render instancing. Fix for vector blur alpha blending bug due to my recent bugfix, as reported on bf-committers.
5244 lines
139 KiB
C
5244 lines
139 KiB
C
/**
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* Contributors: 2004/2005/2006 Blender Foundation, full recode
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
|
|
#include "blendef.h"
|
|
#include "MTC_matrixops.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_arithb.h"
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_rand.h"
|
|
#include "BLI_memarena.h"
|
|
#include "BLI_ghash.h"
|
|
|
|
#include "DNA_armature_types.h"
|
|
#include "DNA_camera_types.h"
|
|
#include "DNA_material_types.h"
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_effect_types.h"
|
|
#include "DNA_group_types.h"
|
|
#include "DNA_lamp_types.h"
|
|
#include "DNA_image_types.h"
|
|
#include "DNA_lattice_types.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_meta_types.h"
|
|
#include "DNA_modifier_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_object_force.h"
|
|
#include "DNA_object_fluidsim.h"
|
|
#include "DNA_particle_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_texture_types.h"
|
|
#include "DNA_view3d_types.h"
|
|
|
|
#include "BKE_anim.h"
|
|
#include "BKE_armature.h"
|
|
#include "BKE_action.h"
|
|
#include "BKE_curve.h"
|
|
#include "BKE_customdata.h"
|
|
#include "BKE_colortools.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_effect.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_group.h"
|
|
#include "BKE_key.h"
|
|
#include "BKE_ipo.h"
|
|
#include "BKE_image.h"
|
|
#include "BKE_lattice.h"
|
|
#include "BKE_library.h"
|
|
#include "BKE_material.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_mball.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_modifier.h"
|
|
#include "BKE_node.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_particle.h"
|
|
#include "BKE_scene.h"
|
|
#include "BKE_subsurf.h"
|
|
#include "BKE_texture.h"
|
|
#include "BKE_utildefines.h"
|
|
#include "BKE_world.h"
|
|
|
|
#include "PIL_time.h"
|
|
#include "IMB_imbuf_types.h"
|
|
|
|
#include "envmap.h"
|
|
#include "multires.h"
|
|
#include "occlusion.h"
|
|
#include "render_types.h"
|
|
#include "rendercore.h"
|
|
#include "renderdatabase.h"
|
|
#include "renderpipeline.h"
|
|
#include "radio.h"
|
|
#include "shadbuf.h"
|
|
#include "shading.h"
|
|
#include "strand.h"
|
|
#include "texture.h"
|
|
#include "sss.h"
|
|
#include "strand.h"
|
|
#include "zbuf.h"
|
|
|
|
#ifndef DISABLE_YAFRAY /* disable yafray */
|
|
|
|
#include "YafRay_Api.h"
|
|
|
|
/* yafray: Identity transform 'hack' removed, exporter now transforms vertices back to world.
|
|
* Same is true for lamp coords & vec.
|
|
* Duplicated data objects & dupliframe/duplivert objects are only stored once,
|
|
* only the matrix is stored for all others, in yafray these objects are instances of the original.
|
|
* The main changes are in RE_Database_FromScene().
|
|
*/
|
|
|
|
#endif /* disable yafray */
|
|
|
|
/* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
|
|
/* or for checking vertex normal flips */
|
|
#define FLT_EPSILON10 1.19209290e-06F
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* Stuff for stars. This sits here because it uses gl-things. Part of
|
|
this code may move down to the converter. */
|
|
/* ------------------------------------------------------------------------- */
|
|
/* this is a bad beast, since it is misused by the 3d view drawing as well. */
|
|
|
|
static HaloRen *initstar(Render *re, ObjectRen *obr, float *vec, float hasize)
|
|
{
|
|
HaloRen *har;
|
|
float hoco[4];
|
|
|
|
projectverto(vec, re->winmat, hoco);
|
|
|
|
har= RE_findOrAddHalo(obr, obr->tothalo++);
|
|
|
|
/* projectvert is done in function zbufvlaggen again, because of parts */
|
|
VECCOPY(har->co, vec);
|
|
har->hasize= hasize;
|
|
|
|
har->zd= 0.0;
|
|
|
|
return har;
|
|
}
|
|
|
|
/* there must be a 'fixed' amount of stars generated between
|
|
* near and far
|
|
* all stars must by preference lie on the far and solely
|
|
* differ in clarity/color
|
|
*/
|
|
|
|
void RE_make_stars(Render *re, void (*initfunc)(void),
|
|
void (*vertexfunc)(float*), void (*termfunc)(void))
|
|
{
|
|
extern unsigned char hash[512];
|
|
ObjectRen *obr= NULL;
|
|
World *wrld= NULL;
|
|
HaloRen *har;
|
|
Scene *scene;
|
|
Camera *camera;
|
|
double dblrand, hlfrand;
|
|
float vec[4], fx, fy, fz;
|
|
float fac, starmindist, clipend;
|
|
float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
|
|
int x, y, z, sx, sy, sz, ex, ey, ez, done = 0;
|
|
|
|
if(initfunc) {
|
|
scene= G.scene;
|
|
wrld= G.scene->world;
|
|
}
|
|
else {
|
|
scene= re->scene;
|
|
wrld= &(re->wrld);
|
|
}
|
|
|
|
stargrid = wrld->stardist; /* distance between stars */
|
|
maxrand = 2.0; /* amount a star can be shifted (in grid units) */
|
|
maxjit = (wrld->starcolnoise); /* amount a color is being shifted */
|
|
|
|
/* size of stars */
|
|
force = ( wrld->starsize );
|
|
|
|
/* minimal free space (starting at camera) */
|
|
starmindist= wrld->starmindist;
|
|
|
|
if (stargrid <= 0.10) return;
|
|
|
|
if (re) re->flag |= R_HALO;
|
|
else stargrid *= 1.0; /* then it draws fewer */
|
|
|
|
if(re) MTC_Mat4Invert(mat, re->viewmat);
|
|
|
|
/* BOUNDING BOX CALCULATION
|
|
* bbox goes from z = loc_near_var | loc_far_var,
|
|
* x = -z | +z,
|
|
* y = -z | +z
|
|
*/
|
|
|
|
if(scene->camera==NULL)
|
|
return;
|
|
camera = scene->camera->data;
|
|
clipend = camera->clipend;
|
|
|
|
/* convert to grid coordinates */
|
|
|
|
sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
|
|
sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
|
|
sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
|
|
|
|
ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
|
|
ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
|
|
ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
|
|
|
|
dblrand = maxrand * stargrid;
|
|
hlfrand = 2.0 * dblrand;
|
|
|
|
if (initfunc) {
|
|
initfunc();
|
|
}
|
|
|
|
if(re) /* add render object for stars */
|
|
obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
|
|
|
|
for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
|
|
for (y = sy, fy = sy * stargrid; y <= ey ; y++, fy += stargrid) {
|
|
for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
|
|
|
|
BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
|
|
vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
|
|
vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
|
|
vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
|
|
vec[3] = 1.0;
|
|
|
|
if (vertexfunc) {
|
|
if(done & 1) vertexfunc(vec);
|
|
done++;
|
|
}
|
|
else {
|
|
MTC_Mat4MulVecfl(re->viewmat, vec);
|
|
|
|
/* in vec are global coordinates
|
|
* calculate distance to camera
|
|
* and using that, define the alpha
|
|
*/
|
|
|
|
{
|
|
float tx, ty, tz;
|
|
|
|
tx = vec[0];
|
|
ty = vec[1];
|
|
tz = vec[2];
|
|
|
|
alpha = sqrt(tx * tx + ty * ty + tz * tz);
|
|
|
|
if (alpha >= clipend) alpha = 0.0;
|
|
else if (alpha <= starmindist) alpha = 0.0;
|
|
else if (alpha <= 2.0 * starmindist) {
|
|
alpha = (alpha - starmindist) / starmindist;
|
|
} else {
|
|
alpha -= 2.0 * starmindist;
|
|
alpha /= (clipend - 2.0 * starmindist);
|
|
alpha = 1.0 - alpha;
|
|
}
|
|
}
|
|
|
|
|
|
if (alpha != 0.0) {
|
|
fac = force * BLI_drand();
|
|
|
|
har = initstar(re, obr, vec, fac);
|
|
|
|
if (har) {
|
|
har->alfa = sqrt(sqrt(alpha));
|
|
har->add= 255;
|
|
har->r = har->g = har->b = 1.0;
|
|
if (maxjit) {
|
|
har->r += ((maxjit * BLI_drand()) ) - maxjit;
|
|
har->g += ((maxjit * BLI_drand()) ) - maxjit;
|
|
har->b += ((maxjit * BLI_drand()) ) - maxjit;
|
|
}
|
|
har->hard = 32;
|
|
har->lay= -1;
|
|
har->type |= HA_ONLYSKY;
|
|
done++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
|
|
/* main cause is G.afbreek of course, a global again... (ton) */
|
|
}
|
|
}
|
|
if (termfunc) termfunc();
|
|
|
|
if(obr)
|
|
re->tothalo += obr->tothalo;
|
|
}
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* tool functions/defines for ad hoc simplification and possible future
|
|
cleanup */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
|
|
/*
|
|
|
|
NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
|
|
|
|
^ ()----p4----p3----()
|
|
| | | | |
|
|
u | | F1 | F2 |
|
|
| | | |
|
|
()----p1----p2----()
|
|
v ->
|
|
*/
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void split_v_renderfaces(ObjectRen *obr, int startvlak, int startvert, int usize, int vsize, int uIndex, int cyclu, int cyclv)
|
|
{
|
|
int vLen = vsize-1+(!!cyclv);
|
|
int v;
|
|
|
|
for (v=0; v<vLen; v++) {
|
|
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
|
|
VertRen *vert = RE_vertren_copy(obr, vlr->v2);
|
|
|
|
if (cyclv) {
|
|
vlr->v2 = vert;
|
|
|
|
if (v==vLen-1) {
|
|
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
|
|
vlr->v1 = vert;
|
|
} else {
|
|
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
|
|
vlr->v1 = vert;
|
|
}
|
|
} else {
|
|
vlr->v2 = vert;
|
|
|
|
if (v<vLen-1) {
|
|
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
|
|
vlr->v1 = vert;
|
|
}
|
|
|
|
if (v==0) {
|
|
vlr->v1 = RE_vertren_copy(obr, vlr->v1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static int check_vnormal(float *n, float *veno)
|
|
{
|
|
float inp;
|
|
|
|
inp=n[0]*veno[0]+n[1]*veno[1]+n[2]*veno[2];
|
|
if(inp < -FLT_EPSILON10) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Stress, tangents and normals */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
|
|
{
|
|
float len= VecLenf(v1->co, v2->co)/VecLenf(v1->orco, v2->orco);
|
|
float *acc;
|
|
|
|
acc= accum + 2*v1->index;
|
|
acc[0]+= len;
|
|
acc[1]+= 1.0f;
|
|
|
|
acc= accum + 2*v2->index;
|
|
acc[0]+= len;
|
|
acc[1]+= 1.0f;
|
|
}
|
|
|
|
static void calc_edge_stress(Render *re, ObjectRen *obr, Mesh *me)
|
|
{
|
|
float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
|
|
int a;
|
|
|
|
if(obr->totvert==0) return;
|
|
|
|
mesh_get_texspace(me, loc, NULL, size);
|
|
|
|
accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
|
|
|
|
/* de-normalize orco */
|
|
for(a=0; a<obr->totvert; a++) {
|
|
VertRen *ver= RE_findOrAddVert(obr, a);
|
|
if(ver->orco) {
|
|
ver->orco[0]= ver->orco[0]*size[0] +loc[0];
|
|
ver->orco[1]= ver->orco[1]*size[1] +loc[1];
|
|
ver->orco[2]= ver->orco[2]*size[2] +loc[2];
|
|
}
|
|
}
|
|
|
|
/* add stress values */
|
|
accumoffs= accum; /* so we can use vertex index */
|
|
for(a=0; a<obr->totvlak; a++) {
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, a);
|
|
|
|
if(vlr->v1->orco && vlr->v4) {
|
|
calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
|
|
calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
|
|
calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
|
|
if(vlr->v4) {
|
|
calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
|
|
calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
|
|
calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
|
|
}
|
|
}
|
|
}
|
|
|
|
for(a=0; a<obr->totvert; a++) {
|
|
VertRen *ver= RE_findOrAddVert(obr, a);
|
|
if(ver->orco) {
|
|
/* find stress value */
|
|
acc= accumoffs + 2*ver->index;
|
|
if(acc[1]!=0.0f)
|
|
acc[0]/= acc[1];
|
|
stress= RE_vertren_get_stress(obr, ver, 1);
|
|
*stress= *acc;
|
|
|
|
/* restore orcos */
|
|
ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
|
|
ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
|
|
ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
|
|
}
|
|
}
|
|
|
|
MEM_freeN(accum);
|
|
}
|
|
|
|
void tangent_from_uv(float *uv1, float *uv2, float *uv3, float *co1, float *co2, float *co3, float *n, float *tang)
|
|
{
|
|
float tangv[3], ct[3], e1[3], e2[3], s1, t1, s2, t2, det;
|
|
|
|
s1= uv2[0] - uv1[0];
|
|
s2= uv3[0] - uv1[0];
|
|
t1= uv2[1] - uv1[1];
|
|
t2= uv3[1] - uv1[1];
|
|
det= 1.0f / (s1 * t2 - s2 * t1);
|
|
|
|
/* normals in render are inversed... */
|
|
VecSubf(e1, co1, co2);
|
|
VecSubf(e2, co1, co3);
|
|
tang[0] = (t2*e1[0] - t1*e2[0])*det;
|
|
tang[1] = (t2*e1[1] - t1*e2[1])*det;
|
|
tang[2] = (t2*e1[2] - t1*e2[2])*det;
|
|
tangv[0] = (s1*e2[0] - s2*e1[0])*det;
|
|
tangv[1] = (s1*e2[1] - s2*e1[1])*det;
|
|
tangv[2] = (s1*e2[2] - s2*e1[2])*det;
|
|
Crossf(ct, tang, tangv);
|
|
|
|
/* check flip */
|
|
if ((ct[0]*n[0] + ct[1]*n[1] + ct[2]*n[2]) < 0.0f)
|
|
VecMulf(tang, -1.0f);
|
|
}
|
|
|
|
/* gets tangent from tface or orco */
|
|
static void calc_tangent_vector(ObjectRen *obr, VlakRen *vlr)
|
|
{
|
|
MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
|
|
VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
|
|
float tang[3], *tav;
|
|
float *uv1, *uv2, *uv3, *uv4;
|
|
float uv[4][2];
|
|
|
|
if(tface) {
|
|
uv1= tface->uv[0];
|
|
uv2= tface->uv[1];
|
|
uv3= tface->uv[2];
|
|
uv4= tface->uv[3];
|
|
}
|
|
else if(v1->orco) {
|
|
uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
|
|
spheremap(v1->orco[0], v1->orco[1], v1->orco[2], &uv[0][0], &uv[0][1]);
|
|
spheremap(v2->orco[0], v2->orco[1], v2->orco[2], &uv[1][0], &uv[1][1]);
|
|
spheremap(v3->orco[0], v3->orco[1], v3->orco[2], &uv[2][0], &uv[2][1]);
|
|
if(v4)
|
|
spheremap(v4->orco[0], v4->orco[1], v4->orco[2], &uv[3][0], &uv[3][1]);
|
|
}
|
|
else return;
|
|
|
|
tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
|
|
|
|
tav= RE_vertren_get_tangent(obr, v1, 1);
|
|
VECADD(tav, tav, tang);
|
|
tav= RE_vertren_get_tangent(obr, v2, 1);
|
|
VECADD(tav, tav, tang);
|
|
tav= RE_vertren_get_tangent(obr, v3, 1);
|
|
VECADD(tav, tav, tang);
|
|
|
|
if(v4) {
|
|
tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
|
|
|
|
tav= RE_vertren_get_tangent(obr, v1, 1);
|
|
VECADD(tav, tav, tang);
|
|
tav= RE_vertren_get_tangent(obr, v3, 1);
|
|
VECADD(tav, tav, tang);
|
|
tav= RE_vertren_get_tangent(obr, v4, 1);
|
|
VECADD(tav, tav, tang);
|
|
}
|
|
}
|
|
|
|
|
|
static void calc_vertexnormals(Render *re, ObjectRen *obr, int do_tangent)
|
|
{
|
|
int a;
|
|
|
|
/* clear all vertex normals */
|
|
for(a=0; a<obr->totvert; a++) {
|
|
VertRen *ver= RE_findOrAddVert(obr, a);
|
|
ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
|
|
}
|
|
|
|
/* calculate cos of angles and point-masses, use as weight factor to
|
|
add face normal to vertex */
|
|
for(a=0; a<obr->totvlak; a++) {
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, a);
|
|
if(vlr->flag & ME_SMOOTH) {
|
|
VertRen *v1= vlr->v1;
|
|
VertRen *v2= vlr->v2;
|
|
VertRen *v3= vlr->v3;
|
|
VertRen *v4= vlr->v4;
|
|
float n1[3], n2[3], n3[3], n4[3];
|
|
float fac1, fac2, fac3, fac4=0.0f;
|
|
|
|
if(re->flag & R_GLOB_NOPUNOFLIP)
|
|
vlr->flag |= R_NOPUNOFLIP;
|
|
|
|
VecSubf(n1, v2->co, v1->co);
|
|
Normalize(n1);
|
|
VecSubf(n2, v3->co, v2->co);
|
|
Normalize(n2);
|
|
if(v4==NULL) {
|
|
VecSubf(n3, v1->co, v3->co);
|
|
Normalize(n3);
|
|
|
|
fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
|
|
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
|
|
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
|
|
}
|
|
else {
|
|
VecSubf(n3, v4->co, v3->co);
|
|
Normalize(n3);
|
|
VecSubf(n4, v1->co, v4->co);
|
|
Normalize(n4);
|
|
|
|
fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
|
|
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
|
|
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
|
|
fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
|
|
|
|
if(!(vlr->flag & R_NOPUNOFLIP)) {
|
|
if( check_vnormal(vlr->n, v4->n) ) fac4= -fac4;
|
|
}
|
|
|
|
v4->n[0] +=fac4*vlr->n[0];
|
|
v4->n[1] +=fac4*vlr->n[1];
|
|
v4->n[2] +=fac4*vlr->n[2];
|
|
}
|
|
|
|
if(!(vlr->flag & R_NOPUNOFLIP)) {
|
|
if( check_vnormal(vlr->n, v1->n) ) fac1= -fac1;
|
|
if( check_vnormal(vlr->n, v2->n) ) fac2= -fac2;
|
|
if( check_vnormal(vlr->n, v3->n) ) fac3= -fac3;
|
|
}
|
|
|
|
v1->n[0] +=fac1*vlr->n[0];
|
|
v1->n[1] +=fac1*vlr->n[1];
|
|
v1->n[2] +=fac1*vlr->n[2];
|
|
|
|
v2->n[0] +=fac2*vlr->n[0];
|
|
v2->n[1] +=fac2*vlr->n[1];
|
|
v2->n[2] +=fac2*vlr->n[2];
|
|
|
|
v3->n[0] +=fac3*vlr->n[0];
|
|
v3->n[1] +=fac3*vlr->n[1];
|
|
v3->n[2] +=fac3*vlr->n[2];
|
|
|
|
}
|
|
if(do_tangent) {
|
|
/* tangents still need to be calculated for flat faces too */
|
|
/* weighting removed, they are not vertexnormals */
|
|
calc_tangent_vector(obr, vlr);
|
|
}
|
|
}
|
|
|
|
/* do solid faces */
|
|
for(a=0; a<obr->totvlak; a++) {
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, a);
|
|
if((vlr->flag & ME_SMOOTH)==0) {
|
|
float *f1= vlr->v1->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
f1= vlr->v2->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
f1= vlr->v3->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
if(vlr->v4) {
|
|
f1= vlr->v4->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* normalize vertex normals */
|
|
for(a=0; a<obr->totvert; a++) {
|
|
VertRen *ver= RE_findOrAddVert(obr, a);
|
|
Normalize(ver->n);
|
|
if(do_tangent) {
|
|
float *tav= RE_vertren_get_tangent(obr, ver, 0);
|
|
if (tav) {
|
|
/* orthonorm. */
|
|
float tdn = tav[0]*ver->n[0] + tav[1]*ver->n[1] + tav[2]*ver->n[2];
|
|
tav[0] -= ver->n[0]*tdn;
|
|
tav[1] -= ver->n[1]*tdn;
|
|
tav[2] -= ver->n[2]*tdn;
|
|
Normalize(tav);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// NT same as calc_vertexnormals, but dont modify the existing vertex normals
|
|
// only recalculate other render data. If this is at some point used for other things than fluidsim,
|
|
// this could be made on option for the normal calc_vertexnormals
|
|
static void calc_fluidsimnormals(Render *re, ObjectRen *obr, int do_tangent)
|
|
{
|
|
int a;
|
|
|
|
/* dont clear vertex normals here */
|
|
// OFF for(a=0; a<obr->totvert; a++) { VertRen *ver= RE_findOrAddVert(obr, a); ver->n[0]=ver->n[1]=ver->n[2]= 0.0; }
|
|
/* calculate cos of angles and point-masses, use as weight factor to add face normal to vertex */
|
|
for(a=0; a<obr->totvlak; a++) {
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, a);
|
|
if(vlr->flag & ME_SMOOTH) {
|
|
VertRen *v1= vlr->v1;
|
|
VertRen *v2= vlr->v2;
|
|
VertRen *v3= vlr->v3;
|
|
VertRen *v4= vlr->v4;
|
|
float n1[3], n2[3], n3[3], n4[3];
|
|
float fac1, fac2, fac3, fac4=0.0f;
|
|
|
|
if(re->flag & R_GLOB_NOPUNOFLIP)
|
|
vlr->flag |= R_NOPUNOFLIP;
|
|
|
|
VecSubf(n1, v2->co, v1->co);
|
|
Normalize(n1);
|
|
VecSubf(n2, v3->co, v2->co);
|
|
Normalize(n2);
|
|
if(v4==NULL) {
|
|
VecSubf(n3, v1->co, v3->co);
|
|
Normalize(n3);
|
|
fac1= saacos(-n1[0]*n3[0]-n1[1]*n3[1]-n1[2]*n3[2]);
|
|
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
|
|
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
|
|
}
|
|
else {
|
|
VecSubf(n3, v4->co, v3->co);
|
|
Normalize(n3);
|
|
VecSubf(n4, v1->co, v4->co);
|
|
Normalize(n4);
|
|
|
|
fac1= saacos(-n4[0]*n1[0]-n4[1]*n1[1]-n4[2]*n1[2]);
|
|
fac2= saacos(-n1[0]*n2[0]-n1[1]*n2[1]-n1[2]*n2[2]);
|
|
fac3= saacos(-n2[0]*n3[0]-n2[1]*n3[1]-n2[2]*n3[2]);
|
|
fac4= saacos(-n3[0]*n4[0]-n3[1]*n4[1]-n3[2]*n4[2]);
|
|
|
|
if(!(vlr->flag & R_NOPUNOFLIP)) {
|
|
if( check_vnormal(vlr->n, v4->n) ) fac4= -fac4;
|
|
}
|
|
}
|
|
|
|
//if(do_tangent)
|
|
// calc_tangent_vector(obr, vlr, fac1, fac2, fac3, fac4);
|
|
}
|
|
if(do_tangent) {
|
|
/* tangents still need to be calculated for flat faces too */
|
|
/* weighting removed, they are not vertexnormals */
|
|
calc_tangent_vector(obr, vlr);
|
|
}
|
|
}
|
|
|
|
/* do solid faces */
|
|
for(a=0; a<obr->totvlak; a++) {
|
|
VlakRen *vlr= RE_findOrAddVlak(obr, a);
|
|
if((vlr->flag & ME_SMOOTH)==0) {
|
|
float *f1= vlr->v1->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
f1= vlr->v2->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
f1= vlr->v3->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
if(vlr->v4) {
|
|
f1= vlr->v4->n;
|
|
if(f1[0]==0.0 && f1[1]==0.0 && f1[2]==0.0) VECCOPY(f1, vlr->n);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* normalize vertex normals */
|
|
for(a=0; a<obr->totvert; a++) {
|
|
VertRen *ver= RE_findOrAddVert(obr, a);
|
|
Normalize(ver->n);
|
|
if(do_tangent) {
|
|
float *tav= RE_vertren_get_tangent(obr, ver, 0);
|
|
if(tav) Normalize(tav);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Autosmoothing: */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
typedef struct ASvert {
|
|
int totface;
|
|
ListBase faces;
|
|
} ASvert;
|
|
|
|
typedef struct ASface {
|
|
struct ASface *next, *prev;
|
|
VlakRen *vlr[4];
|
|
VertRen *nver[4];
|
|
} ASface;
|
|
|
|
static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
|
|
{
|
|
ASface *asf;
|
|
int a;
|
|
|
|
if(v1 == NULL) return;
|
|
|
|
if(asv->faces.first==NULL) {
|
|
asf= MEM_callocN(sizeof(ASface), "asface");
|
|
BLI_addtail(&asv->faces, asf);
|
|
}
|
|
|
|
asf= asv->faces.last;
|
|
for(a=0; a<4; a++) {
|
|
if(asf->vlr[a]==NULL) {
|
|
asf->vlr[a]= vlr;
|
|
asv->totface++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* new face struct */
|
|
if(a==4) {
|
|
asf= MEM_callocN(sizeof(ASface), "asface");
|
|
BLI_addtail(&asv->faces, asf);
|
|
asf->vlr[0]= vlr;
|
|
asv->totface++;
|
|
}
|
|
}
|
|
|
|
static int as_testvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh)
|
|
{
|
|
/* return 1: vertex needs a copy */
|
|
ASface *asf;
|
|
float inp;
|
|
int a;
|
|
|
|
if(vlr==0) return 0;
|
|
|
|
asf= asv->faces.first;
|
|
while(asf) {
|
|
for(a=0; a<4; a++) {
|
|
if(asf->vlr[a] && asf->vlr[a]!=vlr) {
|
|
inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
|
|
if(inp < thresh) return 1;
|
|
}
|
|
}
|
|
asf= asf->next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static VertRen *as_findvertex(VlakRen *vlr, VertRen *ver, ASvert *asv, float thresh)
|
|
{
|
|
/* return when new vertex already was made */
|
|
ASface *asf;
|
|
float inp;
|
|
int a;
|
|
|
|
asf= asv->faces.first;
|
|
while(asf) {
|
|
for(a=0; a<4; a++) {
|
|
if(asf->vlr[a] && asf->vlr[a]!=vlr) {
|
|
/* this face already made a copy for this vertex! */
|
|
if(asf->nver[a]) {
|
|
inp= fabs( vlr->n[0]*asf->vlr[a]->n[0] + vlr->n[1]*asf->vlr[a]->n[1] + vlr->n[2]*asf->vlr[a]->n[2] );
|
|
if(inp >= thresh) {
|
|
return asf->nver[a];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
asf= asf->next;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* note; autosmooth happens in object space still, after applying autosmooth we rotate */
|
|
/* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
|
|
static void autosmooth(Render *re, ObjectRen *obr, float mat[][4], int degr)
|
|
{
|
|
ASvert *asv, *asverts;
|
|
ASface *asf;
|
|
VertRen *ver, *v1;
|
|
VlakRen *vlr;
|
|
float thresh;
|
|
int a, b, totvert;
|
|
|
|
if(obr->totvert==0) return;
|
|
asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
|
|
|
|
thresh= cos( M_PI*(0.5f+(float)degr)/180.0 );
|
|
|
|
/* step zero: give faces normals of original mesh, if this is provided */
|
|
|
|
|
|
/* step one: construct listbase of all vertices and pointers to faces */
|
|
for(a=0; a<obr->totvlak; a++) {
|
|
vlr= RE_findOrAddVlak(obr, a);
|
|
/* skip wire faces */
|
|
if(vlr->v2 != vlr->v3) {
|
|
as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
|
|
as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
|
|
as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
|
|
if(vlr->v4)
|
|
as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
|
|
}
|
|
}
|
|
|
|
totvert= obr->totvert;
|
|
/* we now test all vertices, when faces have a normal too much different: they get a new vertex */
|
|
for(a=0, asv=asverts; a<totvert; a++, asv++) {
|
|
if(asv && asv->totface>1) {
|
|
ver= RE_findOrAddVert(obr, a);
|
|
|
|
asf= asv->faces.first;
|
|
while(asf) {
|
|
for(b=0; b<4; b++) {
|
|
|
|
/* is there a reason to make a new vertex? */
|
|
vlr= asf->vlr[b];
|
|
if( as_testvertex(vlr, ver, asv, thresh) ) {
|
|
|
|
/* already made a new vertex within threshold? */
|
|
v1= as_findvertex(vlr, ver, asv, thresh);
|
|
if(v1==NULL) {
|
|
/* make a new vertex */
|
|
v1= RE_vertren_copy(obr, ver);
|
|
}
|
|
asf->nver[b]= v1;
|
|
if(vlr->v1==ver) vlr->v1= v1;
|
|
if(vlr->v2==ver) vlr->v2= v1;
|
|
if(vlr->v3==ver) vlr->v3= v1;
|
|
if(vlr->v4==ver) vlr->v4= v1;
|
|
}
|
|
}
|
|
asf= asf->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* free */
|
|
for(a=0; a<totvert; a++) {
|
|
BLI_freelistN(&asverts[a].faces);
|
|
}
|
|
MEM_freeN(asverts);
|
|
|
|
/* rotate vertices and calculate normal of faces */
|
|
for(a=0; a<obr->totvert; a++) {
|
|
ver= RE_findOrAddVert(obr, a);
|
|
MTC_Mat4MulVecfl(mat, ver->co);
|
|
}
|
|
for(a=0; a<obr->totvlak; a++) {
|
|
vlr= RE_findOrAddVlak(obr, a);
|
|
|
|
/* skip wire faces */
|
|
if(vlr->v2 != vlr->v3) {
|
|
if(vlr->v4)
|
|
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
else
|
|
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Orco hash and Materials */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static float *get_object_orco(Render *re, Object *ob)
|
|
{
|
|
float *orco;
|
|
|
|
if (!re->orco_hash)
|
|
re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
|
|
|
|
orco = BLI_ghash_lookup(re->orco_hash, ob);
|
|
|
|
if (!orco) {
|
|
if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
|
|
orco = make_orco_curve(ob);
|
|
} else if (ob->type==OB_SURF) {
|
|
orco = make_orco_surf(ob);
|
|
}
|
|
|
|
if (orco)
|
|
BLI_ghash_insert(re->orco_hash, ob, orco);
|
|
}
|
|
|
|
return orco;
|
|
}
|
|
|
|
static void set_object_orco(Render *re, void *ob, float *orco)
|
|
{
|
|
if (!re->orco_hash)
|
|
re->orco_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
|
|
|
|
BLI_ghash_insert(re->orco_hash, ob, orco);
|
|
}
|
|
|
|
static void free_mesh_orco_hash(Render *re)
|
|
{
|
|
if (re->orco_hash) {
|
|
BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
|
|
re->orco_hash = NULL;
|
|
}
|
|
}
|
|
|
|
static Material *give_render_material(Render *re, Object *ob, int nr)
|
|
{
|
|
extern Material defmaterial; /* material.c */
|
|
Material *ma;
|
|
|
|
ma= give_current_material(ob, nr);
|
|
if(ma==NULL)
|
|
ma= &defmaterial;
|
|
else
|
|
if(ma->mode & MA_ZTRA)
|
|
re->flag |= R_ZTRA;
|
|
|
|
if(re->r.mode & R_SPEED) ma->texco |= NEED_UV;
|
|
|
|
/* for light groups */
|
|
ma->flag |= MA_IS_USED;
|
|
|
|
return ma;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Particles */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* future thread problem... */
|
|
static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, float *orco, float *surfnor,
|
|
float *uvco, int totuv, float *vec, float *vec1, float ctime,
|
|
int first, int line, int adapt, float adapt_angle, float adapt_pix, int override_uv)
|
|
{
|
|
static VertRen *v1= NULL, *v2= NULL;
|
|
VlakRen *vlr;
|
|
float nor[3], cross[3], crosslen, w, dx, dy, width;
|
|
static float anor[3], avec[3];
|
|
int flag, i;
|
|
static int second=0;
|
|
|
|
VecSubf(nor, vec, vec1);
|
|
Normalize(nor); // nor needed as tangent
|
|
Crossf(cross, vec, nor);
|
|
|
|
/* turn cross in pixelsize */
|
|
w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
|
|
dx= re->winx*cross[0]*re->winmat[0][0];
|
|
dy= re->winy*cross[1]*re->winmat[1][1];
|
|
w= sqrt(dx*dx + dy*dy)/w;
|
|
|
|
if(w!=0.0f) {
|
|
float fac;
|
|
if(ma->strand_ease!=0.0f) {
|
|
if(ma->strand_ease<0.0f)
|
|
fac= pow(ctime, 1.0+ma->strand_ease);
|
|
else
|
|
fac= pow(ctime, 1.0/(1.0f-ma->strand_ease));
|
|
}
|
|
else fac= ctime;
|
|
|
|
width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
|
|
|
|
/* use actual Blender units for strand width and fall back to minimum width */
|
|
if(ma->mode & MA_STR_B_UNITS){
|
|
crosslen= VecLength(cross);
|
|
w= 2.0f*crosslen*ma->strand_min/w;
|
|
|
|
if(width < w)
|
|
width= w;
|
|
|
|
/*cross is the radius of the strand so we want it to be half of full width */
|
|
VecMulf(cross,0.5/crosslen);
|
|
}
|
|
else
|
|
width/=w;
|
|
|
|
VecMulf(cross, width);
|
|
}
|
|
else width= 1.0f;
|
|
|
|
if(ma->mode & MA_TANGENT_STR)
|
|
flag= R_SMOOTH|R_NOPUNOFLIP|R_TANGENT;
|
|
else
|
|
flag= R_SMOOTH;
|
|
|
|
/* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
|
|
if(ma->strand_sta==1.0f)
|
|
flag |= R_STRAND;
|
|
|
|
/* single face line */
|
|
if(line) {
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->flag= flag;
|
|
vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
|
|
|
|
VECCOPY(vlr->v1->co, vec);
|
|
VecAddf(vlr->v1->co, vlr->v1->co, cross);
|
|
VECCOPY(vlr->v1->n, nor);
|
|
vlr->v1->orco= orco;
|
|
vlr->v1->accum= -1.0f; // accum abuse for strand texco
|
|
|
|
VECCOPY(vlr->v2->co, vec);
|
|
VecSubf(vlr->v2->co, vlr->v2->co, cross);
|
|
VECCOPY(vlr->v2->n, nor);
|
|
vlr->v2->orco= orco;
|
|
vlr->v2->accum= vlr->v1->accum;
|
|
|
|
VECCOPY(vlr->v4->co, vec1);
|
|
VecAddf(vlr->v4->co, vlr->v4->co, cross);
|
|
VECCOPY(vlr->v4->n, nor);
|
|
vlr->v4->orco= orco;
|
|
vlr->v4->accum= 1.0f; // accum abuse for strand texco
|
|
|
|
VECCOPY(vlr->v3->co, vec1);
|
|
VecSubf(vlr->v3->co, vlr->v3->co, cross);
|
|
VECCOPY(vlr->v3->n, nor);
|
|
vlr->v3->orco= orco;
|
|
vlr->v3->accum= vlr->v4->accum;
|
|
|
|
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
|
|
vlr->mat= ma;
|
|
vlr->ec= ME_V2V3;
|
|
|
|
if(surfnor) {
|
|
float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
|
|
VECCOPY(snor, surfnor);
|
|
}
|
|
|
|
if(uvco){
|
|
for(i=0; i<totuv; i++){
|
|
MTFace *mtf;
|
|
mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
|
|
mtf->uv[0][0]=mtf->uv[1][0]=
|
|
mtf->uv[2][0]=mtf->uv[3][0]=(uvco+2*i)[0];
|
|
mtf->uv[0][1]=mtf->uv[1][1]=
|
|
mtf->uv[2][1]=mtf->uv[3][1]=(uvco+2*i)[1];
|
|
}
|
|
if(override_uv>=0){
|
|
MTFace *mtf;
|
|
mtf=RE_vlakren_get_tface(obr,vlr,override_uv,NULL,0);
|
|
|
|
mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
|
|
mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
|
|
|
|
mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
|
|
mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
|
|
}
|
|
}
|
|
}
|
|
/* first two vertices of a strand */
|
|
else if(first) {
|
|
if(adapt){
|
|
VECCOPY(anor, nor);
|
|
VECCOPY(avec, vec);
|
|
second=1;
|
|
}
|
|
|
|
v1= RE_findOrAddVert(obr, obr->totvert++);
|
|
v2= RE_findOrAddVert(obr, obr->totvert++);
|
|
|
|
VECCOPY(v1->co, vec);
|
|
VecAddf(v1->co, v1->co, cross);
|
|
VECCOPY(v1->n, nor);
|
|
v1->orco= orco;
|
|
v1->accum= -1.0f; // accum abuse for strand texco
|
|
|
|
VECCOPY(v2->co, vec);
|
|
VecSubf(v2->co, v2->co, cross);
|
|
VECCOPY(v2->n, nor);
|
|
v2->orco= orco;
|
|
v2->accum= v1->accum;
|
|
}
|
|
/* more vertices & faces to strand */
|
|
else {
|
|
if(adapt==0 || second){
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->flag= flag;
|
|
vlr->v1= v1;
|
|
vlr->v2= v2;
|
|
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
|
|
|
|
v1= vlr->v4; // cycle
|
|
v2= vlr->v3; // cycle
|
|
|
|
|
|
if(adapt){
|
|
second=0;
|
|
VECCOPY(anor,nor);
|
|
VECCOPY(avec,vec);
|
|
}
|
|
|
|
}
|
|
else if(adapt){
|
|
float dvec[3],pvec[3];
|
|
VecSubf(dvec,avec,vec);
|
|
Projf(pvec,dvec,vec);
|
|
VecSubf(dvec,dvec,pvec);
|
|
|
|
w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
|
|
dx= re->winx*dvec[0]*re->winmat[0][0]/w;
|
|
dy= re->winy*dvec[1]*re->winmat[1][1]/w;
|
|
w= sqrt(dx*dx + dy*dy);
|
|
if(Inpf(anor,nor)<adapt_angle && w>adapt_pix){
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->flag= flag;
|
|
vlr->v1= v1;
|
|
vlr->v2= v2;
|
|
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
|
|
|
|
v1= vlr->v4; // cycle
|
|
v2= vlr->v3; // cycle
|
|
|
|
VECCOPY(anor,nor);
|
|
VECCOPY(avec,vec);
|
|
}
|
|
else{
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
|
|
}
|
|
}
|
|
|
|
VECCOPY(vlr->v4->co, vec);
|
|
VecAddf(vlr->v4->co, vlr->v4->co, cross);
|
|
VECCOPY(vlr->v4->n, nor);
|
|
vlr->v4->orco= orco;
|
|
vlr->v4->accum= -1.0f + 2.0f*ctime; // accum abuse for strand texco
|
|
|
|
VECCOPY(vlr->v3->co, vec);
|
|
VecSubf(vlr->v3->co, vlr->v3->co, cross);
|
|
VECCOPY(vlr->v3->n, nor);
|
|
vlr->v3->orco= orco;
|
|
vlr->v3->accum= vlr->v4->accum;
|
|
|
|
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
|
|
vlr->mat= ma;
|
|
vlr->ec= ME_V2V3;
|
|
|
|
if(surfnor) {
|
|
float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
|
|
VECCOPY(snor, surfnor);
|
|
}
|
|
|
|
if(uvco){
|
|
for(i=0; i<totuv; i++){
|
|
MTFace *mtf;
|
|
mtf=RE_vlakren_get_tface(obr,vlr,i,NULL,1);
|
|
mtf->uv[0][0]=mtf->uv[1][0]=
|
|
mtf->uv[2][0]=mtf->uv[3][0]=(uvco+2*i)[0];
|
|
mtf->uv[0][1]=mtf->uv[1][1]=
|
|
mtf->uv[2][1]=mtf->uv[3][1]=(uvco+2*i)[1];
|
|
}
|
|
if(override_uv>=0){
|
|
MTFace *mtf;
|
|
mtf=RE_vlakren_get_tface(obr,vlr,override_uv,NULL,0);
|
|
|
|
mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
|
|
mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
|
|
|
|
mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
|
|
mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void static_particle_wire(ObjectRen *obr, Material *ma, float *vec, float *vec1, int first, int line)
|
|
{
|
|
VlakRen *vlr;
|
|
static VertRen *v1;
|
|
|
|
if(line) {
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v3= vlr->v2;
|
|
vlr->v4= NULL;
|
|
|
|
VECCOPY(vlr->v1->co, vec);
|
|
VECCOPY(vlr->v2->co, vec1);
|
|
|
|
VecSubf(vlr->n, vec, vec1);
|
|
Normalize(vlr->n);
|
|
VECCOPY(vlr->v1->n, vlr->n);
|
|
VECCOPY(vlr->v2->n, vlr->n);
|
|
|
|
vlr->mat= ma;
|
|
vlr->ec= ME_V1V2;
|
|
|
|
}
|
|
else if(first) {
|
|
v1= RE_findOrAddVert(obr, obr->totvert++);
|
|
VECCOPY(v1->co, vec);
|
|
}
|
|
else {
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= v1;
|
|
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v3= vlr->v2;
|
|
vlr->v4= NULL;
|
|
|
|
v1= vlr->v2; // cycle
|
|
VECCOPY(v1->co, vec);
|
|
|
|
VecSubf(vlr->n, vec, vec1);
|
|
Normalize(vlr->n);
|
|
VECCOPY(v1->n, vlr->n);
|
|
|
|
vlr->mat= ma;
|
|
vlr->ec= ME_V1V2;
|
|
}
|
|
|
|
}
|
|
static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, Object *bb_ob, float *vec, float *vel, float size, float tilt, short align,
|
|
int lock, int p, int totpart, short uv_split, short anim, short split_offset, float random, float pa_time, float offset[2], int uv[3])
|
|
{
|
|
VlakRen *vlr;
|
|
MTFace *mtf;
|
|
float xvec[3]={1.0f,0.0f,0.0f}, yvec[3]={0.0f,1.0f,0.0f}, zvec[3];
|
|
float onevec[3]={0.0f,0.0f,0.0f}, tvec[3],tvec2[3], bb_center[3];
|
|
float uvx=0.0f, uvy=0.0f, uvdx=1.0f, uvdy=1.0f, time=0.0f;
|
|
|
|
if(align<PART_BB_VIEW)
|
|
onevec[align]=1.0f;
|
|
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
|
|
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
|
|
|
|
if(lock && align==PART_BB_VIEW){
|
|
VECCOPY(xvec,bb_ob->obmat[0]);
|
|
Normalize(xvec);
|
|
VECCOPY(yvec,bb_ob->obmat[1]);
|
|
Normalize(yvec);
|
|
VECCOPY(zvec,bb_ob->obmat[2]);
|
|
Normalize(zvec);
|
|
}
|
|
else if(align==PART_BB_VEL){
|
|
float temp[3];
|
|
VECCOPY(temp,vel);
|
|
Normalize(temp);
|
|
VECSUB(zvec,bb_ob->obmat[3],vec);
|
|
if(lock){
|
|
float fac=-Inpf(zvec,temp);
|
|
VECADDFAC(zvec,zvec,temp,fac);
|
|
}
|
|
Normalize(zvec);
|
|
Crossf(xvec,temp,zvec);
|
|
Normalize(xvec);
|
|
Crossf(yvec,zvec,xvec);
|
|
}
|
|
else{
|
|
VECSUB(zvec,bb_ob->obmat[3],vec);
|
|
if(lock)
|
|
zvec[align]=0.0f;
|
|
Normalize(zvec);
|
|
|
|
if(align<PART_BB_VIEW)
|
|
Crossf(xvec,onevec,zvec);
|
|
else
|
|
Crossf(xvec,bb_ob->obmat[1],zvec);
|
|
Normalize(xvec);
|
|
Crossf(yvec,zvec,xvec);
|
|
}
|
|
|
|
VECCOPY(tvec,xvec);
|
|
VECCOPY(tvec2,yvec);
|
|
|
|
VecMulf(xvec,cos(tilt*(float)M_PI));
|
|
VecMulf(tvec2,sin(tilt*(float)M_PI));
|
|
VECADD(xvec,xvec,tvec2);
|
|
|
|
VecMulf(yvec,cos(tilt*(float)M_PI));
|
|
VecMulf(tvec,-sin(tilt*(float)M_PI));
|
|
VECADD(yvec,yvec,tvec);
|
|
|
|
VecMulf(xvec,size);
|
|
VecMulf(yvec,size);
|
|
|
|
VECADDFAC(bb_center,vec,xvec,offset[0]);
|
|
VECADDFAC(bb_center,bb_center,yvec,offset[1]);
|
|
|
|
VECADD(vlr->v1->co,bb_center,xvec);
|
|
VECADD(vlr->v1->co,vlr->v1->co,yvec);
|
|
MTC_Mat4MulVecfl(re->viewmat,vlr->v1->co);
|
|
|
|
VECSUB(vlr->v2->co,bb_center,xvec);
|
|
VECADD(vlr->v2->co,vlr->v2->co,yvec);
|
|
MTC_Mat4MulVecfl(re->viewmat,vlr->v2->co);
|
|
|
|
VECSUB(vlr->v3->co,bb_center,xvec);
|
|
VECSUB(vlr->v3->co,vlr->v3->co,yvec);
|
|
MTC_Mat4MulVecfl(re->viewmat,vlr->v3->co);
|
|
|
|
VECADD(vlr->v4->co,bb_center,xvec);
|
|
VECSUB(vlr->v4->co,vlr->v4->co,yvec);
|
|
MTC_Mat4MulVecfl(re->viewmat,vlr->v4->co);
|
|
|
|
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
VECCOPY(vlr->v1->n,vlr->n);
|
|
VECCOPY(vlr->v2->n,vlr->n);
|
|
VECCOPY(vlr->v3->n,vlr->n);
|
|
VECCOPY(vlr->v4->n,vlr->n);
|
|
|
|
vlr->mat= ma;
|
|
vlr->ec= ME_V2V3;
|
|
|
|
if(uv_split>1){
|
|
uvdx=uvdy=1.0f/(float)uv_split;
|
|
if(anim==PART_BB_ANIM_TIME){
|
|
if(split_offset==PART_BB_OFF_NONE)
|
|
time=pa_time;
|
|
else if(split_offset==PART_BB_OFF_LINEAR)
|
|
time=(float)fmod(pa_time+(float)p/(float)(uv_split*uv_split),1.0f);
|
|
else /* split_offset==PART_BB_OFF_RANDOM */
|
|
time=(float)fmod(pa_time+random,1.0f);
|
|
|
|
}
|
|
else if(anim==PART_BB_ANIM_ANGLE){
|
|
if(align==PART_BB_VIEW){
|
|
time=(float)fmod((tilt+1.0f)/2.0f,1.0);
|
|
}
|
|
else{
|
|
float axis1[3]={0.0f,0.0f,0.0f};
|
|
float axis2[3]={0.0f,0.0f,0.0f};
|
|
axis1[(align+1)%3]=1.0f;
|
|
axis2[(align+2)%3]=1.0f;
|
|
if(lock==0){
|
|
zvec[align]=0.0f;
|
|
Normalize(zvec);
|
|
}
|
|
time=saacos(Inpf(zvec,axis1))/(float)M_PI;
|
|
if(Inpf(zvec,axis2)<0.0f)
|
|
time=1.0f-time/2.0f;
|
|
else
|
|
time=time/2.0f;
|
|
}
|
|
if(split_offset==PART_BB_OFF_LINEAR)
|
|
time=(float)fmod(pa_time+(float)p/(float)(uv_split*uv_split),1.0f);
|
|
else if(split_offset==PART_BB_OFF_RANDOM)
|
|
time=(float)fmod(pa_time+random,1.0f);
|
|
}
|
|
else{
|
|
if(split_offset==PART_BB_OFF_NONE)
|
|
time=0.0f;
|
|
else if(split_offset==PART_BB_OFF_LINEAR)
|
|
time=(float)fmod((float)p/(float)(uv_split*uv_split),1.0f);
|
|
else /* split_offset==PART_BB_OFF_RANDOM */
|
|
time=random;
|
|
}
|
|
uvx=uvdx*floor((float)(uv_split*uv_split)*(float)fmod((double)time,(double)uvdx));
|
|
uvy=uvdy*floor((1.0f-time)*(float)uv_split);
|
|
if(fmod(time,1.0f/uv_split)==0.0f)
|
|
uvy-=uvdy;
|
|
}
|
|
|
|
/* normal UVs */
|
|
if(uv[0]>=0){
|
|
mtf=RE_vlakren_get_tface(obr,vlr,uv[0],NULL,1);
|
|
mtf->uv[0][0]=1.0f;
|
|
mtf->uv[0][1]=1.0f;
|
|
mtf->uv[1][0]=0.0f;
|
|
mtf->uv[1][1]=1.0f;
|
|
mtf->uv[2][0]=0.0f;
|
|
mtf->uv[2][1]=0.0f;
|
|
mtf->uv[3][0]=1.0f;
|
|
mtf->uv[3][1]=0.0f;
|
|
}
|
|
|
|
/* time-index UVs */
|
|
if(uv[1]>=0){
|
|
mtf=RE_vlakren_get_tface(obr,vlr,uv[1],NULL,1);
|
|
mtf->uv[0][0]=mtf->uv[1][0]=mtf->uv[2][0]=mtf->uv[3][0]=pa_time;
|
|
mtf->uv[0][1]=mtf->uv[1][1]=mtf->uv[2][1]=mtf->uv[3][1]=(float)p/(float)totpart;
|
|
}
|
|
|
|
/* split UVs */
|
|
if(uv_split>1 && uv[2]>=0){
|
|
mtf=RE_vlakren_get_tface(obr,vlr,uv[2],NULL,1);
|
|
mtf->uv[0][0]=uvx+uvdx;
|
|
mtf->uv[0][1]=uvy+uvdy;
|
|
mtf->uv[1][0]=uvx;
|
|
mtf->uv[1][1]=uvy+uvdy;
|
|
mtf->uv[2][0]=uvx;
|
|
mtf->uv[2][1]=uvy;
|
|
mtf->uv[3][0]=uvx+uvdx;
|
|
mtf->uv[3][1]=uvy;
|
|
}
|
|
}
|
|
static void render_new_particle(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, int path, int first, int line,
|
|
float time, float *loc, float *loc1, float *orco, float *surfnor, int totuv, float *uvco,
|
|
float size, int seed, int override_uv, int adapt, float adapt_angle, float adapt_pix)
|
|
{
|
|
HaloRen *har=0;
|
|
if(path){
|
|
if(ma->mode&MA_WIRE)
|
|
static_particle_wire(obr, ma, loc, loc1, first, line);
|
|
else if(ma->mode & MA_HALO){
|
|
har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, orco, uvco, size, 1.0, seed);
|
|
if(har) har->lay= obr->ob->lay;
|
|
}
|
|
else
|
|
static_particle_strand(re, obr, ma, orco, surfnor, uvco, totuv, loc, loc1, time, first, line, adapt, adapt_angle, adapt_pix, override_uv);
|
|
}
|
|
else{
|
|
har= RE_inithalo_particle(re, obr, dm, ma, loc, NULL, orco, uvco, size, 0.0, seed);
|
|
if(har) har->lay= obr->ob->lay;
|
|
}
|
|
}
|
|
static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
|
|
{
|
|
Object *ob= obr->ob;
|
|
Object *tob=0, *bb_ob=re->scene->camera;
|
|
Material *ma=0;
|
|
CustomDataLayer *layer;
|
|
MTFace *mtface;
|
|
ParticleSystemModifierData *psmd;
|
|
ParticleSystem *tpsys=0;
|
|
ParticleSettings *part, *tpart=0;
|
|
ParticleData *pars, *pa=0,*tpa=0;
|
|
ParticleKey *states=0;
|
|
ParticleKey state;
|
|
ParticleCacheKey *cache=0;
|
|
StrandBuffer *strandbuf=0;
|
|
StrandVert *svert=0;
|
|
StrandBound *sbound= 0;
|
|
StrandRen *strand=0;
|
|
RNG *rng= 0;
|
|
float loc[3],loc1[3],loc0[3],vel[3],mat[4][4],nmat[3][3],co[3],nor[3],time;
|
|
float *orco=0,*surfnor=0,*uvco=0, strandlen=0.0f, curlen=0.0f;
|
|
float hasize, pa_size, pa_time, r_tilt, cfra=bsystem_time(ob,(float)CFRA,0.0);
|
|
float adapt_angle=0.0, adapt_pix=0.0, random, simplify[2];
|
|
int i, a, k, max_k=0, totpart, totuv=0, override_uv=-1, dosimplify = 0, dosurfacecache = 0;
|
|
int path_possible=0, keys_possible=0, baked_keys=0, totchild=psys->totchild;
|
|
int seed, path_nbr=0, path=0, orco1=0, adapt=0, uv[3]={0,0,0}, num;
|
|
int totface, *origindex = 0;
|
|
char **uv_name=0;
|
|
|
|
/* 1. check that everything is ok & updated */
|
|
if(psys==NULL)
|
|
return 0;
|
|
|
|
part=psys->part;
|
|
pars=psys->particles;
|
|
|
|
if(part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
|
|
return 0;
|
|
|
|
if(part->draw_as==PART_DRAW_OB || part->draw_as==PART_DRAW_GR || part->draw_as==PART_DRAW_NOT)
|
|
return 1;
|
|
|
|
/* 2. start initialising things */
|
|
if(part->phystype==PART_PHYS_KEYED){
|
|
if(psys->flag & PSYS_FIRST_KEYED)
|
|
psys_count_keyed_targets(ob,psys);
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
psmd= psys_get_modifier(ob,psys);
|
|
if(!(psmd->modifier.mode & eModifierMode_Render))
|
|
return 0;
|
|
|
|
if(G.rendering == 0) { /* preview render */
|
|
totchild = (int)((float)totchild * (float)part->disp / 100.0f);
|
|
}
|
|
|
|
psys->flag|=PSYS_DRAWING;
|
|
|
|
rng= rng_new(psys->seed);
|
|
|
|
ma= give_render_material(re, ob, part->omat);
|
|
|
|
if(part->bb_ob)
|
|
bb_ob=part->bb_ob;
|
|
|
|
if(ma->ipo){
|
|
calc_ipo(ma->ipo, cfra);
|
|
execute_ipo((ID *)ma, ma->ipo);
|
|
}
|
|
|
|
RE_set_customdata_names(obr, &psmd->dm->faceData);
|
|
totuv=CustomData_number_of_layers(&psmd->dm->faceData,CD_MTFACE);
|
|
|
|
if(ma->texco & TEXCO_UV && totuv) {
|
|
uvco = MEM_callocN(totuv*2*sizeof(float),"particle_uvs");
|
|
|
|
if(ma->strand_uvname[0]) {
|
|
override_uv= CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,ma->strand_uvname);
|
|
override_uv-= CustomData_get_layer_index(&psmd->dm->faceData,CD_MTFACE);
|
|
}
|
|
}
|
|
|
|
if(part->draw_as==PART_DRAW_BB){
|
|
int first_uv=CustomData_get_layer_index(&psmd->dm->faceData,CD_MTFACE);
|
|
|
|
uv[0]=CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,psys->bb_uvname[0]);
|
|
if(uv[0]<0)
|
|
uv[0]=CustomData_get_active_layer_index(&psmd->dm->faceData,CD_MTFACE);
|
|
|
|
uv[1]=CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,psys->bb_uvname[1]);
|
|
//if(uv[1]<0)
|
|
// uv[1]=CustomData_get_active_layer_index(&psmd->dm->faceData,CD_MTFACE);
|
|
|
|
uv[2]=CustomData_get_named_layer_index(&psmd->dm->faceData,CD_MTFACE,psys->bb_uvname[2]);
|
|
//if(uv[2]<0)
|
|
// uv[2]=CustomData_get_active_layer_index(&psmd->dm->faceData,CD_MTFACE);
|
|
|
|
if(first_uv>=0){
|
|
uv[0]-=first_uv;
|
|
uv[1]-=first_uv;
|
|
uv[2]-=first_uv;
|
|
}
|
|
}
|
|
|
|
if(part->flag&PART_ABS_TIME && part->ipo){
|
|
calc_ipo(part->ipo, cfra);
|
|
execute_ipo((ID *)part, part->ipo);
|
|
}
|
|
|
|
if(part->flag&PART_GLOB_TIME)
|
|
cfra=bsystem_time(0,(float)CFRA,0.0);
|
|
|
|
if(part->type==PART_REACTOR){
|
|
psys_get_reactor_target(ob, psys, &tob, &tpsys);
|
|
if(tpsys && (part->from==PART_FROM_PARTICLE || part->phystype==PART_PHYS_NO)){
|
|
psmd=psys_get_modifier(tob,tpsys);
|
|
tpart=tpsys->part;
|
|
}
|
|
}
|
|
|
|
hasize = ma->hasize;
|
|
seed = ma->seed1;
|
|
|
|
re->flag |= R_HALO;
|
|
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat); /* need to be that way, for imat texture */
|
|
Mat3CpyMat4(nmat, ob->imat);
|
|
Mat3Transp(nmat);
|
|
|
|
totpart=psys->totpart;
|
|
|
|
if(psys->pathcache){
|
|
path_possible=1;
|
|
keys_possible=1;
|
|
}
|
|
if(part->draw_as==PART_DRAW_PATH){
|
|
if(path_possible){
|
|
path_nbr=(int)pow(2.0,(double) part->ren_step);
|
|
//if(part->phystype==PART_PHYS_KEYED && (psys->flag&PSYS_BAKED)==0)
|
|
// path_nbr*=psys->totkeyed;
|
|
|
|
if(path_nbr) {
|
|
if((ma->mode & (MA_HALO|MA_WIRE))==0) {
|
|
orco= MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
|
|
set_object_orco(re, psys, orco);
|
|
}
|
|
path=1;
|
|
}
|
|
|
|
if(part->draw&PART_DRAW_REN_ADAPT) {
|
|
adapt=1;
|
|
adapt_pix=(float)part->adapt_pix;
|
|
