1709 lines
51 KiB
C
1709 lines
51 KiB
C
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Contributor(s): Geoffrey Bantle.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/bmesh/intern/bmesh_mesh.c
|
|
* \ingroup bmesh
|
|
*
|
|
* BM mesh level functions.
|
|
*/
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "DNA_listBase.h"
|
|
#include "DNA_object_types.h"
|
|
|
|
#include "BLI_linklist_stack.h"
|
|
#include "BLI_listbase.h"
|
|
#include "BLI_math.h"
|
|
#include "BLI_stack.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BKE_cdderivedmesh.h"
|
|
#include "BKE_editmesh.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_multires.h"
|
|
|
|
#include "intern/bmesh_private.h"
|
|
|
|
/* used as an extern, defined in bmesh.h */
|
|
const BMAllocTemplate bm_mesh_allocsize_default = {512, 1024, 2048, 512};
|
|
const BMAllocTemplate bm_mesh_chunksize_default = {512, 1024, 2048, 512};
|
|
|
|
static void bm_mempool_init(BMesh *bm, const BMAllocTemplate *allocsize)
|
|
{
|
|
bm->vpool = BLI_mempool_create(sizeof(BMVert), allocsize->totvert,
|
|
bm_mesh_chunksize_default.totvert, BLI_MEMPOOL_ALLOW_ITER);
|
|
bm->epool = BLI_mempool_create(sizeof(BMEdge), allocsize->totedge,
|
|
bm_mesh_chunksize_default.totedge, BLI_MEMPOOL_ALLOW_ITER);
|
|
bm->lpool = BLI_mempool_create(sizeof(BMLoop), allocsize->totloop,
|
|
bm_mesh_chunksize_default.totloop, BLI_MEMPOOL_NOP);
|
|
bm->fpool = BLI_mempool_create(sizeof(BMFace), allocsize->totface,
|
|
bm_mesh_chunksize_default.totface, BLI_MEMPOOL_ALLOW_ITER);
|
|
|
|
#ifdef USE_BMESH_HOLES
|
|
bm->looplistpool = BLI_mempool_create(sizeof(BMLoopList), 512, 512, BLI_MEMPOOL_NOP);
|
|
#endif
|
|
}
|
|
|
|
void BM_mesh_elem_toolflags_ensure(BMesh *bm)
|
|
{
|
|
if (bm->vtoolflagpool && bm->etoolflagpool && bm->ftoolflagpool) {
|
|
return;
|
|
}
|
|
|
|
bm->vtoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totvert, 512, BLI_MEMPOOL_NOP);
|
|
bm->etoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totedge, 512, BLI_MEMPOOL_NOP);
|
|
bm->ftoolflagpool = BLI_mempool_create(sizeof(BMFlagLayer), bm->totface, 512, BLI_MEMPOOL_NOP);
|
|
|
|
#pragma omp parallel sections if (bm->totvert + bm->totedge + bm->totface >= BM_OMP_LIMIT)
|
|
{
|
|
#pragma omp section
|
|
{
|
|
BLI_mempool *toolflagpool = bm->vtoolflagpool;
|
|
BMIter iter;
|
|
BMElemF *ele;
|
|
BM_ITER_MESH (ele, &iter, bm, BM_VERTS_OF_MESH) {
|
|
ele->oflags = BLI_mempool_calloc(toolflagpool);
|
|
}
|
|
}
|
|
#pragma omp section
|
|
{
|
|
BLI_mempool *toolflagpool = bm->etoolflagpool;
|
|
BMIter iter;
|
|
BMElemF *ele;
|
|
BM_ITER_MESH (ele, &iter, bm, BM_EDGES_OF_MESH) {
|
|
ele->oflags = BLI_mempool_calloc(toolflagpool);
|
|
}
|
|
}
|
|
#pragma omp section
|
|
{
|
|
BLI_mempool *toolflagpool = bm->ftoolflagpool;
|
|
BMIter iter;
|
|
BMElemF *ele;
|
|
BM_ITER_MESH (ele, &iter, bm, BM_FACES_OF_MESH) {
|
|
ele->oflags = BLI_mempool_calloc(toolflagpool);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bm->totflags = 1;
|
|
}
|
|
|
|
void BM_mesh_elem_toolflags_clear(BMesh *bm)
|
|
{
|
|
if (bm->vtoolflagpool) {
|
|
BLI_mempool_destroy(bm->vtoolflagpool);
|
|
bm->vtoolflagpool = NULL;
|
|
}
|
|
if (bm->etoolflagpool) {
|
|
BLI_mempool_destroy(bm->etoolflagpool);
|
|
bm->etoolflagpool = NULL;
|
|
}
|
|
if (bm->ftoolflagpool) {
|
|
BLI_mempool_destroy(bm->ftoolflagpool);
|
|
bm->ftoolflagpool = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh Make Mesh
|
|
*
|
|
* Allocates a new BMesh structure.
|
|
*
|
|
* \return The New bmesh
|
|
*
|
|
* \note ob is needed by multires
|
|
*/
|
|
BMesh *BM_mesh_create(const BMAllocTemplate *allocsize)
|
|
{
|
|
/* allocate the structure */
|
|
BMesh *bm = MEM_callocN(sizeof(BMesh), __func__);
|
|
|
|
/* allocate the memory pools for the mesh elements */
|
|
bm_mempool_init(bm, allocsize);
|
|
|
|
/* allocate one flag pool that we don't get rid of. */
|
|
bm->stackdepth = 1;
|
|
bm->totflags = 0;
|
|
|
|
CustomData_reset(&bm->vdata);
|
|
CustomData_reset(&bm->edata);
|
|
CustomData_reset(&bm->ldata);
|
|
CustomData_reset(&bm->pdata);
|
|
|
|
return bm;
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh Free Mesh Data
|
|
*
|
|
* Frees a BMesh structure.
|
|
*
|
|
* \note frees mesh, but not actual BMesh struct
|
|
*/
|
|
void BM_mesh_data_free(BMesh *bm)
|
|
{
|
|
BMVert *v;
|
|
BMEdge *e;
|
|
BMLoop *l;
|
|
BMFace *f;
|
|
|
|
BMIter iter;
|
|
BMIter itersub;
|
|
|
|
const bool is_ldata_free = CustomData_bmesh_has_free(&bm->ldata);
|
|
const bool is_pdata_free = CustomData_bmesh_has_free(&bm->pdata);
|
|
|
|
/* Check if we have to call free, if not we can avoid a lot of looping */
|
|
if (CustomData_bmesh_has_free(&(bm->vdata))) {
|
|
BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) {
|
|
CustomData_bmesh_free_block(&(bm->vdata), &(v->head.data));
|
|
}
|
|
}
|
|
if (CustomData_bmesh_has_free(&(bm->edata))) {
|
|
BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) {
|
|
CustomData_bmesh_free_block(&(bm->edata), &(e->head.data));
|
|
}
|
|
}
|
|
|
|
if (is_ldata_free || is_pdata_free) {
|
|
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
|
|
if (is_pdata_free)
|
|
CustomData_bmesh_free_block(&(bm->pdata), &(f->head.data));
|
|
if (is_ldata_free) {
|
|
BM_ITER_ELEM (l, &itersub, f, BM_LOOPS_OF_FACE) {
|
|
CustomData_bmesh_free_block(&(bm->ldata), &(l->head.data));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Free custom data pools, This should probably go in CustomData_free? */
|
|
if (bm->vdata.totlayer) BLI_mempool_destroy(bm->vdata.pool);
|
|
if (bm->edata.totlayer) BLI_mempool_destroy(bm->edata.pool);
|
|
if (bm->ldata.totlayer) BLI_mempool_destroy(bm->ldata.pool);
|
|
if (bm->pdata.totlayer) BLI_mempool_destroy(bm->pdata.pool);
|
|
|
|
/* free custom data */
|
|
CustomData_free(&bm->vdata, 0);
|
|
CustomData_free(&bm->edata, 0);
|
|
CustomData_free(&bm->ldata, 0);
|
|
CustomData_free(&bm->pdata, 0);
|
|
|
|
/* destroy element pools */
|
|
BLI_mempool_destroy(bm->vpool);
|
|
BLI_mempool_destroy(bm->epool);
|
|
BLI_mempool_destroy(bm->lpool);
|
|
BLI_mempool_destroy(bm->fpool);
|
|
|
|
if (bm->vtable) MEM_freeN(bm->vtable);
|
|
if (bm->etable) MEM_freeN(bm->etable);
|
|
if (bm->ftable) MEM_freeN(bm->ftable);
|
|
|
|
/* destroy flag pool */
|
|
BM_mesh_elem_toolflags_clear(bm);
|
|
|
|
#ifdef USE_BMESH_HOLES
|
|
BLI_mempool_destroy(bm->looplistpool);
|
|
#endif
|
|
|
|
BLI_freelistN(&bm->selected);
|
|
|
|
BMO_error_clear(bm);
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh Clear Mesh
|
|
*
|
|
* Clear all data in bm
|
|
*/
|
|
void BM_mesh_clear(BMesh *bm)
|
|
{
|
|
/* free old mesh */
|
|
BM_mesh_data_free(bm);
|
|
memset(bm, 0, sizeof(BMesh));
|
|
|
|
/* allocate the memory pools for the mesh elements */
|
|
bm_mempool_init(bm, &bm_mesh_allocsize_default);
|
|
|
|
bm->stackdepth = 1;
|
|
bm->totflags = 0;
|
|
|
|
CustomData_reset(&bm->vdata);
|
|
CustomData_reset(&bm->edata);
|
|
CustomData_reset(&bm->ldata);
|
|
CustomData_reset(&bm->pdata);
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh Free Mesh
|
|
*
|
|
* Frees a BMesh data and its structure.
