;
|
|
|
|
if(QuaternionObject_Check(q1)) {
|
|
quat1 = (QuaternionObject*)q1;
|
|
if(!BaseMath_ReadCallback(quat1))
|
|
return NULL;
|
|
}
|
|
if(QuaternionObject_Check(q2)) {
|
|
quat2 = (QuaternionObject*)q2;
|
|
if(!BaseMath_ReadCallback(quat2))
|
|
return NULL;
|
|
}
|
|
|
|
if(quat1 && quat2) { /* QUAT*QUAT (dot product) */
|
|
return PyFloat_FromDouble(dot_qtqt(quat1->quat, quat2->quat));
|
|
}
|
|
|
|
/* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */
|
|
if(!QuaternionObject_Check(q1)) {
|
|
scalar= PyFloat_AsDouble(q1);
|
|
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */
|
|
QUATCOPY(quat, quat2->quat);
|
|
mul_qt_fl(quat, scalar);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type");
|
|
return NULL;
|
|
}
|
|
else { /* QUAT*SOMETHING */
|
|
if(VectorObject_Check(q2)){ /* QUAT*VEC */
|
|
vec = (VectorObject*)q2;
|
|
if(vec->size != 3){
|
|
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n");
|
|
return NULL;
|
|
}
|
|
return quat_rotation((PyObject*)quat1, (PyObject*)vec); /* vector updating done inside the func */
|
|
}
|
|
|
|
scalar= PyFloat_AsDouble(q2);
|
|
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */
|
|
QUATCOPY(quat, quat1->quat);
|
|
mul_qt_fl(quat, scalar);
|
|
return newQuaternionObject(quat, Py_NEW, NULL);
|
|
}
|
|
}
|
|
|
|
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n");
|
|
return NULL;
|
|
}
|
|
|
|
//-----------------PROTOCOL DECLARATIONS--------------------------
|
|
static PySequenceMethods Quaternion_SeqMethods = {
|
|
(lenfunc) Quaternion_len, /* sq_length */
|
|
(binaryfunc) 0, /* sq_concat */
|
|
(ssizeargfunc) 0, /* sq_repeat */
|
|
(ssizeargfunc) Quaternion_item, /* sq_item */
|
|
(ssizessizeargfunc) Quaternion_slice, /* sq_slice */
|
|
(ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */
|
|
(ssizessizeobjargproc) Quaternion_ass_slice, /* sq_ass_slice */
|
|
};
|
|
|
|
static PyNumberMethods Quaternion_NumMethods = {
|
|
(binaryfunc) Quaternion_add, /*nb_add*/
|
|
(binaryfunc) Quaternion_sub, /*nb_subtract*/
|
|
(binaryfunc) Quaternion_mul, /*nb_multiply*/
|
|
0, /*nb_remainder*/
|
|
0, /*nb_divmod*/
|
|
0, /*nb_power*/
|
|
(unaryfunc) 0, /*nb_negative*/
|
|
(unaryfunc) 0, /*tp_positive*/
|
|
(unaryfunc) 0, /*tp_absolute*/
|
|
(inquiry) 0, /*tp_bool*/
|
|
(unaryfunc) 0, /*nb_invert*/
|
|
0, /*nb_lshift*/
|
|
(binaryfunc)0, /*nb_rshift*/
|
|
0, /*nb_and*/
|
|
0, /*nb_xor*/
|
|
0, /*nb_or*/
|
|
0, /*nb_int*/
|
|
0, /*nb_reserved*/
|
|
0, /*nb_float*/
|
|
0, /* nb_inplace_add */
|
|
0, /* nb_inplace_subtract */
|
|
0, /* nb_inplace_multiply */
|
|
0, /* nb_inplace_remainder */
|
|
0, /* nb_inplace_power */
|
|
0, /* nb_inplace_lshift */
|
|
0, /* nb_inplace_rshift */
|
|
0, /* nb_inplace_and */
|
|
0, /* nb_inplace_xor */
|
|
0, /* nb_inplace_or */
|
|
0, /* nb_floor_divide */
|
|
0, /* nb_true_divide */
|
|
0, /* nb_inplace_floor_divide */
|
|
0, /* nb_inplace_true_divide */
|
|
0, /* nb_index */
|
|
};
|
|
|
|
static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type )
|
|
{
|
|
return Quaternion_item(self, GET_INT_FROM_POINTER(type));
|
|
}
|
|
|
|
static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type )
|
|
{
|
|
return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
|
|
}
|
|
|
|
static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type )
|
|
{
|
|
return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
|
|
}
|
|
|
|
static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type )
|
|
{
|
|
double ang = self->quat[0];
|
|
ang = 2 * (saacos(ang));
|
|
#ifdef USE_MATHUTILS_DEG
|
|
ang *= (180 / Py_PI);
|
|
#endif
|
|
return PyFloat_FromDouble(ang);
|
|
}
|
|
|
|
static PyObject *Quaternion_getAxisVec( QuaternionObject * self, void *type )
|
|
{
|
|
int i;
|
|
float vec[3];
|
|
double mag = self->quat[0] * (Py_PI / 180);
|
|
mag = 2 * (saacos(mag));
|
|
mag = sin(mag / 2);
|
|
for(i = 0; i < 3; i++)
|
|
vec[i] = (float)(self->quat[i + 1] / mag);
|
|
|
|
normalize_v3(vec);
|
|
//If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations
|
|
if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(vec[1], 0.0f, 10) &&
|
|
EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){
|
|
vec[0] = 1.0f;
|
|
}
|
|
return (PyObject *) newVectorObject(vec, 3, Py_NEW, NULL);
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Python attributes get/set structure: */
|
|
/*****************************************************************************/
|
|
static PyGetSetDef Quaternion_getseters[] = {
|
|
{"w",
|
|
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
|
"Quaternion W value",
|
|
(void *)0},
|
|
{"x",
|
|
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
|
"Quaternion X axis",
|
|
(void *)1},
|
|
{"y",
|
|
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
|
"Quaternion Y axis",
|
|
(void *)2},
|
|
{"z",
|
|
(getter)Quaternion_getAxis, (setter)Quaternion_setAxis,
|
|
"Quaternion Z axis",
|
|
(void *)3},
|
|
{"magnitude",
|
|
(getter)Quaternion_getMagnitude, (setter)NULL,
|
|
"Size of the quaternion",
|
|
NULL},
|
|
{"angle",
|
|
(getter)Quaternion_getAngle, (setter)NULL,
|
|
"angle of the quaternion",
|
|
NULL},
|
|
{"axis",
|
|
(getter)Quaternion_getAxisVec, (setter)NULL,
|
|
"quaternion axis as a vector",
|
|
NULL},
|
|
{"wrapped",
|
|
(getter)BaseMathObject_getWrapped, (setter)NULL,
|
|
"True when this wraps blenders internal data",
|
|
NULL},
|
|
{"_owner",
|
|
(getter)BaseMathObject_getOwner, (setter)NULL,
|
|
"Read only owner for vectors that depend on another object",
|
|
NULL},
|
|
|
|
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
|
|
};
|
|
|
|
|
|
//------------------PY_OBECT DEFINITION--------------------------
|
|
PyTypeObject quaternion_Type = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"quaternion", //tp_name
|
|
sizeof(QuaternionObject), //tp_basicsize
|
|
0, //tp_itemsize
|
|
(destructor)BaseMathObject_dealloc, //tp_dealloc
|
|
0, //tp_print
|
|
0, //tp_getattr
|
|
0, //tp_setattr
|
|
0, //tp_compare
|
|
(reprfunc) Quaternion_repr, //tp_repr
|
|
&Quaternion_NumMethods, //tp_as_number
|
|
&Quaternion_SeqMethods, //tp_as_sequence
|
|
0, //tp_as_mapping
|
|
0, //tp_hash
|
|
0, //tp_call
|
|
0, //tp_str
|
|
0, //tp_getattro
|
|
0, //tp_setattro
|
|
0, //tp_as_buffer
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
|
|
0, //tp_doc
|
|
0, //tp_traverse
|
|
0, //tp_clear
|
|
(richcmpfunc)Quaternion_richcmpr, //tp_richcompare
|
|
0, //tp_weaklistoffset
|
|
0, //tp_iter
|
|
0, //tp_iternext
|
|
Quaternion_methods, //tp_methods
|
|
0, //tp_members
|
|
Quaternion_getseters, //tp_getset
|
|
0, //tp_base
|
|
0, //tp_dict
|
|
0, //tp_descr_get
|
|
0, //tp_descr_set
|
|
0, //tp_dictoffset
|
|
0, //tp_init
|
|
0, //tp_alloc
|
|
Quaternion_new, //tp_new
|
|
0, //tp_free
|
|
0, //tp_is_gc
|
|
0, //tp_bases
|
|
0, //tp_mro
|
|
0, //tp_cache
|
|
0, //tp_subclasses
|
|
0, //tp_weaklist
|
|
0 //tp_del
|
|
};
|
|
//------------------------newQuaternionObject (internal)-------------
|
|
//creates a new quaternion object
|
|
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
|
|
(i.e. it was allocated elsewhere by MEM_mallocN())
|
|
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
|
|
(i.e. it must be created here with PyMEM_malloc())*/
|
|
PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type)
|
|
{
|
|
QuaternionObject *self;
|
|
|
|
if(base_type) self = (QuaternionObject *)base_type->tp_alloc(base_type, 0);
|
|
else self = PyObject_NEW(QuaternionObject, &quaternion_Type);
|
|
|
|
/* init callbacks as NULL */
|
|
self->cb_user= NULL;
|
|
self->cb_type= self->cb_subtype= 0;
|
|
|
|
if(type == Py_WRAP){
|
|
self->quat = quat;
|
|
self->wrapped = Py_WRAP;
|
|
}else if (type == Py_NEW){
|
|
self->quat = PyMem_Malloc(4 * sizeof(float));
|
|
if(!quat) { //new empty
|
|
unit_qt(self->quat);
|
|
}else{
|
|
QUATCOPY(self->quat, quat);
|
|
}
|
|
self->wrapped = Py_NEW;
|
|
}else{ //bad type
|
|
return NULL;
|
|
}
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
|
|
{
|
|
QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL);
|
|
if(self) {
|
|
Py_INCREF(cb_user);
|
|
self->cb_user= cb_user;
|
|
self->cb_type= (unsigned char)cb_type;
|
|
self->cb_subtype= (unsigned char)cb_subtype;
|
|
}
|
|
|
|
return (PyObject *)self;
|
|
}
|