adapt_angle=cos((float)part->adapt_angle*(float)(M_PI/180.0));
|
|
}
|
|
|
|
if(re->r.renderer==R_INTERN && part->draw&PART_DRAW_REN_STRAND) {
|
|
strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
|
|
strandbuf->ma= ma;
|
|
strandbuf->lay= ob->lay;
|
|
Mat4CpyMat4(strandbuf->winmat, re->winmat);
|
|
strandbuf->winx= re->winx;
|
|
strandbuf->winy= re->winy;
|
|
strandbuf->maxdepth= 2;
|
|
strandbuf->adaptcos= cos((float)part->adapt_angle*(float)(M_PI/180.0));
|
|
strandbuf->overrideuv= override_uv;
|
|
strandbuf->minwidth= ma->strand_min;
|
|
|
|
if(ma->strand_widthfade == 0.0f)
|
|
strandbuf->widthfade= 0.0f;
|
|
else if(ma->strand_widthfade >= 1.0f)
|
|
strandbuf->widthfade= 2.0f - ma->strand_widthfade;
|
|
else
|
|
strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
|
|
|
|
if(part->flag & PART_HAIR_BSPLINE)
|
|
strandbuf->flag |= R_STRAND_BSPLINE;
|
|
if(ma->mode & MA_STR_B_UNITS)
|
|
strandbuf->flag |= R_STRAND_B_UNITS;
|
|
|
|
svert= strandbuf->vert;
|
|
|
|
if(re->r.mode & R_SPEED)
|
|
dosurfacecache= 1;
|
|
else if((re->wrld.mode & WO_AMB_OCC) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
|
|
if(ma->amb != 0.0f)
|
|
dosurfacecache= 1;
|
|
|
|
totface= psmd->dm->getNumFaces(psmd->dm);
|
|
origindex= psmd->dm->getFaceDataArray(psmd->dm, CD_ORIGINDEX);
|
|
if(origindex) {
|
|
for(a=0; a<totface; a++)
|
|
strandbuf->totbound= MAX2(strandbuf->totbound, origindex[a]);
|
|
strandbuf->totbound++;
|
|
}
|
|
strandbuf->totbound++;
|
|
strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
|
|
sbound= strandbuf->bound;
|
|
sbound->start= sbound->end= 0;
|
|
}
|
|
}
|
|
}
|
|
else if(keys_possible && part->draw&PART_DRAW_KEYS){
|
|
path_nbr=part->keys_step;
|
|
if(path_nbr==0)
|
|
baked_keys=1;
|
|
}
|
|
|
|
if(orco==0){
|
|
orco=MEM_mallocN(3*sizeof(float),"particle orco");
|
|
orco1=1;
|
|
}
|
|
|
|
if(path_nbr==0)
|
|
psys->lattice=psys_get_lattice(ob,psys);
|
|
|
|
/* 3. start creating renderable things */
|
|
for(a=0,pa=pars; a<totpart+totchild; a++, pa++) {
|
|
random = rng_getFloat(rng);
|
|
|
|
if(a<totpart){
|
|
if(pa->flag & PARS_UNEXIST) continue;
|
|
|
|
pa_time=(cfra-pa->time)/pa->lifetime;
|
|
if((part->flag&PART_ABS_TIME)==0){
|
|
if(ma->ipo){
|
|
/* correction for lifetime */
|
|
calc_ipo(ma->ipo, 100.0f*pa_time);
|
|
execute_ipo((ID *)ma, ma->ipo);
|
|
}
|
|
if(part->ipo){
|
|
/* correction for lifetime */
|
|
calc_ipo(part->ipo, 100.0f*pa_time);
|
|
execute_ipo((ID *)part, part->ipo);
|
|
}
|
|
}
|
|
|
|
hasize = ma->hasize;
|
|
|
|
/* get orco */
|
|
if(tpsys && (part->from==PART_FROM_PARTICLE || part->phystype==PART_PHYS_NO)){
|
|
tpa=tpsys->particles+pa->num;
|
|
psys_particle_on_emitter(ob, psmd,tpart->from,tpa->num,pa->num_dmcache,tpa->fuv,tpa->foffset,co,nor,0,0,orco,0);
|
|
}
|
|
else
|
|
psys_particle_on_emitter(ob, psmd,part->from,pa->num,pa->num_dmcache,pa->fuv,pa->foffset,co,nor,0,0,orco,0);
|
|
|
|
num= pa->num_dmcache;
|
|
|
|
if(num == DMCACHE_NOTFOUND)
|
|
if(pa->num < psmd->dm->getNumFaces(psmd->dm))
|
|
num= pa->num;
|
|
|
|
if(uvco && ELEM(part->from,PART_FROM_FACE,PART_FROM_VOLUME)){
|
|
layer=psmd->dm->faceData.layers + CustomData_get_layer_index(&psmd->dm->faceData,CD_MFACE);
|
|
|
|
for(i=0; i<totuv; i++){
|
|
if(num != DMCACHE_NOTFOUND) {
|
|
MFace *mface=psmd->dm->getFaceData(psmd->dm,num,CD_MFACE);
|
|
mtface=(MTFace*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MTFACE,i);
|
|
mtface+=num;
|
|
|
|
psys_interpolate_uvs(mtface,mface->v4,pa->fuv,uvco+2*i);
|
|
}
|
|
else {
|
|
uvco[2*i]= 0.0f;
|
|
uvco[2*i + 1]= 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
pa_size=pa->size;
|
|
|
|
r_tilt=1.0f+pa->r_ave[0];
|
|
|
|
if(path_nbr){
|
|
cache = psys->pathcache[a];
|
|
max_k = (int)cache->steps;
|
|
}
|
|
|
|
if(totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
|
|
}
|
|
else {
|
|
ChildParticle *cpa= psys->child+a-totpart;
|
|
|
|
pa_time=psys_get_child_time(psys, cpa, cfra);
|
|
|
|
if((part->flag&PART_ABS_TIME)==0){
|
|
if(ma->ipo){
|
|
/* correction for lifetime */
|
|
calc_ipo(ma->ipo, 100.0f*pa_time);
|
|
execute_ipo((ID *)ma, ma->ipo);
|
|
}
|
|
if(part->ipo){
|
|
/* correction for lifetime */
|
|
calc_ipo(part->ipo, 100.0f*pa_time);
|
|
execute_ipo((ID *)part, part->ipo);
|
|
}
|
|
}
|
|
|
|
pa_size=psys_get_child_size(psys, cpa, cfra, &pa_time);
|
|
|
|
r_tilt=2.0f*cpa->rand[2];
|
|
|
|
num= cpa->num;
|
|
|
|
/* get orco */
|
|
psys_particle_on_emitter(ob, psmd,
|
|
(part->childtype == PART_CHILD_FACES)? PART_FROM_FACE: PART_FROM_PARTICLE,
|
|
cpa->num,DMCACHE_ISCHILD,cpa->fuv,cpa->foffset,co,nor,0,0,orco,0);
|
|
|
|
if(uvco){
|
|
layer=psmd->dm->faceData.layers + CustomData_get_layer_index(&psmd->dm->faceData,CD_MFACE);
|
|
|
|
if(part->from!=PART_FROM_PARTICLE && part->childtype==PART_CHILD_FACES){
|
|
for(i=0; i<totuv; i++){
|
|
if(part->childtype==PART_CHILD_FACES){
|
|
MFace *mface=psmd->dm->getFaceData(psmd->dm,cpa->num,CD_MFACE);
|
|
|
|
mtface=(MTFace*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MTFACE,i);
|
|
mtface+=cpa->num;
|
|
|
|
psys_interpolate_uvs(mtface,mface->v4,cpa->fuv,uvco+2*i);
|
|
}
|
|
else{
|
|
uvco[2*i]=uvco[2*i+1]=0.0f;
|
|
}
|
|
}
|
|
}
|
|
else if(ELEM(part->from,PART_FROM_FACE,PART_FROM_VOLUME)){
|
|
for(i=0; i<totuv; i++){
|
|
ParticleData *parent = psys->particles+cpa->parent;
|
|
MFace *mface=psmd->dm->getFaceData(psmd->dm,parent->num,CD_MFACE);
|
|
|
|
mtface=(MTFace*)CustomData_get_layer_n(&psmd->dm->faceData,CD_MTFACE,i);
|
|
mtface+=parent->num;
|
|
|
|
psys_interpolate_uvs(mtface,mface->v4,parent->fuv,uvco+2*i);
|
|
}
|
|
}
|
|
}
|
|
|
|
dosimplify= psys_render_simplify_params(psys, cpa, simplify);
|
|
|
|
if(path_nbr) {
|
|
cache = psys->childcache[a-totpart];
|
|
max_k = (int)cache->steps;
|
|
}
|
|
|
|
if(strandbuf) {
|
|
if(origindex[cpa->num]+1 > sbound - strandbuf->bound) {
|
|
sbound= strandbuf->bound + origindex[cpa->num]+1;
|
|
sbound->start= sbound->end= obr->totstrand;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* surface normal shading setup */
|
|
if(ma->mode_l & MA_STR_SURFDIFF) {
|
|
Mat3MulVecfl(nmat, nor);
|
|
surfnor= nor;
|
|
}
|
|
else
|
|
surfnor= NULL;
|
|
|
|
/* strand render setup */
|
|
if(strandbuf) {
|
|
strand= RE_findOrAddStrand(obr, obr->totstrand++);
|
|
strand->buffer= strandbuf;
|
|
strand->vert= svert;
|
|
VECCOPY(strand->orco, orco);
|
|
|
|
if(dosimplify) {
|
|
float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
|
|
ssimplify[0]= simplify[0];
|
|
ssimplify[1]= simplify[1];
|
|
}
|
|
|
|
if(surfnor) {
|
|
float *snor= RE_strandren_get_surfnor(obr, strand, 1);
|
|
VECCOPY(snor, surfnor);
|
|
}
|
|
|
|
if(dosurfacecache && num >= 0) {
|
|
int *facenum= RE_strandren_get_face(obr, strand, 1);
|
|
*facenum= num;
|
|
}
|
|
|
|
if(uvco){
|
|
for(i=0; i<totuv; i++){
|
|
if(i != override_uv) {
|
|
float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
|
|
|
|
uv[0]= uvco[2*i];
|
|
uv[1]= uvco[2*i+1];
|
|
}
|
|
}
|
|
}
|
|
|
|
sbound->end++;
|
|
}
|
|
|
|
/* strandco computation setup */
|
|
if(path_nbr) {
|
|
strandlen= 0.0f;
|
|
curlen= 0.0f;
|
|
for(k=1; k<=path_nbr; k++)
|
|
if(k<=max_k)
|
|
strandlen += VecLenf((cache+k-1)->co, (cache+k)->co);
|
|
}
|
|
|
|
for(k=0; k<=path_nbr; k++){
|
|
if(path_nbr){
|
|
if(k<=max_k){
|
|
//bti->convert_bake_key(bsys,cache+k,0,(void*)&state);
|
|
//copy_particle_key(&state,cache+k,0);
|
|
VECCOPY(state.co,(cache+k)->co);
|
|
VECCOPY(state.vel,(cache+k)->vel);
|
|
}
|
|
else
|
|
continue;
|
|
|
|
if(k > 0)
|
|
curlen += VecLenf((cache+k-1)->co, (cache+k)->co);
|
|
time= curlen/strandlen;
|
|
}
|
|
else{
|
|
time=0.0f;
|
|
state.time=cfra;
|
|
if(psys_get_particle_state(ob,psys,a,&state,0)==0)
|
|
continue;
|
|
}
|
|
|
|
VECCOPY(loc,state.co);
|
|
if(part->draw_as!=PART_DRAW_BB)
|
|
MTC_Mat4MulVecfl(re->viewmat,loc);
|
|
|
|
if(part->draw_as==PART_DRAW_LINE) {
|
|
VECCOPY(vel,state.vel);
|
|
//VECADD(vel,vel,state.co);
|
|
MTC_Mat4Mul3Vecfl(re->viewmat,vel);
|
|
//VECSUB(vel,vel,loc);
|
|
Normalize(vel);
|
|
if(part->draw & PART_DRAW_VEL_LENGTH)
|
|
VecMulf(vel,VecLength(state.vel));
|
|
VECADDFAC(loc0,loc,vel,-part->draw_line[0]);
|
|
VECADDFAC(loc1,loc,vel,part->draw_line[1]);
|
|
|
|
render_new_particle(re,obr,psmd->dm,ma,1,0,1,0.0f,loc0,loc1,
|
|
orco,surfnor,totuv,uvco,hasize,seed,override_uv,0,0,0);
|
|
}
|
|
else if(part->draw_as==PART_DRAW_BB) {
|
|
VECCOPY(vel,state.vel);
|
|
//MTC_Mat4Mul3Vecfl(re->viewmat,vel);
|
|
particle_billboard(re,obr,ma,bb_ob,loc,vel,pa_size,part->bb_tilt*(1.0f-part->bb_rand_tilt*r_tilt),
|
|
part->bb_align,part->draw&PART_DRAW_BB_LOCK,
|
|
a,totpart+totchild,part->bb_uv_split,part->bb_anim,part->bb_split_offset,random,pa_time,part->bb_offset,uv);
|
|
}
|
|
else if(strandbuf) {
|
|
VECCOPY(svert->co, loc);
|
|
svert->strandco= -1.0f + 2.0f*time;
|
|
svert++;
|
|
strand->totvert++;
|
|
}
|
|
else{
|
|
if(k==1){
|
|
VECSUB(loc0,loc1,loc);
|
|
VECADD(loc0,loc1,loc0);
|
|
render_new_particle(re,obr,psmd->dm,ma,path,1,0,0.0f,loc1,loc0,
|
|
orco,surfnor,totuv,uvco,hasize,seed,override_uv,
|
|
adapt,adapt_angle,adapt_pix);
|
|
}
|
|
|
|
if(path_nbr==0 || k)
|
|
render_new_particle(re,obr,psmd->dm,ma,path,0,0,time,loc,loc1,
|
|
orco,surfnor,totuv,uvco,hasize,seed,override_uv,
|
|
adapt,adapt_angle,adapt_pix);
|
|
|
|
VECCOPY(loc1,loc);
|
|
}
|
|
}
|
|
|
|
if(orco1==0)
|
|
orco+=3;
|
|
|
|
if(re->test_break())
|
|
break;
|
|
}
|
|
|
|
if(dosurfacecache)
|
|
strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
|
|
|
|
/* 4. clean up */
|
|
if(ma) do_mat_ipo(ma);
|
|
|
|
if(orco1)
|
|
MEM_freeN(orco);
|
|
|
|
if(uvco)
|
|
MEM_freeN(uvco);
|
|
|
|
if(uv_name)
|
|
MEM_freeN(uv_name);
|
|
|
|
if(states)
|
|
MEM_freeN(states);
|
|
|
|
rng_free(rng);
|
|
|
|
psys->flag &= ~PSYS_DRAWING;
|
|
|
|
if(psys->lattice){
|
|
end_latt_deform();
|
|
psys->lattice=0;
|
|
}
|
|
|
|
if(path && (ma->mode_l & MA_TANGENT_STR)==0)
|
|
calc_vertexnormals(re, obr, 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Halo's */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void make_render_halos(Render *re, ObjectRen *obr, Mesh *me, int totvert, MVert *mvert, Material *ma, float *orco)
|
|
{
|
|
Object *ob= obr->ob;
|
|
HaloRen *har;
|
|
float xn, yn, zn, nor[3], view[3];
|
|
float vec[3], hasize, mat[4][4], imat[3][3];
|
|
int a, ok, seed= ma->seed1;
|
|
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat3CpyMat4(imat, ob->imat);
|
|
|
|
re->flag |= R_HALO;
|
|
|
|
for(a=0; a<totvert; a++, mvert++) {
|
|
ok= 1;
|
|
|
|
if(ok) {
|
|
hasize= ma->hasize;
|
|
|
|
VECCOPY(vec, mvert->co);
|
|
MTC_Mat4MulVecfl(mat, vec);
|
|
|
|
if(ma->mode & MA_HALOPUNO) {
|
|
xn= mvert->no[0];
|
|
yn= mvert->no[1];
|
|
zn= mvert->no[2];
|
|
|
|
/* transpose ! */
|
|
nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
|
|
nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
|
|
nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
|
|
Normalize(nor);
|
|
|
|
VECCOPY(view, vec);
|
|
Normalize(view);
|
|
|
|
zn= nor[0]*view[0]+nor[1]*view[1]+nor[2]*view[2];
|
|
if(zn>=0.0) hasize= 0.0;
|
|
else hasize*= zn*zn*zn*zn;
|
|
}
|
|
|
|
if(orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
|
|
else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
|
|
if(har) har->lay= ob->lay;
|
|
}
|
|
if(orco) orco+= 3;
|
|
seed++;
|
|
}
|
|
}
|
|
|
|
static int verghalo(const void *a1, const void *a2)
|
|
{
|
|
const HaloRen *har1= *(const HaloRen**)a1;
|
|
const HaloRen *har2= *(const HaloRen**)a2;
|
|
|
|
if(har1->zs < har2->zs) return 1;
|
|
else if(har1->zs > har2->zs) return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void sort_halos(Render *re, int totsort)
|
|
{
|
|
ObjectRen *obr;
|
|
HaloRen *har= NULL, **haso;
|
|
int a;
|
|
|
|
if(re->tothalo==0) return;
|
|
|
|
re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
|
|
haso= re->sortedhalos;
|
|
|
|
for(obr=re->objecttable.first; obr; obr=obr->next) {
|
|
for(a=0; a<obr->tothalo; a++) {
|
|
if((a & 255)==0) har= obr->bloha[a>>8];
|
|
else har++;
|
|
|
|
*(haso++)= har;
|
|
}
|
|
}
|
|
|
|
qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Displacement Mapping */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static short test_for_displace(Render *re, Object *ob)
|
|
{
|
|
/* return 1 when this object uses displacement textures. */
|
|
Material *ma;
|
|
int i;
|
|
|
|
for (i=1; i<=ob->totcol; i++) {
|
|
ma=give_render_material(re, ob, i);
|
|
/* ma->mapto is ORed total of all mapto channels */
|
|
if(ma && (ma->mapto & MAP_DISPLACE)) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale)
|
|
{
|
|
MTFace *tface;
|
|
short texco= shi->mat->texco;
|
|
float sample=0;
|
|
char *name;
|
|
int i;
|
|
|
|
/* shi->co is current render coord, just make sure at least some vector is here */
|
|
VECCOPY(shi->co, vr->co);
|
|
/* vertex normal is used for textures type 'col' and 'var' */
|
|
VECCOPY(shi->vn, vr->n);
|
|
|
|
if (texco & TEXCO_UV) {
|
|
shi->totuv= 0;
|
|
shi->actuv= obr->actmtface;
|
|
|
|
for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
|
|
ShadeInputUV *suv= &shi->uv[i];
|
|
|
|
/* shi.uv needs scale correction from tface uv */
|
|
suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
|
|
suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
|
|
suv->uv[2]= 0.0f;
|
|
suv->name= name;
|
|
shi->totuv++;
|
|
}
|
|
}
|
|
|
|
/* set all rendercoords, 'texco' is an ORed value for all textures needed */
|
|
if ((texco & TEXCO_ORCO) && (vr->orco)) {
|
|
VECCOPY(shi->lo, vr->orco);
|
|
}
|
|
if (texco & TEXCO_STICKY) {
|
|
float *sticky= RE_vertren_get_sticky(obr, vr, 0);
|
|
if(sticky) {
|
|
shi->sticky[0]= sticky[0];
|
|
shi->sticky[1]= sticky[1];
|
|
shi->sticky[2]= 0.0f;
|
|
}
|
|
}
|
|
if (texco & TEXCO_GLOB) {
|
|
VECCOPY(shi->gl, shi->co);
|
|
MTC_Mat4MulVecfl(re->viewinv, shi->gl);
|
|
}
|
|
if (texco & TEXCO_NORM) {
|
|
VECCOPY(shi->orn, shi->vn);
|
|
}
|
|
if(texco & TEXCO_REFL) {
|
|
/* not (yet?) */
|
|
}
|
|
|
|
shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
|
|
|
|
do_material_tex(shi);
|
|
|
|
//printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
|
|
//vr->co[0], vr->co[1], vr->co[2]);
|
|
|
|
/* 0.5 could become button once? */
|
|
vr->co[0] += shi->displace[0] * scale[0] ;
|
|
vr->co[1] += shi->displace[1] * scale[1] ;
|
|
vr->co[2] += shi->displace[2] * scale[2] ;
|
|
|
|
//printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
|
|
|
|
/* we just don't do this vertex again, bad luck for other face using same vertex with
|
|
different material... */
|
|
vr->flag |= 1;
|
|
|
|
/* Pass sample back so displace_face can decide which way to split the quad */
|
|
sample = shi->displace[0]*shi->displace[0];
|
|
sample += shi->displace[1]*shi->displace[1];
|
|
sample += shi->displace[2]*shi->displace[2];
|
|
|
|
vr->accum=sample;
|
|
/* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
|
|
return;
|
|
}
|
|
|
|
static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale)
|
|
{
|
|
ShadeInput shi;
|
|
|
|
/* Warning, This is not that nice, and possibly a bit slow,
|
|
however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
|
|
memset(&shi, 0, sizeof(ShadeInput));
|
|
/* end warning! - Campbell */
|
|
|
|
/* set up shadeinput struct for multitex() */
|
|
|
|
/* memset above means we dont need this */
|
|
/*shi.osatex= 0;*/ /* signal not to use dx[] and dy[] texture AA vectors */
|
|
|
|
shi.vlr= vlr; /* current render face */
|
|
shi.mat= vlr->mat; /* current input material */
|
|
|
|
/* Displace the verts, flag is set when done */
|
|
if (!vlr->v1->flag)
|
|
displace_render_vert(re, obr, &shi, vlr->v1,0, scale);
|
|
|
|
if (!vlr->v2->flag)
|
|
displace_render_vert(re, obr, &shi, vlr->v2, 1, scale);
|
|
|
|
if (!vlr->v3->flag)
|
|
displace_render_vert(re, obr, &shi, vlr->v3, 2, scale);
|
|
|
|
if (vlr->v4) {
|
|
if (!vlr->v4->flag)
|
|
displace_render_vert(re, obr, &shi, vlr->v4, 3, scale);
|
|
|
|
/* closest in displace value. This will help smooth edges. */
|
|
if ( fabs(vlr->v1->accum - vlr->v3->accum) > fabs(vlr->v2->accum - vlr->v4->accum))
|
|
vlr->flag |= R_DIVIDE_24;
|
|
else vlr->flag &= ~R_DIVIDE_24;
|
|
}
|
|
|
|
/* Recalculate the face normal - if flipped before, flip now */
|
|
if(vlr->v4) {
|
|
CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
}
|
|
else {
|
|
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
}
|
|
}
|
|
|
|
static void do_displacement(Render *re, ObjectRen *obr)
|
|
{
|
|
VertRen *vr;
|
|
VlakRen *vlr;
|
|
// float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
|
|
float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
|
|
int i; //, texflag=0;
|
|
Object *obt;
|
|
|
|
/* Object Size with parenting */
|
|
obt=obr->ob;
|
|
while(obt){
|
|
VecAddf(temp, obt->size, obt->dsize);
|
|
scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
|
|
obt=obt->parent;
|
|
}
|
|
|
|
/* Clear all flags */
|
|
for(i=0; i<obr->totvert; i++){
|
|
vr= RE_findOrAddVert(obr, i);
|
|
vr->flag= 0;
|
|
}
|
|
|
|
for(i=0; i<obr->totvlak; i++){
|
|
vlr=RE_findOrAddVlak(obr, i);
|
|
displace_render_face(re, obr, vlr, scale);
|
|
}
|
|
|
|
/* Recalc vertex normals */
|
|
calc_vertexnormals(re, obr, 0);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Metaball */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void init_render_mball(Render *re, ObjectRen *obr)
|
|
{
|
|
Object *ob= obr->ob;
|
|
DispList *dl;
|
|
VertRen *ver;
|
|
VlakRen *vlr, *vlr1;
|
|
Material *ma;
|
|
float *data, *nors, mat[4][4], imat[3][3], xn, yn, zn;
|
|
int a, need_orco, *index;
|
|
|
|
if (ob!=find_basis_mball(ob))
|
|
return;
|
|
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat);
|
|
MTC_Mat3CpyMat4(imat, ob->imat);
|
|
|
|
ma= give_render_material(re, ob, 1);
|
|
|
|
need_orco= 0;
|
|
if(ma->texco & TEXCO_ORCO) {
|
|
need_orco= 1;
|
|
}
|
|
|
|
makeDispListMBall(ob);
|
|
dl= ob->disp.first;
|
|
if(dl==0) return;
|
|
|
|
data= dl->verts;
|
|
nors= dl->nors;
|
|
|
|
for(a=0; a<dl->nr; a++, data+=3, nors+=3) {
|
|
|
|
ver= RE_findOrAddVert(obr, obr->totvert++);
|
|
VECCOPY(ver->co, data);
|
|
MTC_Mat4MulVecfl(mat, ver->co);
|
|
|
|
/* render normals are inverted */
|
|
xn= -nors[0];
|
|
yn= -nors[1];
|
|
zn= -nors[2];
|
|
|
|
/* transpose ! */
|
|
ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
|
|
ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
|
|
ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
|
|
Normalize(ver->n);
|
|
//if(ob->transflag & OB_NEG_SCALE) VecMulf(ver->n. -1.0);
|
|
|
|
if(need_orco) ver->orco= data;
|
|
}
|
|
|
|
index= dl->index;
|
|
for(a=0; a<dl->parts; a++, index+=4) {
|
|
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= RE_findOrAddVert(obr, index[0]);
|
|
vlr->v2= RE_findOrAddVert(obr, index[1]);
|
|
vlr->v3= RE_findOrAddVert(obr, index[2]);
|
|
vlr->v4= 0;
|
|
|
|
if(ob->transflag & OB_NEG_SCALE)
|
|
CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->n);
|
|
else
|
|
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
|
|
vlr->mat= ma;
|
|
vlr->flag= ME_SMOOTH+R_NOPUNOFLIP;
|
|
vlr->ec= 0;
|
|
|
|
/* mball -too bad- always has triangles, because quads can be non-planar */
|
|
if(index[3] && index[3]!=index[2]) {
|
|
vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
*vlr1= *vlr;
|
|
vlr1->v2= vlr1->v3;
|
|
vlr1->v3= RE_findOrAddVert(obr, index[3]);
|
|
if(ob->transflag & OB_NEG_SCALE)
|
|
CalcNormFloat(vlr1->v1->co, vlr1->v2->co, vlr1->v3->co, vlr1->n);
|
|
else
|
|
CalcNormFloat(vlr1->v3->co, vlr1->v2->co, vlr1->v1->co, vlr1->n);
|
|
}
|
|
}
|
|
|
|
if(need_orco) {
|
|
/* store displist and scale */
|
|
make_orco_mball(ob);
|
|
}
|
|
else {
|
|
/* enforce display lists remade */
|
|
freedisplist(&ob->disp);
|
|
}
|
|
|
|
/* this enforces remake for real, orco displist is small (in scale) */
|
|
ob->recalc |= OB_RECALC_DATA;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Surfaces and Curves */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* returns amount of vertices added for orco */
|
|
static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
|
|
{
|
|
Object *ob= obr->ob;
|
|
VertRen *v1, *v2, *v3, *v4, *ver;
|
|
VlakRen *vlr, *vlr1, *vlr2, *vlr3;
|
|
Curve *cu= ob->data;
|
|
float *data, n1[3], flen;
|
|
int u, v, orcoret= 0;
|
|
int p1, p2, p3, p4, a;
|
|
int sizeu, nsizeu, sizev, nsizev;
|
|
int startvert, startvlak;
|
|
|
|
startvert= obr->totvert;
|
|
nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
|
|
|
|
data= dl->verts;
|
|
for (u = 0; u < sizeu; u++) {
|
|
v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
|
|
VECCOPY(v1->co, data); data += 3;
|
|
if(orco) {
|
|
v1->orco= orco; orco+= 3; orcoret++;
|
|
}
|
|
MTC_Mat4MulVecfl(mat, v1->co);
|
|
|
|
for (v = 1; v < sizev; v++) {
|
|
ver= RE_findOrAddVert(obr, obr->totvert++);
|
|
VECCOPY(ver->co, data); data += 3;
|
|
if(orco) {
|
|
ver->orco= orco; orco+= 3; orcoret++;
|
|
}
|
|
MTC_Mat4MulVecfl(mat, ver->co);
|
|
}
|
|
/* if V-cyclic, add extra vertices at end of the row */
|
|
if (dl->flag & DL_CYCL_U) {
|
|
ver= RE_findOrAddVert(obr, obr->totvert++);
|
|
VECCOPY(ver->co, v1->co);
|
|
if(orco) {
|
|
ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Done before next loop to get corner vert */
|
|
if (dl->flag & DL_CYCL_U) nsizev++;
|
|
if (dl->flag & DL_CYCL_V) nsizeu++;
|
|
|
|
/* if U cyclic, add extra row at end of column */
|
|
if (dl->flag & DL_CYCL_V) {
|
|
for (v = 0; v < nsizev; v++) {
|
|
v1= RE_findOrAddVert(obr, startvert + v);
|
|
ver= RE_findOrAddVert(obr, obr->totvert++);
|
|
VECCOPY(ver->co, v1->co);
|
|
if(orco) {
|
|
ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
|
|
}
|
|
}
|
|
}
|
|
|
|
sizeu = nsizeu;
|
|
sizev = nsizev;
|
|
|
|
startvlak= obr->totvlak;
|
|
|
|
for(u = 0; u < sizeu - 1; u++) {
|
|
p1 = startvert + u * sizev; /* walk through face list */
|
|
p2 = p1 + 1;
|
|
p3 = p2 + sizev;
|
|
p4 = p3 - 1;
|
|
|
|
for(v = 0; v < sizev - 1; v++) {
|
|
v1= RE_findOrAddVert(obr, p1);
|
|
v2= RE_findOrAddVert(obr, p2);
|
|
v3= RE_findOrAddVert(obr, p3);
|
|
v4= RE_findOrAddVert(obr, p4);
|
|
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
|
|
|
|
flen= CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, n1);
|
|
VECCOPY(vlr->n, n1);
|
|
|
|
vlr->mat= matar[ dl->col];
|
|
vlr->ec= ME_V1V2+ME_V2V3;
|
|
vlr->flag= dl->rt;
|
|
if( (cu->flag & CU_NOPUNOFLIP) ) {
|
|
vlr->flag |= R_NOPUNOFLIP;
|
|
}
|
|
|
|
VecAddf(v1->n, v1->n, n1);
|
|
VecAddf(v2->n, v2->n, n1);
|
|
VecAddf(v3->n, v3->n, n1);
|
|
VecAddf(v4->n, v4->n, n1);
|
|
|
|
p1++; p2++; p3++; p4++;
|
|
}
|
|
}
|
|
/* fix normals for U resp. V cyclic faces */
|
|
sizeu--; sizev--; /* dec size for face array */
|
|
if (dl->flag & DL_CYCL_V) {
|
|
|
|
for (v = 0; v < sizev; v++)
|
|
{
|
|
/* optimize! :*/
|
|
vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
|
|
vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
|
|
VecAddf(vlr1->v1->n, vlr1->v1->n, vlr->n);
|
|
VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
|
|
VecAddf(vlr->v3->n, vlr->v3->n, vlr1->n);
|
|
VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
|
|
}
|
|
}
|
|
if (dl->flag & DL_CYCL_U) {
|
|
|
|
for (u = 0; u < sizeu; u++)
|
|
{
|
|
/* optimize! :*/
|
|
vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
|
|
vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
|
|
VecAddf(vlr1->v2->n, vlr1->v2->n, vlr->n);
|
|
VecAddf(vlr1->v3->n, vlr1->v3->n, vlr->n);
|
|
VecAddf(vlr->v1->n, vlr->v1->n, vlr1->n);
|
|
VecAddf(vlr->v4->n, vlr->v4->n, vlr1->n);
|
|
}
|
|
}
|
|
/* last vertex is an extra case:
|
|
|
|
^ ()----()----()----()
|
|
| | | || |
|
|
u | |(0,n)||(0,0)|
|
|
| | || |
|
|
()====()====[]====()
|
|
| | || |
|
|
| |(m,n)||(m,0)|
|
|
| | || |
|
|
()----()----()----()
|
|
v ->
|
|
|
|
vertex [] is no longer shared, therefore distribute
|
|
normals of the surrounding faces to all of the duplicates of []
|
|
*/
|
|
|
|
if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U))
|
|
{
|
|
vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m,n) */
|
|
vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0,0)); /* (0,0) */
|
|
VecAddf(n1, vlr->n, vlr1->n);
|
|
vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0,n) */
|
|
VecAddf(n1, n1, vlr2->n);
|
|
vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m,0) */
|
|
VecAddf(n1, n1, vlr3->n);
|
|
VECCOPY(vlr->v3->n, n1);
|
|
VECCOPY(vlr1->v1->n, n1);
|
|
VECCOPY(vlr2->v2->n, n1);
|
|
VECCOPY(vlr3->v4->n, n1);
|
|
}
|
|
for(a = startvert; a < obr->totvert; a++) {
|
|
ver= RE_findOrAddVert(obr, a);
|
|
Normalize(ver->n);
|
|
}
|
|
|
|
|
|
return orcoret;
|
|
}
|
|
|
|
static void init_render_surf(Render *re, ObjectRen *obr)
|
|
{
|
|
Object *ob= obr->ob;
|
|
Nurb *nu=0;
|
|
Curve *cu;
|
|
ListBase displist;
|
|
DispList *dl;
|
|
Material *matar[32];
|
|
float *orco=NULL, *orcobase=NULL, mat[4][4];
|
|
int a, need_orco=0;
|
|
|
|
cu= ob->data;
|
|
nu= cu->nurb.first;
|
|
if(nu==0) return;
|
|
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat);
|
|
|
|
/* material array */
|
|
memset(matar, 0, 4*32);
|
|
matar[0]= give_render_material(re, ob, 0);
|
|
for(a=0; a<ob->totcol; a++) {
|
|
matar[a]= give_render_material(re, ob, a+1);
|
|
if(matar[a] && matar[a]->texco & TEXCO_ORCO) {
|
|
need_orco= 1;
|
|
}
|
|
}
|
|
|
|
if(ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
|
|
|
|
if(need_orco) orcobase= orco= get_object_orco(re, ob);
|
|
|
|
displist.first= displist.last= 0;
|
|
makeDispListSurf(ob, &displist, 1);
|
|
|
|
dl= displist.first;
|
|
/* walk along displaylist and create rendervertices/-faces */
|
|
while(dl) {
|
|
/* watch out: u ^= y, v ^= x !! */
|
|
if(dl->type==DL_SURF) {
|
|
orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
|
|
}
|
|
|
|
dl= dl->next;
|
|
}
|
|
freedisplist(&displist);
|
|
}
|
|
|
|
static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
|
|
{
|
|
Object *ob= obr->ob;
|
|
Curve *cu;
|
|
VertRen *ver;
|
|
VlakRen *vlr;
|
|
DispList *dl;
|
|
ListBase olddl={NULL, NULL};
|
|
Material *matar[32];
|
|
float len, *data, *fp, *orco=NULL, *orcobase= NULL;
|
|
float n[3], mat[4][4];
|
|
int nr, startvert, startvlak, a, b;
|
|
int frontside, need_orco=0;
|
|
|
|
cu= ob->data;
|
|
if(cu->nurb.first==NULL) return;
|
|
|
|
/* no modifier call here, is in makedisp */
|
|
|
|
if(cu->resolu_ren)
|
|
SWAP(ListBase, olddl, cu->disp);
|
|
|
|
/* test displist */
|
|
if(cu->disp.first==NULL)
|
|
makeDispListCurveTypes(ob, 0);
|
|
dl= cu->disp.first;
|
|
if(cu->disp.first==NULL) return;
|
|
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat);
|
|
|
|
/* material array */
|
|
memset(matar, 0, 4*32);
|
|
matar[0]= give_render_material(re, ob, 0);
|
|
for(a=0; a<ob->totcol; a++) {
|
|
matar[a]= give_render_material(re, ob, a+1);
|
|
if(matar[a]->texco & TEXCO_ORCO) {
|
|
need_orco= 1;
|
|
}
|
|
}
|
|
|
|
if(need_orco) orcobase=orco= get_object_orco(re, ob);
|
|
|
|
dl= cu->disp.first;
|
|
while(dl) {
|
|
if(dl->type==DL_INDEX3) {
|
|
int *index;
|
|
|
|
startvert= obr->totvert;
|
|
data= dl->verts;
|
|
|
|
n[0]= ob->imat[0][2];
|
|
n[1]= ob->imat[1][2];
|
|
n[2]= ob->imat[2][2];
|
|
Normalize(n);
|
|
|
|
for(a=0; a<dl->nr; a++, data+=3) {
|
|
ver= RE_findOrAddVert(obr, obr->totvert++);
|
|
VECCOPY(ver->co, data);
|
|
|
|
/* flip normal if face is backfacing, also used in face loop below */
|
|
if(ver->co[2] < 0.0) {
|
|
VECCOPY(ver->n, n);
|
|
ver->flag = 1;
|
|
}
|
|
else {
|
|
ver->n[0]= -n[0]; ver->n[1]= -n[1]; ver->n[2]= -n[2];
|
|
ver->flag = 0;
|
|
}
|
|
|
|
MTC_Mat4MulVecfl(mat, ver->co);
|
|
|
|
if (orco) {
|
|
ver->orco = orco;
|
|
orco += 3;
|
|
}
|
|
}
|
|
|
|
if(timeoffset==0) {
|
|
startvlak= obr->totvlak;
|
|
index= dl->index;
|
|
for(a=0; a<dl->parts; a++, index+=3) {
|
|
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= RE_findOrAddVert(obr, startvert+index[0]);
|
|
vlr->v2= RE_findOrAddVert(obr, startvert+index[1]);
|
|
vlr->v3= RE_findOrAddVert(obr, startvert+index[2]);
|
|
vlr->v4= NULL;
|
|
|
|
if(vlr->v1->flag) {
|
|
VECCOPY(vlr->n, n);
|
|
}
|
|
else {
|
|
vlr->n[0]= -n[0]; vlr->n[1]= -n[1]; vlr->n[2]= -n[2];
|
|
}
|
|
|
|
vlr->mat= matar[ dl->col ];
|
|
vlr->flag= 0;
|
|
if( (cu->flag & CU_NOPUNOFLIP) ) {
|
|
vlr->flag |= R_NOPUNOFLIP;
|
|
}
|
|
vlr->ec= 0;
|
|
}
|
|
}
|
|
}
|
|
else if (dl->type==DL_SURF) {
|
|
|
|
/* cyclic U means an extruded full circular curve, we skip bevel splitting then */
|
|
if (dl->flag & DL_CYCL_U) {
|
|
orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
|
|
}
|
|
else {
|
|
int p1,p2,p3,p4;
|
|
|
|
fp= dl->verts;
|
|
startvert= obr->totvert;
|
|
nr= dl->nr*dl->parts;
|
|
|
|
while(nr--) {
|
|
ver= RE_findOrAddVert(obr, obr->totvert++);
|
|
|
|
VECCOPY(ver->co, fp);
|
|
MTC_Mat4MulVecfl(mat, ver->co);
|
|
fp+= 3;
|
|
|
|
if (orco) {
|
|
ver->orco = orco;
|
|
orco += 3;
|
|
}
|
|
}
|
|
|
|
if(dl->bevelSplitFlag || timeoffset==0) {
|
|
startvlak= obr->totvlak;
|
|
|
|
for(a=0; a<dl->parts; a++) {
|
|
|
|
frontside= (a >= dl->nr/2);
|
|
|
|
DL_SURFINDEX(dl->flag & DL_CYCL_U, dl->flag & DL_CYCL_V, dl->nr, dl->parts);
|
|
p1+= startvert;
|
|
p2+= startvert;
|
|
p3+= startvert;
|
|
p4+= startvert;
|
|
|
|
for(; b<dl->nr; b++) {
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= RE_findOrAddVert(obr, p2);
|
|
vlr->v2= RE_findOrAddVert(obr, p1);
|
|
vlr->v3= RE_findOrAddVert(obr, p3);
|
|
vlr->v4= RE_findOrAddVert(obr, p4);
|
|
vlr->ec= ME_V2V3+ME_V3V4;
|
|
if(a==0) vlr->ec+= ME_V1V2;
|
|
|
|
vlr->flag= dl->rt;
|
|
|
|
/* this is not really scientific: the vertices
|
|
* 2, 3 en 4 seem to give better vertexnormals than 1 2 3:
|
|
* front and backside treated different!!