|
|
*/
|
|
void BM_mesh_free(BMesh *bm)
|
|
{
|
|
BM_mesh_data_free(bm);
|
|
|
|
if (bm->py_handle) {
|
|
/* keep this out of 'BM_mesh_data_free' because we want python
|
|
* to be able to clear the mesh and maintain access. */
|
|
bpy_bm_generic_invalidate(bm->py_handle);
|
|
bm->py_handle = NULL;
|
|
}
|
|
|
|
MEM_freeN(bm);
|
|
}
|
|
|
|
/**
|
|
* Helpers for #BM_mesh_normals_update and #BM_verts_calc_normal_vcos
|
|
*/
|
|
static void bm_mesh_edges_calc_vectors(BMesh *bm, float (*edgevec)[3], const float (*vcos)[3])
|
|
{
|
|
BMIter eiter;
|
|
BMEdge *e;
|
|
int index;
|
|
|
|
if (vcos) {
|
|
BM_mesh_elem_index_ensure(bm, BM_VERT);
|
|
}
|
|
|
|
BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, index) {
|
|
BM_elem_index_set(e, index); /* set_inline */
|
|
|
|
if (e->l) {
|
|
const float *v1_co = vcos ? vcos[BM_elem_index_get(e->v1)] : e->v1->co;
|
|
const float *v2_co = vcos ? vcos[BM_elem_index_get(e->v2)] : e->v2->co;
|
|
sub_v3_v3v3(edgevec[index], v2_co, v1_co);
|
|
normalize_v3(edgevec[index]);
|
|
}
|
|
else {
|
|
/* the edge vector will not be needed when the edge has no radial */
|
|
}
|
|
}
|
|
bm->elem_index_dirty &= ~BM_EDGE;
|
|
}
|
|
|
|
static void bm_mesh_verts_calc_normals(
|
|
BMesh *bm, const float (*edgevec)[3], const float (*fnos)[3],
|
|
const float (*vcos)[3], float (*vnos)[3])
|
|
{
|
|
BM_mesh_elem_index_ensure(bm, (vnos) ? (BM_EDGE | BM_VERT) : BM_EDGE);
|
|
|
|
/* add weighted face normals to vertices */
|
|
{
|
|
BMIter fiter;
|
|
BMFace *f;
|
|
int i;
|
|
|
|
BM_ITER_MESH_INDEX (f, &fiter, bm, BM_FACES_OF_MESH, i) {
|
|
BMLoop *l_first, *l_iter;
|
|
const float *f_no = fnos ? fnos[i] : f->no;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP(f);
|
|
do {
|
|
const float *e1diff, *e2diff;
|
|
float dotprod;
|
|
float fac;
|
|
float *v_no = vnos ? vnos[BM_elem_index_get(l_iter->v)] : l_iter->v->no;
|
|
|
|
/* calculate the dot product of the two edges that
|
|
* meet at the loop's vertex */
|
|
e1diff = edgevec[BM_elem_index_get(l_iter->prev->e)];
|
|
e2diff = edgevec[BM_elem_index_get(l_iter->e)];
|
|
dotprod = dot_v3v3(e1diff, e2diff);
|
|
|
|
/* edge vectors are calculated from e->v1 to e->v2, so
|
|
* adjust the dot product if one but not both loops
|
|
* actually runs from from e->v2 to e->v1 */
|
|
if ((l_iter->prev->e->v1 == l_iter->prev->v) ^ (l_iter->e->v1 == l_iter->v)) {
|
|
dotprod = -dotprod;
|
|
}
|
|
|
|
fac = saacos(-dotprod);
|
|
|
|
/* accumulate weighted face normal into the vertex's normal */
|
|
madd_v3_v3fl(v_no, f_no, fac);
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
}
|
|
}
|
|
|
|
|
|
/* normalize the accumulated vertex normals */
|
|
{
|
|
BMIter viter;
|
|
BMVert *v;
|
|
int i;
|
|
|
|
BM_ITER_MESH_INDEX (v, &viter, bm, BM_VERTS_OF_MESH, i) {
|
|
float *v_no = vnos ? vnos[i] : v->no;
|
|
if (UNLIKELY(normalize_v3(v_no) == 0.0f)) {
|
|
const float *v_co = vcos ? vcos[i] : v->co;
|
|
normalize_v3_v3(v_no, v_co);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh Compute Normals
|
|
*
|
|
* Updates the normals of a mesh.
|
|
*/
|
|
void BM_mesh_normals_update(BMesh *bm)
|
|
{
|
|
float (*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
|
|
|
|
#pragma omp parallel sections if (bm->totvert + bm->totedge + bm->totface >= BM_OMP_LIMIT)
|
|
{
|
|
#pragma omp section
|
|
{
|
|
/* calculate all face normals */
|
|
BMIter fiter;
|
|
BMFace *f;
|
|
int i;
|
|
|
|
BM_ITER_MESH_INDEX (f, &fiter, bm, BM_FACES_OF_MESH, i) {
|
|
BM_elem_index_set(f, i); /* set_inline */
|
|
BM_face_normal_update(f);
|
|
}
|
|
bm->elem_index_dirty &= ~BM_FACE;
|
|
}
|
|
#pragma omp section
|
|
{
|
|
/* Zero out vertex normals */
|
|
BMIter viter;
|
|
BMVert *v;
|
|
int i;
|
|
|
|
BM_ITER_MESH_INDEX (v, &viter, bm, BM_VERTS_OF_MESH, i) {
|
|
BM_elem_index_set(v, i); /* set_inline */
|
|
zero_v3(v->no);
|
|
}
|
|
bm->elem_index_dirty &= ~BM_VERT;
|
|
}
|
|
#pragma omp section
|
|
{
|
|
/* Compute normalized direction vectors for each edge.
|
|
* Directions will be used for calculating the weights of the face normals on the vertex normals.
|
|
*/
|
|
bm_mesh_edges_calc_vectors(bm, edgevec, NULL);
|
|
}
|
|
}
|
|
/* end omp */
|
|
|
|
/* Add weighted face normals to vertices, and normalize vert normals. */
|
|
bm_mesh_verts_calc_normals(bm, (const float(*)[3])edgevec, NULL, NULL, NULL);
|
|
MEM_freeN(edgevec);
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh Compute Normals from/to external data.
|
|
*
|
|
* Computes the vertex normals of a mesh into vnos, using given vertex coordinates (vcos) and polygon normals (fnos).
|
|
*/
|
|
void BM_verts_calc_normal_vcos(BMesh *bm, const float (*fnos)[3], const float (*vcos)[3], float (*vnos)[3])
|
|
{
|
|
float (*edgevec)[3] = MEM_mallocN(sizeof(*edgevec) * bm->totedge, __func__);
|
|
|
|
/* Compute normalized direction vectors for each edge.
|
|
* Directions will be used for calculating the weights of the face normals on the vertex normals.
|
|
*/
|
|
bm_mesh_edges_calc_vectors(bm, edgevec, vcos);
|
|
|
|
/* Add weighted face normals to vertices, and normalize vert normals. */
|
|
bm_mesh_verts_calc_normals(bm, (const float(*)[3])edgevec, fnos, vcos, vnos);
|
|
MEM_freeN(edgevec);
|
|
}
|
|
|
|
/**
|
|
* Helpers for #BM_mesh_loop_normals_update and #BM_loops_calc_normals_vnos
|
|
*/
|
|
static void bm_mesh_edges_sharp_tag(
|
|
BMesh *bm, const float (*vnos)[3], const float (*fnos)[3], float split_angle,
|
|
float (*r_lnos)[3])
|
|
{
|
|
BMIter eiter, viter;
|
|
BMVert *v;
|
|
BMEdge *e;
|
|
int i;
|
|
|
|
const bool check_angle = (split_angle < (float)M_PI);
|
|
|
|
if (check_angle) {
|
|
split_angle = cosf(split_angle);
|
|
}
|
|
|
|
{
|
|
char htype = BM_LOOP;
|
|
if (fnos) {
|
|
htype |= BM_FACE;
|
|
}
|
|
BM_mesh_elem_index_ensure(bm, htype);
|
|
}
|
|
|
|
/* Clear all vertices' tags (means they are all smooth for now). */
|
|
BM_ITER_MESH_INDEX (v, &viter, bm, BM_VERTS_OF_MESH, i) {
|
|
BM_elem_index_set(v, i); /* set_inline */
|
|
BM_elem_flag_disable(v, BM_ELEM_TAG);
|
|
}
|
|
|
|
/* This first loop checks which edges are actually smooth, and pre-populate lnos with vnos (as if they were
|
|
* all smooth).
|
|
*/
|
|
BM_ITER_MESH_INDEX (e, &eiter, bm, BM_EDGES_OF_MESH, i) {
|
|
BMLoop *l_a, *l_b;
|
|
|
|
BM_elem_index_set(e, i); /* set_inline */
|
|
BM_elem_flag_disable(e, BM_ELEM_TAG); /* Clear tag (means edge is sharp). */
|
|
|
|
/* An edge with only two loops, might be smooth... */
|
|
if (BM_edge_loop_pair(e, &l_a, &l_b)) {
|
|
bool is_angle_smooth = true;
|
|
if (check_angle) {
|
|
const float *no_a = fnos ? fnos[BM_elem_index_get(l_a->f)] : l_a->f->no;
|
|
const float *no_b = fnos ? fnos[BM_elem_index_get(l_b->f)] : l_b->f->no;
|
|
is_angle_smooth = (dot_v3v3(no_a, no_b) >= split_angle);
|
|
}
|
|
|
|
/* We only tag edges that are *really* smooth:
|
|
* If the angle between both its polys' normals is below split_angle value,
|
|
* and it is tagged as such,
|
|
* and both its faces are smooth,
|
|
* and both its faces have compatible (non-flipped) normals,
|
|
* i.e. both loops on the same edge do not share the same vertex.
|
|
*/
|
|
if (is_angle_smooth &&
|
|
BM_elem_flag_test(e, BM_ELEM_SMOOTH) &&
|
|
BM_elem_flag_test(l_a->f, BM_ELEM_SMOOTH) &&
|
|
BM_elem_flag_test(l_b->f, BM_ELEM_SMOOTH) &&
|
|
l_a->v != l_b->v)
|
|
{
|
|
const float *no;
|
|
BM_elem_flag_enable(e, BM_ELEM_TAG);
|
|
|
|
/* linked vertices might be fully smooth, copy their normals to loop ones. */
|
|
no = vnos ? vnos[BM_elem_index_get(l_a->v)] : l_a->v->no;
|
|
copy_v3_v3(r_lnos[BM_elem_index_get(l_a)], no);
|
|
no = vnos ? vnos[BM_elem_index_get(l_b->v)] : l_b->v->no;
|
|
copy_v3_v3(r_lnos[BM_elem_index_get(l_b)], no);
|
|
}
|
|
else {
|
|
/* Sharp edge, tag its verts as such. */
|
|
BM_elem_flag_enable(e->v1, BM_ELEM_TAG);
|
|
BM_elem_flag_enable(e->v2, BM_ELEM_TAG);
|
|
}
|
|
}
|
|
else {
|
|
/* Sharp edge, tag its verts as such. */
|
|
BM_elem_flag_enable(e->v1, BM_ELEM_TAG);
|
|
BM_elem_flag_enable(e->v2, BM_ELEM_TAG);
|
|
}
|
|
}
|
|
|
|
bm->elem_index_dirty &= ~(BM_EDGE | BM_VERT);
|
|
}
|
|
|
|
/* BMesh version of BKE_mesh_normals_loop_split() in mesh_evaluate.c
|
|
* Will use first clnors_data array, and fallback to cd_loop_clnors_offset (use NULL and -1 to not use clnors). */
|
|
static void bm_mesh_loops_calc_normals(
|
|
BMesh *bm, const float (*vcos)[3], const float (*fnos)[3], float (*r_lnos)[3],
|
|
MLoopNorSpaceArray *r_lnors_spacearr, short (*clnors_data)[2], const int cd_loop_clnors_offset)
|
|
{
|
|
BMIter fiter;
|
|
BMFace *f_curr;
|
|
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
|
|
|
|
MLoopNorSpaceArray _lnors_spacearr = {NULL};
|
|
|
|
/* Temp normal stack. */
|
|
BLI_SMALLSTACK_DECLARE(normal, float *);
|
|
/* Temp clnors stack. */
|
|
BLI_SMALLSTACK_DECLARE(clnors, short *);
|
|
/* Temp edge vectors stack, only used when computing lnor spacearr. */
|
|
BLI_Stack *edge_vectors = NULL;
|
|
|
|
{
|
|
char htype = BM_LOOP;
|
|
if (vcos) {
|
|
htype |= BM_VERT;
|
|
}
|
|
if (fnos) {
|
|
htype |= BM_FACE;
|
|
}
|
|
BM_mesh_elem_index_ensure(bm, htype);
|
|
}
|
|
|
|
if (!r_lnors_spacearr && has_clnors) {
|
|
/* We need to compute lnor spacearr if some custom lnor data are given to us! */
|
|
r_lnors_spacearr = &_lnors_spacearr;
|
|
}
|
|
if (r_lnors_spacearr) {
|
|
BKE_lnor_spacearr_init(r_lnors_spacearr, bm->totloop);
|
|
edge_vectors = BLI_stack_new(sizeof(float[3]), __func__);
|
|
}
|
|
|
|
/* We now know edges that can be smoothed (they are tagged), and edges that will be hard (they aren't).
|
|
* Now, time to generate the normals.
|
|
*/
|
|
BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
|
|
BMLoop *l_curr, *l_first;
|
|
|
|
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
|
|
do {
|
|
if (BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
|
|
(!r_lnors_spacearr || BM_elem_flag_test(l_curr->v, BM_ELEM_TAG)))
|
|
{
|
|
/* A smooth edge, and we are not generating lnors_spacearr, or the related vertex is sharp.
|
|
* We skip it because it is either:
|
|
* - in the middle of a 'smooth fan' already computed (or that will be as soon as we hit
|
|
* one of its ends, i.e. one of its two sharp edges), or...
|
|
* - the related vertex is a "full smooth" one, in which case pre-populated normals from vertex
|
|
* are just fine!
|
|
*/
|
|
}
|
|
else if (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) &&
|
|
!BM_elem_flag_test(l_curr->prev->e, BM_ELEM_TAG))
|
|
{
|
|
/* Simple case (both edges around that vertex are sharp in related polygon),
|
|
* this vertex just takes its poly normal.
|
|
*/
|
|
const int l_curr_index = BM_elem_index_get(l_curr);
|
|
const float *no = fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no;
|
|
copy_v3_v3(r_lnos[l_curr_index], no);
|
|
|
|
/* If needed, generate this (simple!) lnor space. */
|
|
if (r_lnors_spacearr) {
|
|
float vec_curr[3], vec_prev[3];
|
|
MLoopNorSpace *lnor_space = BKE_lnor_space_create(r_lnors_spacearr);
|
|
|
|
{
|
|
const BMVert *v_pivot = l_curr->v;
|
|
const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
|
|
const BMVert *v_1 = BM_edge_other_vert(l_curr->e, v_pivot);
|
|
const float *co_1 = vcos ? vcos[BM_elem_index_get(v_1)] : v_1->co;
|
|
const BMVert *v_2 = BM_edge_other_vert(l_curr->prev->e, v_pivot);
|
|
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
|
|
|
|
sub_v3_v3v3(vec_curr, co_1, co_pivot);
|
|
normalize_v3(vec_curr);
|
|
sub_v3_v3v3(vec_prev, co_2, co_pivot);
|
|
normalize_v3(vec_prev);
|
|
}
|
|
|
|
BKE_lnor_space_define(lnor_space, r_lnos[l_curr_index], vec_curr, vec_prev, NULL);
|
|
/* We know there is only one loop in this space, no need to create a linklist in this case... */
|
|
BKE_lnor_space_add_loop(r_lnors_spacearr, lnor_space, l_curr_index, false);
|
|
|
|
if (has_clnors) {
|
|
short (*clnor)[2] = clnors_data ? &clnors_data[l_curr_index] :
|
|
BM_ELEM_CD_GET_VOID_P(l_curr, cd_loop_clnors_offset);
|
|
BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor, r_lnos[l_curr_index]);
|
|
}
|
|
}
|
|
}
|
|
/* We *do not need* to check/tag loops as already computed!
|
|
* Due to the fact a loop only links to one of its two edges, a same fan *will never be walked more than
|
|
* once!*
|
|
* Since we consider edges having neighbor faces with inverted (flipped) normals as sharp, we are sure that
|
|
* no fan will be skipped, even only considering the case (sharp curr_edge, smooth prev_edge), and not the
|
|
* alternative (smooth curr_edge, sharp prev_edge).
|
|
* All this due/thanks to link between normals and loop ordering.
|
|
*/
|
|
else {
|
|
/* We have to fan around current vertex, until we find the other non-smooth edge,
|
|
* and accumulate face normals into the vertex!
|
|
* Note in case this vertex has only one sharp edge, this is a waste because the normal is the same as
|
|
* the vertex normal, but I do not see any easy way to detect that (would need to count number
|
|
* of sharp edges per vertex, I doubt the additional memory usage would be worth it, especially as
|
|
* it should not be a common case in real-life meshes anyway).