|
|
*/
|
|
|
|
if(frontside)
|
|
CalcNormFloat(vlr->v2->co, vlr->v3->co, vlr->v4->co, vlr->n);
|
|
else
|
|
CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->n);
|
|
|
|
vlr->mat= matar[ dl->col ];
|
|
|
|
p4= p3;
|
|
p3++;
|
|
p2= p1;
|
|
p1++;
|
|
}
|
|
}
|
|
|
|
if (dl->bevelSplitFlag) {
|
|
for(a=0; a<dl->parts-1+!!(dl->flag&DL_CYCL_V); a++)
|
|
if(dl->bevelSplitFlag[a>>5]&(1<<(a&0x1F)))
|
|
split_v_renderfaces(obr, startvlak, startvert, dl->parts, dl->nr, a, dl->flag&DL_CYCL_V, dl->flag&DL_CYCL_U);
|
|
}
|
|
|
|
/* vertex normals */
|
|
for(a= startvlak; a<obr->totvlak; a++) {
|
|
vlr= RE_findOrAddVlak(obr, a);
|
|
|
|
VecAddf(vlr->v1->n, vlr->v1->n, vlr->n);
|
|
VecAddf(vlr->v3->n, vlr->v3->n, vlr->n);
|
|
VecAddf(vlr->v2->n, vlr->v2->n, vlr->n);
|
|
VecAddf(vlr->v4->n, vlr->v4->n, vlr->n);
|
|
}
|
|
for(a=startvert; a<obr->totvert; a++) {
|
|
ver= RE_findOrAddVert(obr, a);
|
|
len= Normalize(ver->n);
|
|
if(len==0.0) ver->flag= 1; /* flag abuse, its only used in zbuf now */
|
|
else ver->flag= 0;
|
|
}
|
|
for(a= startvlak; a<obr->totvlak; a++) {
|
|
vlr= RE_findOrAddVlak(obr, a);
|
|
if(vlr->v1->flag) VECCOPY(vlr->v1->n, vlr->n);
|
|
if(vlr->v2->flag) VECCOPY(vlr->v2->n, vlr->n);
|
|
if(vlr->v3->flag) VECCOPY(vlr->v3->n, vlr->n);
|
|
if(vlr->v4->flag) VECCOPY(vlr->v4->n, vlr->n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
dl= dl->next;
|
|
}
|
|
|
|
/* not very elegant... but we want original displist in UI */
|
|
if(cu->resolu_ren) {
|
|
freedisplist(&cu->disp);
|
|
SWAP(ListBase, olddl, cu->disp);
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Mesh */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
struct edgesort {
|
|
int v1, v2;
|
|
int f;
|
|
int i1, i2;
|
|
};
|
|
|
|
/* edges have to be added with lowest index first for sorting */
|
|
static void to_edgesort(struct edgesort *ed, int i1, int i2, int v1, int v2, int f)
|
|
{
|
|
if(v1>v2) {
|
|
SWAP(int, v1, v2);
|
|
SWAP(int, i1, i2);
|
|
}
|
|
|
|
ed->v1= v1;
|
|
ed->v2= v2;
|
|
ed->i1= i1;
|
|
ed->i2= i2;
|
|
ed->f = f;
|
|
}
|
|
|
|
static int vergedgesort(const void *v1, const void *v2)
|
|
{
|
|
const struct edgesort *x1=v1, *x2=v2;
|
|
|
|
if( x1->v1 > x2->v1) return 1;
|
|
else if( x1->v1 < x2->v1) return -1;
|
|
else if( x1->v2 > x2->v2) return 1;
|
|
else if( x1->v2 < x2->v2) return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct edgesort *make_mesh_edge_lookup(DerivedMesh *dm, int *totedgesort)
|
|
{
|
|
MFace *mf, *mface;
|
|
MTFace *tface=NULL;
|
|
struct edgesort *edsort, *ed;
|
|
unsigned int *mcol=NULL;
|
|
int a, totedge=0, totface;
|
|
|
|
mface= dm->getFaceArray(dm);
|
|
totface= dm->getNumFaces(dm);
|
|
tface= dm->getFaceDataArray(dm, CD_MTFACE);
|
|
mcol= dm->getFaceDataArray(dm, CD_MCOL);
|
|
|
|
if(mcol==NULL && tface==NULL) return NULL;
|
|
|
|
/* make sorted table with edges and face indices in it */
|
|
for(a= totface, mf= mface; a>0; a--, mf++) {
|
|
if(mf->v4) totedge+=4;
|
|
else if(mf->v3) totedge+=3;
|
|
}
|
|
|
|
if(totedge==0)
|
|
return NULL;
|
|
|
|
ed= edsort= MEM_callocN(totedge*sizeof(struct edgesort), "edgesort");
|
|
|
|
for(a=0, mf=mface; a<totface; a++, mf++) {
|
|
to_edgesort(ed++, 0, 1, mf->v1, mf->v2, a);
|
|
to_edgesort(ed++, 1, 2, mf->v2, mf->v3, a);
|
|
if(mf->v4) {
|
|
to_edgesort(ed++, 2, 3, mf->v3, mf->v4, a);
|
|
to_edgesort(ed++, 3, 0, mf->v4, mf->v1, a);
|
|
}
|
|
else if(mf->v3)
|
|
to_edgesort(ed++, 2, 3, mf->v3, mf->v1, a);
|
|
}
|
|
|
|
qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort);
|
|
|
|
*totedgesort= totedge;
|
|
|
|
return edsort;
|
|
}
|
|
|
|
static void use_mesh_edge_lookup(ObjectRen *obr, DerivedMesh *dm, MEdge *medge, VlakRen *vlr, struct edgesort *edgetable, int totedge)
|
|
{
|
|
struct edgesort ed, *edp;
|
|
CustomDataLayer *layer;
|
|
MTFace *mtface, *mtf;
|
|
MCol *mcol, *mc;
|
|
int index, mtfn, mcn;
|
|
char *name;
|
|
|
|
if(medge->v1 < medge->v2) {
|
|
ed.v1= medge->v1;
|
|
ed.v2= medge->v2;
|
|
}
|
|
else {
|
|
ed.v1= medge->v2;
|
|
ed.v2= medge->v1;
|
|
}
|
|
|
|
edp= bsearch(&ed, edgetable, totedge, sizeof(struct edgesort), vergedgesort);
|
|
|
|
/* since edges have different index ordering, we have to duplicate mcol and tface */
|
|
if(edp) {
|
|
mtfn= mcn= 0;
|
|
|
|
for(index=0; index<dm->faceData.totlayer; index++) {
|
|
layer= &dm->faceData.layers[index];
|
|
name= layer->name;
|
|
|
|
if(layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
|
|
mtface= &((MTFace*)layer->data)[edp->f];
|
|
mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
|
|
|
|
*mtf= *mtface;
|
|
|
|
memcpy(mtf->uv[0], mtface->uv[edp->i1], sizeof(float)*2);
|
|
memcpy(mtf->uv[1], mtface->uv[edp->i2], sizeof(float)*2);
|
|
memcpy(mtf->uv[2], mtface->uv[1], sizeof(float)*2);
|
|
memcpy(mtf->uv[3], mtface->uv[1], sizeof(float)*2);
|
|
}
|
|
else if(layer->type == CD_MCOL && mcn < MAX_MCOL) {
|
|
mcol= &((MCol*)layer->data)[edp->f*4];
|
|
mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
|
|
|
|
mc[0]= mcol[edp->i1];
|
|
mc[1]= mc[2]= mc[3]= mcol[edp->i2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_render_mesh(Render *re, ObjectRen *obr, int timeoffset)
|
|
{
|
|
Object *ob= obr->ob;
|
|
Mesh *me;
|
|
MVert *mvert = NULL;
|
|
MFace *mface;
|
|
VlakRen *vlr; //, *vlr1;
|
|
VertRen *ver;
|
|
Material *ma;
|
|
MSticky *ms = NULL;
|
|
DerivedMesh *dm;
|
|
CustomDataMask mask;
|
|
float xn, yn, zn, imat[3][3], mat[4][4]; //nor[3],
|
|
float *orco=0;
|
|
int a, a1, ok, need_orco=0, need_stress=0, need_tangent=0, vertofs;
|
|
int end, do_autosmooth=0, totvert = 0;
|
|
int useFluidmeshNormals= 0; // NT fluidsim, use smoothed normals?
|
|
int use_original_normals= 0;
|
|
|
|
me= ob->data;
|
|
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat);
|
|
MTC_Mat3CpyMat4(imat, ob->imat);
|
|
|
|
if(me->totvert==0)
|
|
return;
|
|
|
|
need_orco= 0;
|
|
for(a=1; a<=ob->totcol; a++) {
|
|
ma= give_render_material(re, ob, a);
|
|
if(ma) {
|
|
if(ma->texco & (TEXCO_ORCO|TEXCO_STRESS))
|
|
need_orco= 1;
|
|
if(ma->texco & TEXCO_STRESS)
|
|
need_stress= 1;
|
|
/* normalmaps, test if tangents needed, separated from shading */
|
|
if ((ma->mode_l & MA_TANGENT_V) || (ma->mode_l & MA_NORMAP_TANG)) {
|
|
need_tangent= 1;
|
|
if(me->mtface==NULL)
|
|
need_orco= 1;
|
|
}
|
|
/* radio faces need autosmooth, to separate shared vertices in corners */
|
|
if(re->r.mode & R_RADIO)
|
|
if(ma->mode & MA_RADIO)
|
|
do_autosmooth= 1;
|
|
}
|
|
}
|
|
|
|
if(re->flag & R_NEED_TANGENT) {
|
|
/* exception for tangent space baking */
|
|
need_tangent= 1;
|
|
if(me->mtface==NULL)
|
|
need_orco= 1;
|
|
}
|
|
|
|
/* check autosmooth and displacement, we then have to skip only-verts optimize */
|
|
do_autosmooth |= (me->flag & ME_AUTOSMOOTH);
|
|
if(do_autosmooth)
|
|
timeoffset= 0;
|
|
if(test_for_displace(re, ob ) )
|
|
timeoffset= 0;
|
|
|
|
mask= CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL;
|
|
if(!timeoffset)
|
|
if(need_orco)
|
|
mask |= CD_MASK_ORCO;
|
|
|
|
if(me->mr) {
|
|
if(re->flag & R_SKIP_MULTIRES)
|
|
me->mr->flag |= MULTIRES_NO_RENDER;
|
|
else
|
|
me->mr->flag &= ~MULTIRES_NO_RENDER;
|
|
}
|
|
|
|
dm= mesh_create_derived_render(ob, mask);
|
|
if(dm==NULL) return; /* in case duplicated object fails? */
|
|
|
|
if(mask & CD_MASK_ORCO) {
|
|
orco= dm->getVertDataArray(dm, CD_ORCO);
|
|
if(orco) {
|
|
orco= MEM_dupallocN(orco);
|
|
set_object_orco(re, ob, orco);
|
|
}
|
|
}
|
|
|
|
if((ob->fluidsimFlag & OB_FLUIDSIM_ENABLE) &&
|
|
(ob->fluidsimSettings->type & OB_FLUIDSIM_DOMAIN)&&
|
|
(ob->fluidsimSettings->meshSurface) ) {
|
|
useFluidmeshNormals = 1;
|
|
}
|
|
|
|
mvert= dm->getVertArray(dm);
|
|
totvert= dm->getNumVerts(dm);
|
|
|
|
/* attempt to autsmooth on original mesh, only without subsurf */
|
|
if(do_autosmooth && me->totvert==totvert && me->totface==dm->getNumFaces(dm))
|
|
use_original_normals= 1;
|
|
|
|
ms = (totvert==me->totvert)?me->msticky:NULL;
|
|
|
|
ma= give_render_material(re, ob, 1);
|
|
|
|
if(ma->mode & MA_HALO) {
|
|
make_render_halos(re, obr, me, totvert, mvert, ma, orco);
|
|
}
|
|
else {
|
|
|
|
for(a=0; a<totvert; a++, mvert++) {
|
|
ver= RE_findOrAddVert(obr, obr->totvert++);
|
|
VECCOPY(ver->co, mvert->co);
|
|
if(do_autosmooth==0) /* autosmooth on original unrotated data to prevent differences between frames */
|
|
MTC_Mat4MulVecfl(mat, ver->co);
|
|
|
|
if(useFluidmeshNormals) {
|
|
/* normals are inverted in render */
|
|
xn = -mvert->no[0]/ 32767.0;
|
|
yn = -mvert->no[1]/ 32767.0;
|
|
zn = -mvert->no[2]/ 32767.0;
|
|
/* transfor to cam space */
|
|
ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
|
|
ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
|
|
ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
|
|
} // useFluidmeshNormals
|
|
|
|
if(orco) {
|
|
ver->orco= orco;
|
|
orco+=3;
|
|
}
|
|
if(ms) {
|
|
float *sticky= RE_vertren_get_sticky(obr, ver, 1);
|
|
sticky[0]= ms->co[0];
|
|
sticky[1]= ms->co[1];
|
|
ms++;
|
|
}
|
|
}
|
|
|
|
if(!timeoffset) {
|
|
/* store customdata names, because DerivedMesh is freed */
|
|
RE_set_customdata_names(obr, &dm->faceData);
|
|
|
|
/* still to do for keys: the correct local texture coordinate */
|
|
|
|
/* faces in order of color blocks */
|
|
vertofs= obr->totvert - totvert;
|
|
for(a1=0; (a1<ob->totcol || (a1==0 && ob->totcol==0)); a1++) {
|
|
|
|
ma= give_render_material(re, ob, a1+1);
|
|
|
|
/* test for 100% transparant */
|
|
ok= 1;
|
|
if(ma->alpha==0.0 && ma->spectra==0.0) {
|
|
ok= 0;
|
|
/* texture on transparency? */
|
|
for(a=0; a<MAX_MTEX; a++) {
|
|
if(ma->mtex[a] && ma->mtex[a]->tex) {
|
|
if(ma->mtex[a]->mapto & MAP_ALPHA) ok= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if wire material, and we got edges, don't do the faces */
|
|
if(ma->mode & MA_WIRE) {
|
|
end= dm->getNumEdges(dm);
|
|
if(end) ok= 0;
|
|
}
|
|
|
|
if(ok) {
|
|
end= dm->getNumFaces(dm);
|
|
mface= dm->getFaceArray(dm);
|
|
|
|
for(a=0; a<end; a++, mface++) {
|
|
int v1, v2, v3, v4, flag;
|
|
|
|
if( mface->mat_nr==a1 ) {
|
|
float len;
|
|
|
|
v1= mface->v1;
|
|
v2= mface->v2;
|
|
v3= mface->v3;
|
|
v4= mface->v4;
|
|
flag= mface->flag & ME_SMOOTH;
|
|
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
|
|
vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
|
|
vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
|
|
if(v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
|
|
else vlr->v4= 0;
|
|
|
|
/* render normals are inverted in render */
|
|
if(use_original_normals) {
|
|
MFace *mf= me->mface+a;
|
|
MVert *mv= me->mvert;
|
|
|
|
if(vlr->v4)
|
|
len= CalcNormFloat4( mv[mf->v4].co, mv[mf->v3].co, mv[mf->v2].co, mv[mf->v1].co, vlr->n);
|
|
else
|
|
len= CalcNormFloat(mv[mf->v3].co, mv[mf->v2].co, mv[mf->v1].co, vlr->n);
|
|
}
|
|
else {
|
|
if(vlr->v4)
|
|
len= CalcNormFloat4(vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
else
|
|
len= CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
}
|
|
|
|
vlr->mat= ma;
|
|
vlr->flag= flag;
|
|
if((me->flag & ME_NOPUNOFLIP) ) {
|
|
vlr->flag |= R_NOPUNOFLIP;
|
|
}
|
|
vlr->ec= 0; /* mesh edges rendered separately */
|
|
|
|
if(len==0) obr->totvlak--;
|
|
else {
|
|
CustomDataLayer *layer;
|
|
MTFace *mtface, *mtf;
|
|
MCol *mcol, *mc;
|
|
int index, mtfn= 0, mcn= 0;
|
|
char *name;
|
|
|
|
for(index=0; index<dm->faceData.totlayer; index++) {
|
|
layer= &dm->faceData.layers[index];
|
|
name= layer->name;
|
|
|
|
if(layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
|
|
mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
|
|
mtface= (MTFace*)layer->data;
|
|
*mtf= mtface[a];
|
|
}
|
|
else if(layer->type == CD_MCOL && mcn < MAX_MCOL) {
|
|
mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
|
|
mcol= (MCol*)layer->data;
|
|
memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* exception... we do edges for wire mode. potential conflict when faces exist... */
|
|
end= dm->getNumEdges(dm);
|
|
mvert= dm->getVertArray(dm);
|
|
ma= give_render_material(re, ob, 1);
|
|
if(end && (ma->mode & MA_WIRE)) {
|
|
MEdge *medge;
|
|
struct edgesort *edgetable;
|
|
int totedge= 0;
|
|
|
|
medge= dm->getEdgeArray(dm);
|
|
|
|
/* we want edges to have UV and vcol too... */
|
|
edgetable= make_mesh_edge_lookup(dm, &totedge);
|
|
|
|
for(a1=0; a1<end; a1++, medge++) {
|
|
if (medge->flag&ME_EDGERENDER) {
|
|
MVert *v0 = &mvert[medge->v1];
|
|
MVert *v1 = &mvert[medge->v2];