|
|
*/
|
|
BMVert *v_pivot = l_curr->v;
|
|
BMEdge *e_next;
|
|
const BMEdge *e_org = l_curr->e;
|
|
BMLoop *lfan_pivot, *lfan_pivot_next;
|
|
int lfan_pivot_index;
|
|
float lnor[3] = {0.0f, 0.0f, 0.0f};
|
|
float vec_curr[3], vec_next[3], vec_org[3];
|
|
|
|
/* We validate clnors data on the fly - cheapest way to do! */
|
|
int clnors_avg[2] = {0, 0};
|
|
short (*clnor_ref)[2] = NULL;
|
|
int clnors_nbr = 0;
|
|
bool clnors_invalid = false;
|
|
|
|
const float *co_pivot = vcos ? vcos[BM_elem_index_get(v_pivot)] : v_pivot->co;
|
|
|
|
MLoopNorSpace *lnor_space = r_lnors_spacearr ? BKE_lnor_space_create(r_lnors_spacearr) : NULL;
|
|
|
|
BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors));
|
|
|
|
lfan_pivot = l_curr;
|
|
lfan_pivot_index = BM_elem_index_get(lfan_pivot);
|
|
e_next = lfan_pivot->e; /* Current edge here, actually! */
|
|
|
|
/* Only need to compute previous edge's vector once, then we can just reuse old current one! */
|
|
{
|
|
const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
|
|
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
|
|
|
|
sub_v3_v3v3(vec_org, co_2, co_pivot);
|
|
normalize_v3(vec_org);
|
|
copy_v3_v3(vec_curr, vec_org);
|
|
|
|
if (r_lnors_spacearr) {
|
|
BLI_stack_push(edge_vectors, vec_org);
|
|
}
|
|
}
|
|
|
|
while (true) {
|
|
/* Much simpler than in sibling code with basic Mesh data! */
|
|
lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot, &e_next);
|
|
if (lfan_pivot_next) {
|
|
BLI_assert(lfan_pivot_next->v == v_pivot);
|
|
}
|
|
else {
|
|
/* next edge is non-manifold, we have to find it ourselves! */
|
|
e_next = (lfan_pivot->e == e_next) ? lfan_pivot->prev->e : lfan_pivot->e;
|
|
}
|
|
|
|
/* Compute edge vector.
|
|
* NOTE: We could pre-compute those into an array, in the first iteration, instead of computing them
|
|
* twice (or more) here. However, time gained is not worth memory and time lost,
|
|
* given the fact that this code should not be called that much in real-life meshes...
|
|
*/
|
|
{
|
|
const BMVert *v_2 = BM_edge_other_vert(e_next, v_pivot);
|
|
const float *co_2 = vcos ? vcos[BM_elem_index_get(v_2)] : v_2->co;
|
|
|
|
sub_v3_v3v3(vec_next, co_2, co_pivot);
|
|
normalize_v3(vec_next);
|
|
}
|
|
|
|
{
|
|
/* Code similar to accumulate_vertex_normals_poly. */
|
|
/* Calculate angle between the two poly edges incident on this vertex. */
|
|
const BMFace *f = lfan_pivot->f;
|
|
const float fac = saacos(dot_v3v3(vec_next, vec_curr));
|
|
const float *no = fnos ? fnos[BM_elem_index_get(f)] : f->no;
|
|
/* Accumulate */
|
|
madd_v3_v3fl(lnor, no, fac);
|
|
|
|
if (has_clnors) {
|
|
/* Accumulate all clnors, if they are not all equal we have to fix that! */
|
|
short (*clnor)[2] = clnors_data ? &clnors_data[lfan_pivot_index] :
|
|
BM_ELEM_CD_GET_VOID_P(lfan_pivot, cd_loop_clnors_offset);
|
|
if (clnors_nbr) {
|
|
clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] || (*clnor_ref)[1] != (*clnor)[1]);
|
|
}
|
|
else {
|
|
clnor_ref = clnor;
|
|
}
|
|
clnors_avg[0] += (*clnor)[0];
|
|
clnors_avg[1] += (*clnor)[1];
|
|
clnors_nbr++;
|
|
/* We store here a pointer to all custom lnors processed. */
|
|
BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor);
|
|
}
|
|
}
|
|
|
|
/* We store here a pointer to all loop-normals processed. */
|
|
BLI_SMALLSTACK_PUSH(normal, (float *)r_lnos[lfan_pivot_index]);
|
|
|
|
if (r_lnors_spacearr) {
|
|
/* Assign current lnor space to current 'vertex' loop. */
|
|
BKE_lnor_space_add_loop(r_lnors_spacearr, lnor_space, lfan_pivot_index, true);
|
|
if (e_next != e_org) {
|
|
/* We store here all edges-normalized vectors processed. */
|
|
BLI_stack_push(edge_vectors, vec_next);
|
|
}
|
|
}
|
|
|
|
if (!BM_elem_flag_test(e_next, BM_ELEM_TAG) || (e_next == e_org)) {
|
|
/* Next edge is sharp, we have finished with this fan of faces around this vert! */
|
|
break;
|
|
}
|
|
|
|
/* Copy next edge vector to current one. */
|
|
copy_v3_v3(vec_curr, vec_next);
|
|
/* Next pivot loop to current one. */
|
|
lfan_pivot = lfan_pivot_next;
|
|
lfan_pivot_index = BM_elem_index_get(lfan_pivot);
|
|
}
|
|
|
|
{
|
|
float lnor_len = normalize_v3(lnor);
|
|
|
|
/* If we are generating lnor spacearr, we can now define the one for this fan. */
|
|
if (r_lnors_spacearr) {
|
|
if (UNLIKELY(lnor_len == 0.0f)) {
|
|
/* Use vertex normal as fallback! */
|
|
copy_v3_v3(lnor, r_lnos[lfan_pivot_index]);
|
|
lnor_len = 1.0f;
|
|
}
|
|
|
|
BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_next, edge_vectors);
|
|
|
|
if (has_clnors) {
|
|
if (clnors_invalid) {
|
|
short *clnor;
|
|
|
|
clnors_avg[0] /= clnors_nbr;
|
|
clnors_avg[1] /= clnors_nbr;
|
|
/* Fix/update all clnors of this fan with computed average value. */
|
|
printf("Invalid clnors in this fan!\n");
|
|
while ((clnor = BLI_SMALLSTACK_POP(clnors))) {
|
|
//print_v2("org clnor", clnor);
|
|
clnor[0] = (short)clnors_avg[0];
|
|
clnor[1] = (short)clnors_avg[1];
|
|
}
|
|
//print_v2("new clnors", clnors_avg);
|
|
}
|
|
else {
|
|
/* We still have to consume the stack! */
|
|
while (BLI_SMALLSTACK_POP(clnors));
|
|
}
|
|
BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor);
|
|
}
|
|
}
|
|
|
|
/* In case we get a zero normal here, just use vertex normal already set! */
|
|
if (LIKELY(lnor_len != 0.0f)) {
|
|
/* Copy back the final computed normal into all related loop-normals. */
|
|
float *nor;
|
|
|
|
while ((nor = BLI_SMALLSTACK_POP(normal))) {
|
|
copy_v3_v3(nor, lnor);
|
|
}
|
|
}
|
|
else {
|
|
/* We still have to consume the stack! */
|
|
while (BLI_SMALLSTACK_POP(normal));
|
|
}
|
|
}
|
|
|
|
/* Tag related vertex as sharp, to avoid fanning around it again (in case it was a smooth one). */
|
|
if (r_lnors_spacearr) {
|
|
BM_elem_flag_enable(l_curr->v, BM_ELEM_TAG);
|
|
}
|
|
}
|
|
} while ((l_curr = l_curr->next) != l_first);
|
|
}
|
|
|
|
if (r_lnors_spacearr) {
|
|
BLI_stack_free(edge_vectors);
|
|
if (r_lnors_spacearr == &_lnors_spacearr) {
|
|
BKE_lnor_spacearr_free(r_lnors_spacearr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void bm_mesh_loops_calc_normals_no_autosmooth(
|
|
BMesh *bm, const float (*vnos)[3], const float (*fnos)[3], float (*r_lnos)[3])
|
|
{
|
|
BMIter fiter;
|
|
BMFace *f_curr;
|
|
|
|
{
|
|
char htype = BM_LOOP;
|
|
if (vnos) {
|
|
htype |= BM_VERT;
|
|
}
|
|
if (fnos) {
|
|
htype |= BM_FACE;
|
|
}
|
|
BM_mesh_elem_index_ensure(bm, htype);
|
|
}
|
|
|
|
BM_ITER_MESH (f_curr, &fiter, bm, BM_FACES_OF_MESH) {
|
|
BMLoop *l_curr, *l_first;
|
|
const bool is_face_flat = !BM_elem_flag_test(f_curr, BM_ELEM_SMOOTH);
|
|
|
|
l_curr = l_first = BM_FACE_FIRST_LOOP(f_curr);
|
|
do {
|
|
const float *no = is_face_flat ? (fnos ? fnos[BM_elem_index_get(f_curr)] : f_curr->no) :
|
|
(vnos ? vnos[BM_elem_index_get(l_curr->v)] : l_curr->v->no);
|
|
copy_v3_v3(r_lnos[BM_elem_index_get(l_curr)], no);
|
|
|
|
} while ((l_curr = l_curr->next) != l_first);
|
|
}
|
|
}
|
|
|
|
#if 0 /* Unused currently */
|
|
/**
|
|
* \brief BMesh Compute Loop Normals
|
|
*
|
|
* Updates the loop normals of a mesh. Assumes vertex and face normals are valid (else call BM_mesh_normals_update()
|
|
* first)!
|
|
*/
|
|
void BM_mesh_loop_normals_update(
|
|
BMesh *bm, const bool use_split_normals, const float split_angle, float (*r_lnos)[3],
|
|
MLoopNorSpaceArray *r_lnors_spacearr, short (*clnors_data)[2], const int cd_loop_clnors_offset)
|
|
{
|
|
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
|
|
|
|
if (use_split_normals) {
|
|
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
|
|
* When using custom loop normals, disable the angle feature! */
|
|
bm_mesh_edges_sharp_tag(bm, NULL, NULL, has_clnors ? (float)M_PI : split_angle, r_lnos);
|
|
|
|
/* Finish computing lnos by accumulating face normals in each fan of faces defined by sharp edges. */
|
|
bm_mesh_loops_calc_normals(bm, NULL, NULL, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset);
|
|
}
|
|
else {
|
|
BLI_assert(!r_lnors_spacearr);
|
|
bm_mesh_loops_calc_normals_no_autosmooth(bm, NULL, NULL, r_lnos);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* \brief BMesh Compute Loop Normals from/to external data.
|
|
*
|
|
* Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
|
|
* Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry (splitting edges).
|
|
*/
|
|
void BM_loops_calc_normal_vcos(
|
|
BMesh *bm, const float (*vcos)[3], const float (*vnos)[3], const float (*fnos)[3],
|
|
const bool use_split_normals, const float split_angle, float (*r_lnos)[3],
|
|
MLoopNorSpaceArray *r_lnors_spacearr, short (*clnors_data)[2], const int cd_loop_clnors_offset)
|
|
{
|
|
const bool has_clnors = clnors_data || (cd_loop_clnors_offset != -1);
|
|
|
|
if (use_split_normals) {
|
|
/* Tag smooth edges and set lnos from vnos when they might be completely smooth...
|
|
* When using custom loop normals, disable the angle feature! */
|
|
bm_mesh_edges_sharp_tag(bm, vnos, fnos, has_clnors ? (float)M_PI : split_angle, r_lnos);
|
|
|
|
/* Finish computing lnos by accumulating face normals in each fan of faces defined by sharp edges. */
|
|
bm_mesh_loops_calc_normals(bm, vcos, fnos, r_lnos, r_lnors_spacearr, clnors_data, cd_loop_clnors_offset);
|
|
}
|
|
else {
|
|
BLI_assert(!r_lnors_spacearr);
|
|
bm_mesh_loops_calc_normals_no_autosmooth(bm, vnos, fnos, r_lnos);
|
|
}
|
|
}
|
|
|
|
static void UNUSED_FUNCTION(bm_mdisps_space_set)(Object *ob, BMesh *bm, int from, int to)
|
|
{
|
|
/* switch multires data out of tangent space */
|
|
if (CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
|
|
BMEditMesh *em = BKE_editmesh_create(bm, false);
|
|
DerivedMesh *dm = CDDM_from_editbmesh(em, true, false);
|
|
MDisps *mdisps;
|
|
BMFace *f;
|
|
BMIter iter;
|
|
// int i = 0; // UNUSED
|
|
|
|
multires_set_space(dm, ob, from, to);
|
|
|
|
mdisps = CustomData_get_layer(&dm->loopData, CD_MDISPS);
|
|
|
|
BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) {
|
|
BMLoop *l;
|
|
BMIter liter;
|
|
BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) {
|
|
MDisps *lmd = CustomData_bmesh_get(&bm->ldata, l->head.data, CD_MDISPS);
|
|
|
|
if (!lmd->disps) {
|
|
printf("%s: warning - 'lmd->disps' == NULL\n", __func__);
|
|
}
|
|
|
|
if (lmd->disps && lmd->totdisp == mdisps->totdisp) {
|
|
memcpy(lmd->disps, mdisps->disps, sizeof(float) * 3 * lmd->totdisp);
|
|
}
|
|
else if (mdisps->disps) {
|
|
if (lmd->disps)
|
|
MEM_freeN(lmd->disps);
|
|
|
|
lmd->disps = MEM_dupallocN(mdisps->disps);
|
|
lmd->totdisp = mdisps->totdisp;
|
|
lmd->level = mdisps->level;
|
|
}
|
|
|
|
mdisps++;
|
|
// i += 1;
|
|
}
|
|
}
|
|
|
|
dm->needsFree = 1;
|
|
dm->release(dm);
|
|
|
|
/* setting this to NULL prevents BKE_editmesh_free from freeing it */
|
|
em->bm = NULL;
|
|
BKE_editmesh_free(em);
|
|
MEM_freeN(em);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh Begin Edit
|
|
*
|
|
* Functions for setting up a mesh for editing and cleaning up after
|
|
* the editing operations are done. These are called by the tools/operator
|
|
* API for each time a tool is executed.
|
|
*/
|
|
void bmesh_edit_begin(BMesh *UNUSED(bm), BMOpTypeFlag UNUSED(type_flag))
|
|
{
|
|
/* Most operators seem to be using BMO_OPTYPE_FLAG_UNTAN_MULTIRES to change the MDisps to
|
|
* absolute space during mesh edits. With this enabled, changes to the topology
|
|
* (loop cuts, edge subdivides, etc) are not reflected in the higher levels of
|
|
* the mesh at all, which doesn't seem right. Turning off completely for now,
|
|
* until this is shown to be better for certain types of mesh edits. */
|
|
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
|
|
/* switch multires data out of tangent space */
|
|
if ((type_flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) && CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
|
|
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_TANGENT, MULTIRES_SPACE_ABSOLUTE);
|
|
|
|
/* ensure correct normals, if possible */
|
|
bmesh_rationalize_normals(bm, 0);
|
|
BM_mesh_normals_update(bm);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* \brief BMesh End Edit
|
|
*/
|
|
void bmesh_edit_end(BMesh *bm, BMOpTypeFlag type_flag)
|
|
{
|
|
ListBase select_history;
|
|
|
|
/* BMO_OPTYPE_FLAG_UNTAN_MULTIRES disabled for now, see comment above in bmesh_edit_begin. */
|
|
#ifdef BMOP_UNTAN_MULTIRES_ENABLED
|
|
/* switch multires data into tangent space */
|
|
if ((flag & BMO_OPTYPE_FLAG_UNTAN_MULTIRES) && CustomData_has_layer(&bm->ldata, CD_MDISPS)) {
|
|
/* set normals to their previous winding */
|
|
bmesh_rationalize_normals(bm, 1);
|
|
bmesh_mdisps_space_set(bm, MULTIRES_SPACE_ABSOLUTE, MULTIRES_SPACE_TANGENT);
|
|
}
|
|
else if (flag & BMO_OP_FLAG_RATIONALIZE_NORMALS) {
|
|
bmesh_rationalize_normals(bm, 1);
|
|
}
|
|
#endif
|
|
|
|
/* compute normals, clear temp flags and flush selections */
|
|
if (type_flag & BMO_OPTYPE_FLAG_NORMALS_CALC) {
|
|
BM_mesh_normals_update(bm);
|
|
}
|
|
|
|
|
|
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
|
|
select_history = bm->selected;
|
|
BLI_listbase_clear(&bm->selected);
|
|
}
|
|
|
|
if (type_flag & BMO_OPTYPE_FLAG_SELECT_FLUSH) {
|
|
BM_mesh_select_mode_flush(bm);
|
|
}
|
|
|
|
if ((type_flag & BMO_OPTYPE_FLAG_SELECT_VALIDATE) == 0) {
|
|
bm->selected = select_history;
|
|
}
|
|
}
|
|
|
|
void BM_mesh_elem_index_ensure(BMesh *bm, const char htype)
|
|
{
|
|
const char htype_needed = bm->elem_index_dirty & htype;
|
|
|
|
#ifdef DEBUG
|
|
BM_ELEM_INDEX_VALIDATE(bm, "Should Never Fail!", __func__);
|
|
#endif
|
|
|
|
if (htype_needed == 0) {
|
|
goto finally;
|
|
}
|
|
|
|
/* skip if we only need to operate on one element */
|
|
#pragma omp parallel sections if ((!ELEM(htype_needed, BM_VERT, BM_EDGE, BM_FACE, BM_LOOP, BM_FACE | BM_LOOP)) && \
|
|
(bm->totvert + bm->totedge + bm->totface >= BM_OMP_LIMIT))
|
|
{
|
|
#pragma omp section
|
|
|
|
{
|
|
if (htype & BM_VERT) {
|
|
if (bm->elem_index_dirty & BM_VERT) {
|
|
BMIter iter;
|
|
BMElem *ele;
|
|
|
|
int index;
|
|
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_VERTS_OF_MESH, index) {
|
|
BM_elem_index_set(ele, index); /* set_ok */
|
|
}
|
|
BLI_assert(index == bm->totvert);
|
|
}
|
|
else {
|
|
// printf("%s: skipping vert index calc!\n", __func__);
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
if (htype & BM_EDGE) {
|
|
if (bm->elem_index_dirty & BM_EDGE) {
|
|
BMIter iter;
|
|
BMElem *ele;
|
|
|
|
int index;
|
|
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_EDGES_OF_MESH, index) {
|
|
BM_elem_index_set(ele, index); /* set_ok */
|
|
}
|
|
BLI_assert(index == bm->totedge);
|
|
}
|
|
else {
|
|
// printf("%s: skipping edge index calc!\n", __func__);
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma omp section
|
|
{
|
|
if (htype & (BM_FACE | BM_LOOP)) {
|
|
if (bm->elem_index_dirty & (BM_FACE | BM_LOOP)) {
|
|
BMIter iter;
|
|
BMElem *ele;
|
|
|
|
const bool update_face = (htype & BM_FACE) && (bm->elem_index_dirty & BM_FACE);
|
|
const bool update_loop = (htype & BM_LOOP) && (bm->elem_index_dirty & BM_LOOP);
|
|
|
|
int index;
|
|
int index_loop = 0;
|
|
|
|
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_FACES_OF_MESH, index) {
|
|
if (update_face) {
|
|
BM_elem_index_set(ele, index); /* set_ok */
|
|
}
|
|
|
|
if (update_loop) {
|
|
BMLoop *l_iter, *l_first;
|
|
|
|
l_iter = l_first = BM_FACE_FIRST_LOOP((BMFace *)ele);
|
|
do {
|
|
BM_elem_index_set(l_iter, index_loop++); /* set_ok */
|
|
} while ((l_iter = l_iter->next) != l_first);
|
|
}
|
|
}
|
|
|
|
BLI_assert(index == bm->totface);
|
|
if (update_loop) {
|
|
BLI_assert(index_loop == bm->totloop);
|
|
}
|
|
}
|
|
else {
|
|
// printf("%s: skipping face/loop index calc!\n", __func__);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
finally:
|
|
bm->elem_index_dirty &= ~htype;
|
|
}
|
|
|
|
|
|
/**
|
|
* Array checking/setting macros
|
|
*
|
|
* Currently vert/edge/loop/face index data is being abused, in a few areas of the code.