|
|
|
|
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
|
|
vlr->v1= RE_findOrAddVert(obr, vertofs+medge->v1);
|
|
vlr->v2= RE_findOrAddVert(obr, vertofs+medge->v2);
|
|
vlr->v3= vlr->v2;
|
|
vlr->v4= NULL;
|
|
|
|
if(edgetable)
|
|
use_mesh_edge_lookup(obr, dm, medge, vlr, edgetable, totedge);
|
|
|
|
xn= -(v0->no[0]+v1->no[0]);
|
|
yn= -(v0->no[1]+v1->no[1]);
|
|
zn= -(v0->no[2]+v1->no[2]);
|
|
/* transpose ! */
|
|
vlr->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
|
|
vlr->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
|
|
vlr->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
|
|
Normalize(vlr->n);
|
|
|
|
vlr->mat= ma;
|
|
vlr->flag= 0;
|
|
vlr->ec= ME_V1V2;
|
|
}
|
|
}
|
|
if(edgetable)
|
|
MEM_freeN(edgetable);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!timeoffset) {
|
|
if (test_for_displace(re, ob ) ) {
|
|
calc_vertexnormals(re, obr, 0);
|
|
do_displacement(re, obr);
|
|
}
|
|
|
|
if(do_autosmooth) {
|
|
autosmooth(re, obr, mat, me->smoothresh);
|
|
}
|
|
|
|
if(useFluidmeshNormals) {
|
|
// do not recalculate, only init render data
|
|
calc_fluidsimnormals(re, obr, need_tangent);
|
|
} else {
|
|
calc_vertexnormals(re, obr, need_tangent);
|
|
}
|
|
|
|
if(need_stress)
|
|
calc_edge_stress(re, obr, me);
|
|
}
|
|
|
|
dm->release(dm);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Lamps and Shadowbuffers */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void initshadowbuf(Render *re, LampRen *lar, float mat[][4])
|
|
{
|
|
struct ShadBuf *shb;
|
|
float viewinv[4][4];
|
|
|
|
/* if(la->spsi<16) return; */
|
|
|
|
/* memory alloc */
|
|
shb= (struct ShadBuf *)MEM_callocN( sizeof(struct ShadBuf),"initshadbuf");
|
|
lar->shb= shb;
|
|
|
|
if(shb==NULL) return;
|
|
|
|
VECCOPY(shb->co, lar->co);
|
|
|
|
/* percentage render: keep track of min and max */
|
|
shb->size= (lar->bufsize*re->r.size)/100;
|
|
|
|
if(lar->buffers>1) shb->size/= 2;
|
|
|
|
if(shb->size<512) shb->size= 512;
|
|
else if(shb->size > lar->bufsize) shb->size= lar->bufsize;
|
|
|
|
shb->size &= ~15; /* make sure its multiples of 16 */
|
|
|
|
shb->samp= lar->samp;
|
|
shb->soft= lar->soft;
|
|
shb->shadhalostep= lar->shadhalostep;
|
|
|
|
MTC_Mat4Ortho(mat);
|
|
MTC_Mat4Invert(shb->winmat, mat); /* winmat is temp */
|
|
|
|
/* matrix: combination of inverse view and lampmat */
|
|
/* calculate again: the ortho-render has no correct viewinv */
|
|
MTC_Mat4Invert(viewinv, re->viewmat);
|
|
MTC_Mat4MulMat4(shb->viewmat, viewinv, shb->winmat);
|
|
|
|
/* projection */
|
|
shb->d= lar->clipsta;
|
|
shb->clipend= lar->clipend;
|
|
|
|
/* bias is percentage, made 2x larger because of correction for angle of incidence */
|
|
/* when a ray is closer to parallel of a face, bias value is increased during render */
|
|
shb->bias= (0.02*lar->bias)*0x7FFFFFFF;
|
|
shb->bias= shb->bias*(100/re->r.size);
|
|
|
|
/* halfway method (average of first and 2nd z) reduces bias issues */
|
|
if(lar->buftype==LA_SHADBUF_HALFWAY)
|
|
shb->bias= 0.1f*shb->bias;
|
|
|
|
}
|
|
|
|
static void area_lamp_vectors(LampRen *lar)
|
|
{
|
|
float xsize= 0.5*lar->area_size, ysize= 0.5*lar->area_sizey, multifac;
|
|
|
|
/* make it smaller, so area light can be multisampled */
|
|
multifac= 1.0f/sqrt((float)lar->ray_totsamp);
|
|
xsize *= multifac;
|
|
ysize *= multifac;
|
|
|
|
/* corner vectors */
|
|
lar->area[0][0]= lar->co[0] - xsize*lar->mat[0][0] - ysize*lar->mat[1][0];
|
|
lar->area[0][1]= lar->co[1] - xsize*lar->mat[0][1] - ysize*lar->mat[1][1];
|
|
lar->area[0][2]= lar->co[2] - xsize*lar->mat[0][2] - ysize*lar->mat[1][2];
|
|
|
|
/* corner vectors */
|
|
lar->area[1][0]= lar->co[0] - xsize*lar->mat[0][0] + ysize*lar->mat[1][0];
|
|
lar->area[1][1]= lar->co[1] - xsize*lar->mat[0][1] + ysize*lar->mat[1][1];
|
|
lar->area[1][2]= lar->co[2] - xsize*lar->mat[0][2] + ysize*lar->mat[1][2];
|
|
|
|
/* corner vectors */
|
|
lar->area[2][0]= lar->co[0] + xsize*lar->mat[0][0] + ysize*lar->mat[1][0];
|
|
lar->area[2][1]= lar->co[1] + xsize*lar->mat[0][1] + ysize*lar->mat[1][1];
|
|
lar->area[2][2]= lar->co[2] + xsize*lar->mat[0][2] + ysize*lar->mat[1][2];
|
|
|
|
/* corner vectors */
|
|
lar->area[3][0]= lar->co[0] + xsize*lar->mat[0][0] - ysize*lar->mat[1][0];
|
|
lar->area[3][1]= lar->co[1] + xsize*lar->mat[0][1] - ysize*lar->mat[1][1];
|
|
lar->area[3][2]= lar->co[2] + xsize*lar->mat[0][2] - ysize*lar->mat[1][2];
|
|
/* only for correction button size, matrix size works on energy */
|
|
lar->areasize= lar->dist*lar->dist/(4.0*xsize*ysize);
|
|
}
|
|
|
|
/* If lar takes more lamp data, the decoupling will be better. */
|
|
static GroupObject *add_render_lamp(Render *re, Object *ob)
|
|
{
|
|
Lamp *la= ob->data;
|
|
LampRen *lar;
|
|
GroupObject *go;
|
|
float mat[4][4], angle, xn, yn;
|
|
int c;
|
|
|
|
/* previewrender sets this to zero... prevent accidents */
|
|
if(la==NULL) return NULL;
|
|
|
|
/* prevent only shadow from rendering light */
|
|
if(la->mode & LA_ONLYSHADOW)
|
|
if((re->r.mode & R_SHADOW)==0)
|
|
return NULL;
|
|
|
|
re->totlamp++;
|
|
|
|
/* groups is used to unify support for lightgroups, this is the global lightgroup */
|
|
go= MEM_callocN(sizeof(GroupObject), "groupobject");
|
|
BLI_addtail(&re->lights, go);
|
|
go->ob= ob;
|
|
/* lamprens are in own list, for freeing */
|
|
lar= (LampRen *)MEM_callocN(sizeof(LampRen),"lampren");
|
|
BLI_addtail(&re->lampren, lar);
|
|
go->lampren= lar;
|
|
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat);
|
|
|
|
MTC_Mat3CpyMat4(lar->mat, mat);
|
|
MTC_Mat3CpyMat4(lar->imat, ob->imat);
|
|
|
|
lar->bufsize = la->bufsize;
|
|
lar->samp = la->samp;
|
|
lar->buffers= la->buffers;
|
|
if(lar->buffers==0) lar->buffers= 1;
|
|
lar->buftype= la->buftype;
|
|
lar->filtertype= la->filtertype;
|
|
lar->soft = la->soft;
|
|
lar->shadhalostep = la->shadhalostep;
|
|
lar->clipsta = la->clipsta;
|
|
lar->clipend = la->clipend;
|
|
|
|
lar->bias = la->bias;
|
|
|
|
lar->type= la->type;
|
|
lar->mode= la->mode;
|
|
|
|
lar->energy= la->energy;
|
|
if(la->mode & LA_NEG) lar->energy= -lar->energy;
|
|
|
|
lar->vec[0]= -mat[2][0];
|
|
lar->vec[1]= -mat[2][1];
|
|
lar->vec[2]= -mat[2][2];
|
|
Normalize(lar->vec);
|
|
lar->co[0]= mat[3][0];
|
|
lar->co[1]= mat[3][1];
|
|
lar->co[2]= mat[3][2];
|
|
lar->dist= la->dist;
|
|
lar->haint= la->haint;
|
|
lar->distkw= lar->dist*lar->dist;
|
|
lar->r= lar->energy*la->r;
|
|
lar->g= lar->energy*la->g;
|
|
lar->b= lar->energy*la->b;
|
|
lar->k= la->k;
|
|
|
|
// area
|
|
lar->ray_samp= la->ray_samp;
|
|
lar->ray_sampy= la->ray_sampy;
|
|
lar->ray_sampz= la->ray_sampz;
|
|
|
|
lar->area_size= la->area_size;
|
|
lar->area_sizey= la->area_sizey;
|
|
lar->area_sizez= la->area_sizez;
|
|
|
|
lar->area_shape= la->area_shape;
|
|
|
|
/* Annoying, lamp UI does this, but the UI might not have been used? - add here too.
|
|
* make sure this matches buttons_shading.c's logic */
|
|
if(ELEM4(la->type, LA_AREA, LA_SPOT, LA_SUN, LA_LOCAL) && (la->mode & LA_SHAD_RAY))
|
|
if (ELEM3(la->type, LA_SPOT, LA_SUN, LA_LOCAL))
|
|
if (la->ray_samp_method == LA_SAMP_CONSTANT) la->ray_samp_method = LA_SAMP_HALTON;
|
|
|
|
lar->ray_samp_method= la->ray_samp_method;
|
|
lar->ray_samp_type= la->ray_samp_type;
|
|
|
|
lar->adapt_thresh= la->adapt_thresh;
|
|
|
|
if( ELEM3(lar->type, LA_SPOT, LA_SUN, LA_LOCAL)) {
|
|
lar->ray_totsamp= lar->ray_samp*lar->ray_samp;
|
|
lar->area_shape = LA_AREA_SQUARE;
|
|
lar->area_sizey= lar->area_size;
|
|
}
|
|
else if(lar->type==LA_AREA) {
|
|
switch(lar->area_shape) {
|
|
case LA_AREA_SQUARE:
|
|
lar->ray_totsamp= lar->ray_samp*lar->ray_samp;
|
|
lar->ray_sampy= lar->ray_samp;
|
|
lar->area_sizey= lar->area_size;
|
|
break;
|
|
case LA_AREA_RECT:
|
|
lar->ray_totsamp= lar->ray_samp*lar->ray_sampy;
|
|
break;
|
|
case LA_AREA_CUBE:
|
|
lar->ray_totsamp= lar->ray_samp*lar->ray_samp*lar->ray_samp;
|
|
lar->ray_sampy= lar->ray_samp;
|
|
lar->ray_sampz= lar->ray_samp;
|
|
lar->area_sizey= lar->area_size;
|
|
lar->area_sizez= lar->area_size;
|
|
break;
|
|
case LA_AREA_BOX:
|
|
lar->ray_totsamp= lar->ray_samp*lar->ray_sampy*lar->ray_sampz;
|
|
break;
|
|
}
|
|
|
|
area_lamp_vectors(lar);
|
|
init_jitter_plane(lar); // subsamples
|
|
}
|
|
else lar->ray_totsamp= 0;
|
|
|
|
#ifndef DISABLE_YAFRAY
|
|
/* yafray: photonlight and other params */
|
|
if (re->r.renderer==R_YAFRAY) {
|
|
lar->YF_numphotons = la->YF_numphotons;
|
|
lar->YF_numsearch = la->YF_numsearch;
|
|
lar->YF_phdepth = la->YF_phdepth;
|
|
lar->YF_useqmc = la->YF_useqmc;
|
|
lar->YF_causticblur = la->YF_causticblur;
|
|
lar->YF_ltradius = la->YF_ltradius;
|
|
lar->YF_bufsize = la->YF_bufsize;
|
|
lar->YF_glowint = la->YF_glowint;
|
|
lar->YF_glowofs = la->YF_glowofs;
|
|
lar->YF_glowtype = la->YF_glowtype;
|
|
}
|
|
#endif /* disable yafray */
|
|
|
|
lar->spotsi= la->spotsize;
|
|
if(lar->mode & LA_HALO) {
|
|
if(lar->spotsi>170.0) lar->spotsi= 170.0;
|
|
}
|
|
lar->spotsi= cos( M_PI*lar->spotsi/360.0 );
|
|
lar->spotbl= (1.0-lar->spotsi)*la->spotblend;
|
|
|
|
memcpy(lar->mtex, la->mtex, MAX_MTEX*sizeof(void *));
|
|
|
|
lar->lay= ob->lay & 0xFFFFFF; // higher 8 bits are localview layers
|
|
|
|
lar->falloff_type = la->falloff_type;
|
|
lar->ld1= la->att1;
|
|
lar->ld2= la->att2;
|
|
lar->curfalloff = curvemapping_copy(la->curfalloff);
|
|
|
|
if(lar->type==LA_SPOT) {
|
|
|
|
Normalize(lar->imat[0]);
|
|
Normalize(lar->imat[1]);
|
|
Normalize(lar->imat[2]);
|
|
|
|
xn= saacos(lar->spotsi);
|
|
xn= sin(xn)/cos(xn);
|
|
lar->spottexfac= 1.0/(xn);
|
|
|
|
if(lar->mode & LA_ONLYSHADOW) {
|
|
if((lar->mode & (LA_SHAD_BUF|LA_SHAD_RAY))==0) lar->mode -= LA_ONLYSHADOW;
|
|
}
|
|
|
|
}
|
|
|
|
/* set flag for spothalo en initvars */
|
|
if(la->type==LA_SPOT && (la->mode & LA_HALO)) {
|
|
if(la->haint>0.0) {
|
|
re->flag |= R_LAMPHALO;
|
|
|
|
/* camera position (0,0,0) rotate around lamp */
|
|
lar->sh_invcampos[0]= -lar->co[0];
|
|
lar->sh_invcampos[1]= -lar->co[1];
|
|
lar->sh_invcampos[2]= -lar->co[2];
|
|
MTC_Mat3MulVecfl(lar->imat, lar->sh_invcampos);
|
|
|
|
/* z factor, for a normalized volume */
|
|
angle= saacos(lar->spotsi);
|
|
xn= lar->spotsi;
|
|
yn= sin(angle);
|
|
lar->sh_zfac= yn/xn;
|
|
/* pre-scale */
|
|
lar->sh_invcampos[2]*= lar->sh_zfac;
|
|
|
|
}
|
|
}
|
|
else if(la->type==LA_HEMI) {
|
|
lar->mode &= ~(LA_SHAD_RAY|LA_SHAD_BUF);
|
|
}
|
|
|
|
for(c=0; c<MAX_MTEX; c++) {
|
|
if(la->mtex[c] && la->mtex[c]->tex) {
|
|
lar->mode |= LA_TEXTURE;
|
|
|
|
if(G.rendering) {
|
|
if(re->osa) {
|
|
if(la->mtex[c]->tex->type==TEX_IMAGE) lar->mode |= LA_OSATEX;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* yafray: shadow flag should not be cleared, only used with internal renderer */
|
|
if (re->r.renderer==R_INTERN) {
|
|
/* to make sure we can check ray shadow easily in the render code */
|
|
if(lar->mode & LA_SHAD_RAY) {
|
|
if( (re->r.mode & R_RAYTRACE)==0)
|
|
lar->mode &= ~LA_SHAD_RAY;
|
|
}
|
|
|
|
|
|
if(re->r.mode & R_SHADOW) {
|
|
|
|
if ((lar->mode & LA_SHAD_RAY) && (lar->ray_samp_method == LA_SAMP_HAMMERSLEY)) {
|
|
init_lamp_hammersley(lar);
|
|
}
|
|
if(la->type==LA_AREA && (lar->mode & LA_SHAD_RAY) && (lar->ray_samp_method == LA_SAMP_CONSTANT)) {
|
|
init_jitter_plane(lar);
|
|
}
|
|
else if (la->type==LA_SPOT && (lar->mode & LA_SHAD_BUF) ) {
|
|
/* Per lamp, one shadow buffer is made. */
|
|
lar->bufflag= la->bufflag;
|
|
Mat4CpyMat4(mat, ob->obmat);
|
|
initshadowbuf(re, lar, mat); // mat is altered
|
|
}
|
|
|
|
|
|
/* this is the way used all over to check for shadow */
|
|
if(lar->shb || (lar->mode & LA_SHAD_RAY)) {
|
|
LampShadowSample *ls;
|
|
LampShadowSubSample *lss;
|
|
int a, b;
|
|
|
|
lar->shadsamp= MEM_mallocN(re->r.threads*sizeof(LampShadowSample), "lamp shadow sample");
|
|
ls= lar->shadsamp;
|
|
|
|
/* shadfacs actually mean light, let's put them to 1 to prevent unitialized accidents */
|
|
for(a=0; a<re->r.threads; a++, ls++) {
|
|
lss= ls->s;
|
|
for(b=0; b<re->r.osa; b++, lss++) {
|
|
lss->samplenr= -1; /* used to detect whether we store or read */
|
|
lss->shadfac[0]= 1.0f;
|
|
lss->shadfac[1]= 1.0f;
|
|
lss->shadfac[2]= 1.0f;
|
|
lss->shadfac[3]= 1.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return go;
|
|
}
|
|
|
|
/* layflag: allows material group to ignore layerflag */
|
|
static void add_lightgroup(Render *re, Group *group, int exclusive)
|
|
{
|
|
GroupObject *go, *gol;
|
|
|
|