|
|
*
|
|
* To avoid correcting them afterwards, set 'bm->elem_index_dirty' however its possible
|
|
* this flag is set incorrectly which could crash blender.
|
|
*
|
|
* These functions ensure its correct and are called more often in debug mode.
|
|
*/
|
|
|
|
void BM_mesh_elem_index_validate(
|
|
BMesh *bm, const char *location, const char *func,
|
|
const char *msg_a, const char *msg_b)
|
|
{
|
|
const char iter_types[3] = {BM_VERTS_OF_MESH,
|
|
BM_EDGES_OF_MESH,
|
|
BM_FACES_OF_MESH};
|
|
|
|
const char flag_types[3] = {BM_VERT, BM_EDGE, BM_FACE};
|
|
const char *type_names[3] = {"vert", "edge", "face"};
|
|
|
|
BMIter iter;
|
|
BMElem *ele;
|
|
int i;
|
|
bool is_any_error = 0;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
const bool is_dirty = (flag_types[i] & bm->elem_index_dirty) != 0;
|
|
int index = 0;
|
|
bool is_error = false;
|
|
int err_val = 0;
|
|
int err_idx = 0;
|
|
|
|
BM_ITER_MESH (ele, &iter, bm, iter_types[i]) {
|
|
if (!is_dirty) {
|
|
if (BM_elem_index_get(ele) != index) {
|
|
err_val = BM_elem_index_get(ele);
|
|
err_idx = index;
|
|
is_error = true;
|
|
}
|
|
}
|
|
|
|
BM_elem_index_set(ele, index); /* set_ok */
|
|
index++;
|
|
}
|
|
|
|
if ((is_error == true) && (is_dirty == false)) {
|
|
is_any_error = true;
|
|
fprintf(stderr,
|
|
"Invalid Index: at %s, %s, %s[%d] invalid index %d, '%s', '%s'\n",
|
|
location, func, type_names[i], err_idx, err_val, msg_a, msg_b);
|
|
}
|
|
else if ((is_error == false) && (is_dirty == true)) {
|
|
|
|
#if 0 /* mostly annoying */
|
|
|
|
/* dirty may have been incorrectly set */
|
|
fprintf(stderr,
|
|
"Invalid Dirty: at %s, %s (%s), dirty flag was set but all index values are correct, '%s', '%s'\n",
|
|
location, func, type_names[i], msg_a, msg_b);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if 0 /* mostly annoying, even in debug mode */
|
|
#ifdef DEBUG
|
|
if (is_any_error == 0) {
|
|
fprintf(stderr,
|
|
"Valid Index Success: at %s, %s, '%s', '%s'\n",
|
|
location, func, msg_a, msg_b);
|
|
}
|
|
#endif
|
|
#endif
|
|
(void) is_any_error; /* shut up the compiler */
|
|
|
|
}
|
|
|
|
/* debug check only - no need to optimize */
|
|
#ifndef NDEBUG
|
|
bool BM_mesh_elem_table_check(BMesh *bm)
|
|
{
|
|
BMIter iter;
|
|
BMElem *ele;
|
|
int i;
|
|
|
|
if (bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) {
|
|
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_VERTS_OF_MESH, i) {
|
|
if (ele != (BMElem *)bm->vtable[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) {
|
|
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_EDGES_OF_MESH, i) {
|
|
if (ele != (BMElem *)bm->etable[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) {
|
|
BM_ITER_MESH_INDEX (ele, &iter, bm, BM_FACES_OF_MESH, i) {
|
|
if (ele != (BMElem *)bm->ftable[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
void BM_mesh_elem_table_ensure(BMesh *bm, const char htype)
|
|
{
|
|
/* assume if the array is non-null then its valid and no need to recalc */
|
|
const char htype_needed = (((bm->vtable && ((bm->elem_table_dirty & BM_VERT) == 0)) ? 0 : BM_VERT) |
|
|
((bm->etable && ((bm->elem_table_dirty & BM_EDGE) == 0)) ? 0 : BM_EDGE) |
|
|
((bm->ftable && ((bm->elem_table_dirty & BM_FACE) == 0)) ? 0 : BM_FACE)) & htype;
|
|
|
|
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
|
|
|
|
/* in debug mode double check we didn't need to recalculate */
|
|
BLI_assert(BM_mesh_elem_table_check(bm) == true);
|
|
|
|
if (htype_needed == 0) {
|
|
goto finally;
|
|
}
|
|
|
|
if (htype_needed & BM_VERT) {
|
|
if (bm->vtable && bm->totvert <= bm->vtable_tot && bm->totvert * 2 >= bm->vtable_tot) {
|
|
/* pass (re-use the array) */
|
|
}
|
|
else {
|
|
if (bm->vtable)
|
|
MEM_freeN(bm->vtable);
|
|
bm->vtable = MEM_mallocN(sizeof(void **) * bm->totvert, "bm->vtable");
|
|
bm->vtable_tot = bm->totvert;
|
|
}
|
|
}
|
|
if (htype_needed & BM_EDGE) {
|
|
if (bm->etable && bm->totedge <= bm->etable_tot && bm->totedge * 2 >= bm->etable_tot) {
|
|
/* pass (re-use the array) */
|
|
}
|
|
else {
|
|
if (bm->etable)
|
|
MEM_freeN(bm->etable);
|
|
bm->etable = MEM_mallocN(sizeof(void **) * bm->totedge, "bm->etable");
|
|
bm->etable_tot = bm->totedge;
|
|
}
|
|
}
|
|
if (htype_needed & BM_FACE) {
|
|
if (bm->ftable && bm->totface <= bm->ftable_tot && bm->totface * 2 >= bm->ftable_tot) {
|
|
/* pass (re-use the array) */
|
|
}
|
|
else {
|
|
if (bm->ftable)
|
|
MEM_freeN(bm->ftable);
|
|
bm->ftable = MEM_mallocN(sizeof(void **) * bm->totface, "bm->ftable");
|
|
bm->ftable_tot = bm->totface;
|
|
}
|
|
}
|
|
|
|
/* skip if we only need to operate on one element */
|
|
#pragma omp parallel sections if ((!ELEM(htype_needed, BM_VERT, BM_EDGE, BM_FACE)) && \
|
|
(bm->totvert + bm->totedge + bm->totface >= BM_OMP_LIMIT))
|
|
{
|
|
#pragma omp section
|
|
{
|
|
if (htype_needed & BM_VERT) {
|
|
BM_iter_as_array(bm, BM_VERTS_OF_MESH, NULL, (void **)bm->vtable, bm->totvert);
|
|
}
|
|
}
|
|
#pragma omp section
|
|
{
|
|
if (htype_needed & BM_EDGE) {
|
|
BM_iter_as_array(bm, BM_EDGES_OF_MESH, NULL, (void **)bm->etable, bm->totedge);
|
|
}
|
|
}
|
|
#pragma omp section
|
|
{
|
|
if (htype_needed & BM_FACE) {
|
|
BM_iter_as_array(bm, BM_FACES_OF_MESH, NULL, (void **)bm->ftable, bm->totface);
|
|
}
|
|
}
|
|
}
|
|
|
|
finally:
|
|
/* Only clear dirty flags when all the pointers and data are actually valid.
|
|
* This prevents possible threading issues when dirty flag check failed but
|
|
* data wasn't ready still.
|
|
*/
|
|
bm->elem_table_dirty &= ~htype_needed;
|
|
}
|
|
|
|
/* use BM_mesh_elem_table_ensure where possible to avoid full rebuild */
|
|
void BM_mesh_elem_table_init(BMesh *bm, const char htype)
|
|
{
|
|
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
|
|
|
|
/* force recalc */
|
|
BM_mesh_elem_table_free(bm, BM_ALL_NOLOOP);
|
|
BM_mesh_elem_table_ensure(bm, htype);
|
|
}
|
|
|
|
void BM_mesh_elem_table_free(BMesh *bm, const char htype)
|
|
{
|
|
if (htype & BM_VERT) {
|
|
MEM_SAFE_FREE(bm->vtable);
|
|
}
|
|
|
|
if (htype & BM_EDGE) {
|
|
MEM_SAFE_FREE(bm->etable);
|
|
}
|
|
|
|
if (htype & BM_FACE) {
|
|
MEM_SAFE_FREE(bm->ftable);
|
|
}
|
|
}
|
|
|
|
BMVert *BM_vert_at_index(BMesh *bm, const int index)
|
|
{
|
|
BLI_assert((index >= 0) && (index < bm->totvert));
|
|
BLI_assert((bm->elem_table_dirty & BM_VERT) == 0);
|
|
return bm->vtable[index];
|
|
}
|
|
|
|
BMEdge *BM_edge_at_index(BMesh *bm, const int index)
|
|
{
|
|
BLI_assert((index >= 0) && (index < bm->totedge));
|
|
BLI_assert((bm->elem_table_dirty & BM_EDGE) == 0);
|
|
return bm->etable[index];
|
|
}
|
|
|
|
BMFace *BM_face_at_index(BMesh *bm, const int index)
|
|
{
|
|
BLI_assert((index >= 0) && (index < bm->totface));
|
|
BLI_assert((bm->elem_table_dirty & BM_FACE) == 0);
|
|
return bm->ftable[index];
|
|
}
|
|
|
|
|
|
BMVert *BM_vert_at_index_find(BMesh *bm, const int index)
|
|
{
|
|
return BLI_mempool_findelem(bm->vpool, index);
|
|
}
|
|
|
|
BMEdge *BM_edge_at_index_find(BMesh *bm, const int index)
|
|
{
|
|
return BLI_mempool_findelem(bm->epool, index);
|
|
}
|
|
|
|
BMFace *BM_face_at_index_find(BMesh *bm, const int index)
|
|
{
|
|
return BLI_mempool_findelem(bm->fpool, index);
|
|
}
|
|
|
|
/**
|
|
* Use lookup table when available, else use slower find functions.
|
|
*
|
|
* \note Try to use #BM_mesh_elem_table_ensure instead.
|
|
*/
|
|
BMVert *BM_vert_at_index_find_or_table(BMesh *bm, const int index)
|
|
{
|
|
if ((bm->elem_table_dirty & BM_VERT) == 0) {
|
|
return (index < bm->totvert) ? bm->vtable[index] : NULL;
|
|
}
|
|
else {
|
|
return BM_vert_at_index_find(bm, index);
|
|
}
|
|
}
|
|
|
|
BMEdge *BM_edge_at_index_find_or_table(BMesh *bm, const int index)
|
|
{
|
|
if ((bm->elem_table_dirty & BM_EDGE) == 0) {
|
|
return (index < bm->totedge) ? bm->etable[index] : NULL;
|
|
}
|
|
else {
|
|
return BM_edge_at_index_find(bm, index);
|
|
}
|
|
}
|
|
|
|
BMFace *BM_face_at_index_find_or_table(BMesh *bm, const int index)
|
|
{
|
|
if ((bm->elem_table_dirty & BM_FACE) == 0) {
|
|
return (index < bm->totface) ? bm->ftable[index] : NULL;
|
|
}
|
|
else {
|
|
return BM_face_at_index_find(bm, index);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Return the amount of element of type 'type' in a given bmesh.
|
|
*/
|
|
int BM_mesh_elem_count(BMesh *bm, const char htype)
|
|
{
|
|
BLI_assert((htype & ~BM_ALL_NOLOOP) == 0);
|
|
|
|
switch (htype) {
|
|
case BM_VERT: return bm->totvert;
|
|
case BM_EDGE: return bm->totedge;
|
|
case BM_FACE: return bm->totface;
|
|
default:
|
|
{
|
|
BLI_assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Special case: Python uses custom-data layers to hold PyObject references.
|
|
* These have to be kept in-place, else the PyObject's we point to, wont point back to us.
|
|
*
|
|
* \note ``ele_src`` Is a duplicate, so we don't need to worry about getting in a feedback loop.
|
|
*
|
|
* \note If there are other customdata layers which need this functionality, it should be generalized.
|
|
* However #BM_mesh_remap is currently the only place where this is done.
|
|
*/
|
|
static void bm_mesh_remap_cd_update(
|
|
BMHeader *ele_dst, BMHeader *ele_src,
|
|
const int cd_elem_pyptr)
|
|
{
|
|
void **pyptr_dst_p = BM_ELEM_CD_GET_VOID_P(((BMElem *)ele_dst), cd_elem_pyptr);
|
|
void **pyptr_src_p = BM_ELEM_CD_GET_VOID_P(((BMElem *)ele_src), cd_elem_pyptr);
|
|
*pyptr_dst_p = *pyptr_src_p;
|
|
}
|
|
|
|
/**
|
|
* Remaps the vertices, edges and/or faces of the bmesh as indicated by vert/edge/face_idx arrays
|
|
* (xxx_idx[org_index] = new_index).
|
|
*
|
|
* A NULL array means no changes.
|
|
*
|
|
* Note: - Does not mess with indices, just sets elem_index_dirty flag.
|
|
* - For verts/edges/faces only (as loops must remain "ordered" and "aligned"
|
|
* on a per-face basis...).
|
|
*
|
|
* WARNING: Be careful if you keep pointers to affected BM elements, or arrays, when using this func!
|
|
*/
|
|
void BM_mesh_remap(
|
|
BMesh *bm,
|
|
const unsigned int *vert_idx,
|
|
const unsigned int *edge_idx,
|
|
const unsigned int *face_idx)
|
|
{
|
|
/* Mapping old to new pointers. */
|
|
GHash *vptr_map = NULL, *eptr_map = NULL, *fptr_map = NULL;
|
|
BMIter iter, iterl;
|
|
BMVert *ve;
|
|
BMEdge *ed;
|
|
BMFace *fa;
|
|
BMLoop *lo;
|
|
|
|
if (!(vert_idx || edge_idx || face_idx))
|
|
return;
|
|
|
|
BM_mesh_elem_table_ensure(
|
|
bm,
|
|
(vert_idx ? BM_VERT : 0) |
|
|
(edge_idx ? BM_EDGE : 0) |
|
|
(face_idx ? BM_FACE : 0));
|
|
|
|
/* Remap Verts */
|
|
if (vert_idx) {
|
|
BMVert **verts_pool, *verts_copy, **vep;
|
|
int i, totvert = bm->totvert;
|
|
const unsigned int *new_idx;
|
|
const int cd_vert_pyptr = CustomData_get_offset(&bm->vdata, CD_BM_ELEM_PYPTR);
|
|
|
|
/* Init the old-to-new vert pointers mapping */
|
|
vptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap vert pointers mapping", bm->totvert);
|
|
|
|
/* Make a copy of all vertices. */
|
|
verts_pool = bm->vtable;
|
|
verts_copy = MEM_mallocN(sizeof(BMVert) * totvert, "BM_mesh_remap verts copy");
|
|
for (i = totvert, ve = verts_copy + totvert - 1, vep = verts_pool + totvert - 1; i--; ve--, vep--) {
|
|
*ve = **vep;
|
|
/* printf("*vep: %p, verts_pool[%d]: %p\n", *vep, i, verts_pool[i]);*/
|
|
}
|
|
|
|
/* Copy back verts to their new place, and update old2new pointers mapping. */
|
|
new_idx = vert_idx + totvert - 1;
|
|
ve = verts_copy + totvert - 1;
|
|
vep = verts_pool + totvert - 1; /* old, org pointer */
|
|
for (i = totvert; i--; new_idx--, ve--, vep--) {
|
|
BMVert *new_vep = verts_pool[*new_idx];
|
|
*new_vep = *ve;
|
|
/* printf("mapping vert from %d to %d (%p/%p to %p)\n", i, *new_idx, *vep, verts_pool[i], new_vep);*/
|
|
BLI_ghash_insert(vptr_map, *vep, new_vep);
|
|
if (cd_vert_pyptr != -1) {
|
|
bm_mesh_remap_cd_update(&(*vep)->head, &new_vep->head, cd_vert_pyptr);
|
|
}
|
|
}
|
|
bm->elem_index_dirty |= BM_VERT;
|
|
bm->elem_table_dirty |= BM_VERT;
|
|
|
|
MEM_freeN(verts_copy);
|
|
}
|
|
|
|
/* Remap Edges */
|
|
if (edge_idx) {
|
|
BMEdge **edges_pool, *edges_copy, **edp;
|
|
int i, totedge = bm->totedge;
|
|
const unsigned int *new_idx;
|
|
const int cd_edge_pyptr = CustomData_get_offset(&bm->edata, CD_BM_ELEM_PYPTR);
|
|
|
|
/* Init the old-to-new vert pointers mapping */
|
|
eptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap edge pointers mapping", bm->totedge);
|
|
|
|
/* Make a copy of all vertices. */
|
|
edges_pool = bm->etable;
|
|
edges_copy = MEM_mallocN(sizeof(BMEdge) * totedge, "BM_mesh_remap edges copy");
|
|
for (i = totedge, ed = edges_copy + totedge - 1, edp = edges_pool + totedge - 1; i--; ed--, edp--) {
|
|
*ed = **edp;
|
|
}
|
|
|
|
/* Copy back verts to their new place, and update old2new pointers mapping. */
|
|
new_idx = edge_idx + totedge - 1;
|
|
ed = edges_copy + totedge - 1;
|
|
edp = edges_pool + totedge - 1; /* old, org pointer */
|
|
for (i = totedge; i--; new_idx--, ed--, edp--) {
|
|
BMEdge *new_edp = edges_pool[*new_idx];
|
|
*new_edp = *ed;
|
|
BLI_ghash_insert(eptr_map, *edp, new_edp);
|
|
/* printf("mapping edge from %d to %d (%p/%p to %p)\n", i, *new_idx, *edp, edges_pool[i], new_edp);*/
|
|
if (cd_edge_pyptr != -1) {
|
|
bm_mesh_remap_cd_update(&(*edp)->head, &new_edp->head, cd_edge_pyptr);
|
|
}
|
|
}
|
|
bm->elem_index_dirty |= BM_EDGE;
|
|
bm->elem_table_dirty |= BM_EDGE;
|
|
|
|
MEM_freeN(edges_copy);
|
|
}
|
|
|
|
/* Remap Faces */
|
|
if (face_idx) {
|
|
BMFace **faces_pool, *faces_copy, **fap;
|
|
int i, totface = bm->totface;
|
|
const unsigned int *new_idx;
|
|
const int cd_poly_pyptr = CustomData_get_offset(&bm->pdata, CD_BM_ELEM_PYPTR);
|
|
|
|
/* Init the old-to-new vert pointers mapping */
|
|
fptr_map = BLI_ghash_ptr_new_ex("BM_mesh_remap face pointers mapping", bm->totface);
|
|
|
|
/* Make a copy of all vertices. */
|
|
faces_pool = bm->ftable;
|
|
faces_copy = MEM_mallocN(sizeof(BMFace) * totface, "BM_mesh_remap faces copy");
|
|
for (i = totface, fa = faces_copy + totface - 1, fap = faces_pool + totface - 1; i--; fa--, fap--) {
|
|
*fa = **fap;
|
|
}
|
|
|
|
/* Copy back verts to their new place, and update old2new pointers mapping. */
|
|
new_idx = face_idx + totface - 1;
|
|
fa = faces_copy + totface - 1;
|
|
fap = faces_pool + totface - 1; /* old, org pointer */
|
|
for (i = totface; i--; new_idx--, fa--, fap--) {
|
|
BMFace *new_fap = faces_pool[*new_idx];
|
|
*new_fap = *fa;
|
|
BLI_ghash_insert(fptr_map, *fap, new_fap);
|
|
if (cd_poly_pyptr != -1) {
|
|
bm_mesh_remap_cd_update(&(*fap)->head, &new_fap->head, cd_poly_pyptr);
|
|
}
|
|
}
|
|
|
|
bm->elem_index_dirty |= BM_FACE | BM_LOOP;
|
|
bm->elem_table_dirty |= BM_FACE;
|
|
|
|
MEM_freeN(faces_copy);
|
|
}
|
|
|
|
/* And now, fix all vertices/edges/faces/loops pointers! */
|
|
/* Verts' pointers, only edge pointers... */
|
|
if (eptr_map) {
|
|
BM_ITER_MESH (ve, &iter, bm, BM_VERTS_OF_MESH) {
|
|
/* printf("Vert e: %p -> %p\n", ve->e, BLI_ghash_lookup(eptr_map, ve->e));*/
|
|
if (ve->e) {
|
|
ve->e = BLI_ghash_lookup(eptr_map, ve->e);
|
|
BLI_assert(ve->e);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Edges' pointers, only vert pointers (as we don't mess with loops!), and - ack! - edge pointers,
|
|
* as we have to handle disklinks... */
|
|
if (vptr_map || eptr_map) {
|
|
BM_ITER_MESH (ed, &iter, bm, BM_EDGES_OF_MESH) {
|
|
if (vptr_map) {
|
|
/* printf("Edge v1: %p -> %p\n", ed->v1, BLI_ghash_lookup(vptr_map, ed->v1));*/
|
|
/* printf("Edge v2: %p -> %p\n", ed->v2, BLI_ghash_lookup(vptr_map, ed->v2));*/
|
|
ed->v1 = BLI_ghash_lookup(vptr_map, ed->v1);
|
|
ed->v2 = BLI_ghash_lookup(vptr_map, ed->v2);
|
|
BLI_assert(ed->v1);
|
|
BLI_assert(ed->v2);
|
|
}
|
|
if (eptr_map) {
|
|
/* printf("Edge v1_disk_link prev: %p -> %p\n", ed->v1_disk_link.prev,*/
|
|
/* BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev));*/
|
|
/* printf("Edge v1_disk_link next: %p -> %p\n", ed->v1_disk_link.next,*/
|
|
/* BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next));*/
|
|
/* printf("Edge v2_disk_link prev: %p -> %p\n", ed->v2_disk_link.prev,*/
|
|
/* BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev));*/
|
|
/* printf("Edge v2_disk_link next: %p -> %p\n", ed->v2_disk_link.next,*/
|
|
/* BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next));*/
|
|
ed->v1_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.prev);
|
|
ed->v1_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v1_disk_link.next);
|
|
ed->v2_disk_link.prev = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.prev);
|
|
ed->v2_disk_link.next = BLI_ghash_lookup(eptr_map, ed->v2_disk_link.next);
|
|
BLI_assert(ed->v1_disk_link.prev);
|
|
BLI_assert(ed->v1_disk_link.next);
|
|
BLI_assert(ed->v2_disk_link.prev);
|
|
BLI_assert(ed->v2_disk_link.next);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Faces' pointers (loops, in fact), always needed... */
|
|
BM_ITER_MESH (fa, &iter, bm, BM_FACES_OF_MESH) {
|
|
BM_ITER_ELEM (lo, &iterl, fa, BM_LOOPS_OF_FACE) {
|
|
if (vptr_map) {
|
|
/* printf("Loop v: %p -> %p\n", lo->v, BLI_ghash_lookup(vptr_map, lo->v));*/
|
|
lo->v = BLI_ghash_lookup(vptr_map, lo->v);
|
|
BLI_assert(lo->v);
|
|
}
|
|
if (eptr_map) {
|
|
/* printf("Loop e: %p -> %p\n", lo->e, BLI_ghash_lookup(eptr_map, lo->e));*/
|
|
lo->e = BLI_ghash_lookup(eptr_map, lo->e);
|
|
BLI_assert(lo->e);
|
|
}
|
|
if (fptr_map) {
|
|
/* printf("Loop f: %p -> %p\n", lo->f, BLI_ghash_lookup(fptr_map, lo->f));*/
|
|
lo->f = BLI_ghash_lookup(fptr_map, lo->f);
|
|
BLI_assert(lo->f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Selection history */
|
|
{
|
|
BMEditSelection *ese;
|
|
for (ese = bm->selected.first; ese; ese = ese->next) {
|
|
switch (ese->htype) {
|
|
case BM_VERT:
|
|
if (vptr_map) {
|
|
ese->ele = BLI_ghash_lookup(vptr_map, ese->ele);
|
|
BLI_assert(ese->ele);
|
|
}
|
|
break;
|
|
case BM_EDGE:
|
|
if (eptr_map) {
|
|
ese->ele = BLI_ghash_lookup(eptr_map, ese->ele);
|
|
BLI_assert(ese->ele);
|
|
}
|
|
break;
|
|
case BM_FACE:
|
|
if (fptr_map) {
|
|
ese->ele = BLI_ghash_lookup(fptr_map, ese->ele);
|
|
BLI_assert(ese->ele);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (fptr_map) {
|
|
if (bm->act_face) {
|
|
bm->act_face = BLI_ghash_lookup(fptr_map, bm->act_face);
|
|
BLI_assert(bm->act_face);
|
|
}
|
|
}
|
|
|
|
if (vptr_map)
|
|
BLI_ghash_free(vptr_map, NULL, NULL);
|
|
if (eptr_map)
|
|
BLI_ghash_free(eptr_map, NULL, NULL);
|
|
if (fptr_map)
|
|
BLI_ghash_free(fptr_map, NULL, NULL);
|
|
}
|