group->id.flag &= ~LIB_DOIT;
|
|
|
|
/* it's a bit too many loops in loops... but will survive */
|
|
/* note that 'exclusive' will remove it from the global list */
|
|
for(go= group->gobject.first; go; go= go->next) {
|
|
go->lampren= NULL;
|
|
|
|
if(go->ob->lay & re->scene->lay) {
|
|
if(go->ob && go->ob->type==OB_LAMP) {
|
|
for(gol= re->lights.first; gol; gol= gol->next) {
|
|
if(gol->ob==go->ob) {
|
|
go->lampren= gol->lampren;
|
|
break;
|
|
}
|
|
}
|
|
if(go->lampren==NULL)
|
|
gol= add_render_lamp(re, go->ob);
|
|
if(gol && exclusive) {
|
|
BLI_remlink(&re->lights, gol);
|
|
MEM_freeN(gol);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_material_lightgroups(Render *re)
|
|
{
|
|
Group *group;
|
|
Material *ma;
|
|
|
|
/* not for preview render */
|
|
if(re->scene->r.scemode & R_PREVIEWBUTS)
|
|
return;
|
|
|
|
for(group= G.main->group.first; group; group=group->id.next)
|
|
group->id.flag |= LIB_DOIT;
|
|
|
|
/* it's a bit too many loops in loops... but will survive */
|
|
/* hola! materials not in use...? */
|
|
for(ma= G.main->mat.first; ma; ma=ma->id.next) {
|
|
if(ma->group && (ma->group->id.flag & LIB_DOIT))
|
|
add_lightgroup(re, ma->group, ma->mode & MA_GROUP_NOLAY);
|
|
}
|
|
}
|
|
|
|
static void set_renderlayer_lightgroups(Render *re, Scene *sce)
|
|
{
|
|
SceneRenderLayer *srl;
|
|
|
|
for(srl= sce->r.layers.first; srl; srl= srl->next) {
|
|
if(srl->light_override)
|
|
add_lightgroup(re, srl->light_override, 0);
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* World */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
void init_render_world(Render *re)
|
|
{
|
|
int a;
|
|
char *cp;
|
|
|
|
if(re->scene && re->scene->world) {
|
|
re->wrld= *(re->scene->world);
|
|
|
|
cp= (char *)&re->wrld.fastcol;
|
|
|
|
cp[0]= 255.0*re->wrld.horr;
|
|
cp[1]= 255.0*re->wrld.horg;
|
|
cp[2]= 255.0*re->wrld.horb;
|
|
cp[3]= 1;
|
|
|
|
VECCOPY(re->grvec, re->viewmat[2]);
|
|
Normalize(re->grvec);
|
|
Mat3CpyMat4(re->imat, re->viewinv);
|
|
|
|
for(a=0; a<MAX_MTEX; a++)
|
|
if(re->wrld.mtex[a] && re->wrld.mtex[a]->tex) re->wrld.skytype |= WO_SKYTEX;
|
|
|
|
/* AO samples should be OSA minimum */
|
|
if(re->osa)
|
|
while(re->wrld.aosamp*re->wrld.aosamp < re->osa)
|
|
re->wrld.aosamp++;
|
|
if(!(re->r.mode & R_RAYTRACE) && (re->wrld.ao_gather_method == WO_AOGATHER_RAYTRACE))
|
|
re->wrld.mode &= ~WO_AMB_OCC;
|
|
}
|
|
else {
|
|
memset(&re->wrld, 0, sizeof(World));
|
|
re->wrld.exp= 0.0f;
|
|
re->wrld.range= 1.0f;
|
|
|
|
/* for mist pass */
|
|
re->wrld.miststa= re->clipsta;
|
|
re->wrld.mistdist= re->clipend-re->clipsta;
|
|
re->wrld.misi= 1.0f;
|
|
}
|
|
|
|
re->wrld.linfac= 1.0 + pow((2.0*re->wrld.exp + 0.5), -10);
|
|
re->wrld.logfac= log( (re->wrld.linfac-1.0)/re->wrld.linfac )/re->wrld.range;
|
|
}
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Object Finalization */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* prevent phong interpolation for giving ray shadow errors (terminator problem) */
|
|
static void set_phong_threshold(ObjectRen *obr)
|
|
{
|
|
// VertRen *ver;
|
|
VlakRen *vlr;
|
|
float thresh= 0.0, dot;
|
|
int tot=0, i;
|
|
|
|
/* Added check for 'pointy' situations, only dotproducts of 0.9 and larger
|
|
are taken into account. This threshold is meant to work on smooth geometry, not
|
|
for extreme cases (ton) */
|
|
|
|
for(i=0; i<obr->totvlak; i++) {
|
|
vlr= RE_findOrAddVlak(obr, i);
|
|
if(vlr->flag & R_SMOOTH) {
|
|
dot= INPR(vlr->n, vlr->v1->n);
|
|
dot= ABS(dot);
|
|
if(dot>0.9) {
|
|
thresh+= dot; tot++;
|
|
}
|
|
dot= INPR(vlr->n, vlr->v2->n);
|
|
dot= ABS(dot);
|
|
if(dot>0.9) {
|
|
thresh+= dot; tot++;
|
|
}
|
|
|
|
dot= INPR(vlr->n, vlr->v3->n);
|
|
dot= ABS(dot);
|
|
if(dot>0.9) {
|
|
thresh+= dot; tot++;
|
|
}
|
|
|
|
if(vlr->v4) {
|
|
dot= INPR(vlr->n, vlr->v4->n);
|
|
dot= ABS(dot);
|
|
if(dot>0.9) {
|
|
thresh+= dot; tot++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(tot) {
|
|
thresh/= (float)tot;
|
|
obr->ob->smoothresh= cos(0.5*M_PI-saacos(thresh));
|
|
}
|
|
}
|
|
|
|
/* per face check if all samples should be taken.
|
|
if raytrace or multisample, do always for raytraced material, or when material full_osa set */
|
|
static void set_fullsample_flag(Render *re, ObjectRen *obr)
|
|
{
|
|
VlakRen *vlr;
|
|
int a, trace;
|
|
|
|
if(re->osa==0)
|
|
return;
|
|
|
|
trace= re->r.mode & R_RAYTRACE;
|
|
|
|
for(a=obr->totvlak-1; a>=0; a--) {
|
|
vlr= RE_findOrAddVlak(obr, a);
|
|
|
|
if(vlr->mat->mode & MA_FULL_OSA)
|
|
vlr->flag |= R_FULL_OSA;
|
|
else if(trace) {
|
|
if(vlr->mat->mode & MA_SHLESS);
|
|
else if(vlr->mat->mode & (MA_RAYTRANSP|MA_RAYMIRROR))
|
|
/* for blurry reflect/refract, better to take more samples
|
|
* inside the raytrace than as OSA samples */
|
|
if ((vlr->mat->gloss_mir == 1.0) && (vlr->mat->gloss_tra == 1.0))
|
|
vlr->flag |= R_FULL_OSA;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void check_non_flat_quads(ObjectRen *obr)
|
|
{
|
|
VlakRen *vlr, *vlr1;
|
|
VertRen *v1, *v2, *v3, *v4;
|
|
float nor[3], xn, flen;
|
|
int a;
|
|
|
|
for(a=obr->totvlak-1; a>=0; a--) {
|
|
vlr= RE_findOrAddVlak(obr, a);
|
|
|
|
/* test if rendering as a quad or triangle, skip wire */
|
|
if(vlr->v4 && (vlr->flag & R_STRAND)==0 && (vlr->mat->mode & MA_WIRE)==0) {
|
|
|
|
/* check if quad is actually triangle */
|
|
v1= vlr->v1;
|
|
v2= vlr->v2;
|
|
v3= vlr->v3;
|
|
v4= vlr->v4;
|
|
VECSUB(nor, v1->co, v2->co);
|
|
if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
|
|
vlr->v1= v2;
|
|
vlr->v2= v3;
|
|
vlr->v3= v4;
|
|
vlr->v4= NULL;
|
|
}
|
|
else {
|
|
VECSUB(nor, v2->co, v3->co);
|
|
if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
|
|
vlr->v2= v3;
|
|
vlr->v3= v4;
|
|
vlr->v4= NULL;
|
|
}
|
|
else {
|
|
VECSUB(nor, v3->co, v4->co);
|
|
if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
|
|
vlr->v4= NULL;
|
|
}
|
|
else {
|
|
VECSUB(nor, v4->co, v1->co);
|
|
if( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
|
|
vlr->v4= NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(vlr->v4) {
|
|
|
|
/* Face is divided along edge with the least gradient */
|
|
/* Flagged with R_DIVIDE_24 if divide is from vert 2 to 4 */
|
|
/* 4---3 4---3 */
|
|
/* |\ 1| or |1 /| */
|
|
/* |0\ | |/ 0| */
|
|
/* 1---2 1---2 0 = orig face, 1 = new face */
|
|
|
|
/* render normals are inverted in render! we calculate normal of single tria here */
|
|
flen= CalcNormFloat(vlr->v4->co, vlr->v3->co, vlr->v1->co, nor);
|
|
if(flen==0.0) CalcNormFloat(vlr->v4->co, vlr->v2->co, vlr->v1->co, nor);
|
|
|
|
xn= nor[0]*vlr->n[0] + nor[1]*vlr->n[1] + nor[2]*vlr->n[2];
|
|
|
|
if(ABS(xn) < 0.999995 ) { // checked on noisy fractal grid
|
|
float d1, d2;
|
|
|
|
vlr1= RE_vlakren_copy(obr, vlr);
|
|
vlr1->flag |= R_FACE_SPLIT;
|
|
|
|
/* split direction based on vnorms */
|
|
CalcNormFloat(vlr->v1->co, vlr->v2->co, vlr->v3->co, nor);
|
|
d1= nor[0]*vlr->v1->n[0] + nor[1]*vlr->v1->n[1] + nor[2]*vlr->v1->n[2];
|
|
|
|
CalcNormFloat(vlr->v2->co, vlr->v3->co, vlr->v4->co, nor);
|
|
d2= nor[0]*vlr->v2->n[0] + nor[1]*vlr->v2->n[1] + nor[2]*vlr->v2->n[2];
|
|
|
|
if( fabs(d1) < fabs(d2) ) vlr->flag |= R_DIVIDE_24;
|
|
else vlr->flag &= ~R_DIVIDE_24;
|
|
|
|
/* new vertex pointers */
|
|
if (vlr->flag & R_DIVIDE_24) {
|
|
vlr1->v1= vlr->v2;
|
|
vlr1->v2= vlr->v3;
|
|
vlr1->v3= vlr->v4;
|
|
|
|
vlr->v3 = vlr->v4;
|
|
|
|
vlr1->flag |= R_DIVIDE_24;
|
|
}
|
|
else {
|
|
vlr1->v1= vlr->v1;
|
|
vlr1->v2= vlr->v3;
|
|
vlr1->v3= vlr->v4;
|
|
|
|
vlr1->flag &= ~R_DIVIDE_24;
|
|
}
|
|
vlr->v4 = vlr1->v4 = NULL;
|
|
|
|
/* new normals */
|
|
CalcNormFloat(vlr->v3->co, vlr->v2->co, vlr->v1->co, vlr->n);
|
|
CalcNormFloat(vlr1->v3->co, vlr1->v2->co, vlr1->v1->co, vlr1->n);
|
|
}
|
|
/* clear the flag when not divided */
|
|
else vlr->flag &= ~R_DIVIDE_24;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void finalize_render_object(Render *re, ObjectRen *obr, int timeoffset)
|
|
{
|
|
Object *ob= obr->ob;
|
|
VertRen *ver= NULL;
|
|
StrandRen *strand= NULL;
|
|
StrandBound *sbound= NULL;
|
|
float min[3], max[3], smin[3], smax[3];
|
|
int a, b;
|
|
|
|
if(obr->totvert || obr->totvlak || obr->tothalo || obr->totstrand) {
|
|
/* the exception below is because displace code now is in init_render_mesh call,
|
|
I will look at means to have autosmooth enabled for all object types
|
|
and have it as general postprocess, like displace */
|
|
if(ob->type!=OB_MESH && test_for_displace(re, ob))
|
|
do_displacement(re, obr);
|
|
|
|
if(!timeoffset) {
|
|
/* phong normal interpolation can cause error in tracing
|
|
* (terminator problem) */
|
|
ob->smoothresh= 0.0;
|
|
if((re->r.mode & R_RAYTRACE) && (re->r.mode & R_SHADOW))
|
|
set_phong_threshold(obr);
|
|
|
|
check_non_flat_quads(obr);
|
|
set_fullsample_flag(re, obr);
|
|
|
|
/* compute bounding boxes for clipping */
|
|
INIT_MINMAX(min, max);
|
|
for(a=0; a<obr->totvert; a++) {
|
|
if((a & 255)==0) ver= obr->vertnodes[a>>8].vert;
|
|
else ver++;
|
|
|
|
DO_MINMAX(ver->co, min, max);
|
|
}
|
|
|
|
if(obr->strandbuf) {
|
|
sbound= obr->strandbuf->bound;
|
|
for(b=0; b<obr->strandbuf->totbound; b++, sbound++) {
|
|
INIT_MINMAX(smin, smax);
|
|
|
|
for(a=sbound->start; a<sbound->end; a++) {
|
|
strand= RE_findOrAddStrand(obr, a);
|
|
strand_minmax(strand, smin, smax);
|
|
}
|
|
|
|
VECCOPY(sbound->boundbox[0], smin);
|
|
VECCOPY(sbound->boundbox[1], smax);
|
|
|
|
DO_MINMAX(smin, min, max);
|
|
DO_MINMAX(smax, min, max);
|
|
}
|
|
}
|
|
|
|
VECCOPY(obr->boundbox[0], min);
|
|
VECCOPY(obr->boundbox[1], max);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Database */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static int render_object_type(int type)
|
|
{
|
|
return ELEM5(type, OB_FONT, OB_CURVE, OB_SURF, OB_MESH, OB_MBALL);
|
|
}
|
|
|
|
static void find_dupli_instances(Render *re, ObjectRen *obr)
|
|
{
|
|
ObjectInstanceRen *obi;
|
|
float imat[4][4], obmat[4][4], obimat[4][4], nmat[3][3];
|
|
int first = 1;
|
|
|
|
Mat4MulMat4(obmat, obr->obmat, re->viewmat);
|
|
Mat4Invert(imat, obmat);
|
|
|
|
for(obi=re->instancetable.last; obi; obi=obi->prev) {
|
|
if(!obi->obr && obi->ob == obr->ob && obi->psysindex == obr->psysindex) {
|
|
obi->obr= obr;
|
|
|
|
/* compute difference between object matrix and
|
|
* object matrix with dupli transform, in viewspace */
|
|
Mat4CpyMat4(obimat, obi->mat);
|
|
Mat4MulMat4(obi->mat, imat, obimat);
|
|
|
|
Mat3CpyMat4(nmat, obi->mat);
|
|
Mat3Inv(obi->imat, nmat);
|
|
|
|
if(!first) {
|
|
re->totvert += obr->totvert;
|
|
re->totvlak += obr->totvlak;
|
|
re->tothalo += obr->tothalo;
|
|
re->totstrand += obr->totstrand;
|
|
}
|
|
else
|
|
first= 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void assign_dupligroup_dupli(Render *re, ObjectInstanceRen *obi, ObjectRen *obr)
|
|
{
|
|
float imat[4][4], obmat[4][4], obimat[4][4], nmat[3][3];
|
|
|
|
Mat4MulMat4(obmat, obr->obmat, re->viewmat);
|
|
Mat4Invert(imat, obmat);
|
|
|
|
obi->obr= obr;
|
|
|
|
/* compute difference between object matrix and
|
|
* object matrix with dupli transform, in viewspace */
|
|
Mat4CpyMat4(obimat, obi->mat);
|
|
Mat4MulMat4(obi->mat, imat, obimat);
|
|
|
|
Mat3CpyMat4(nmat, obi->mat);
|
|
Mat3Inv(obi->imat, nmat);
|
|
|
|
re->totvert += obr->totvert;
|
|
re->totvlak += obr->totvlak;
|
|
re->tothalo += obr->tothalo;
|
|
re->totstrand += obr->totstrand;
|
|
}
|
|
|
|
static ObjectRen *find_dupligroup_dupli(Render *re, Object *ob, int psysindex)
|
|
{
|
|
ObjectRen *obr;
|
|
|
|
for(obr=re->objecttable.first; obr; obr=obr->next)
|
|
if(obr->ob == ob && obr->psysindex == psysindex && (obr->flag & R_INSTANCEABLE))
|
|
return obr;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void init_render_object_data(Render *re, ObjectRen *obr, int timeoffset)
|
|
{
|
|
Object *ob= obr->ob;
|
|
ParticleSystem *psys;
|
|
int i;
|
|
|
|
if(obr->psysindex) {
|
|
if((!obr->prev || obr->prev->ob != ob) && ob->type==OB_MESH) {
|
|
/* the emitter mesh wasn't rendered so the modifier stack wasn't
|
|
* evaluated with render settings */
|
|
DerivedMesh *dm;
|
|
dm = mesh_create_derived_render(ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
|
|
dm->release(dm);
|
|
}
|
|
|
|
for(psys=ob->particlesystem.first, i=0; i<obr->psysindex-1; i++)
|
|
psys= psys->next;
|
|
|
|
render_new_particle_system(re, obr, psys, timeoffset);
|
|
}
|
|
else {
|
|
if ELEM(ob->type, OB_FONT, OB_CURVE)
|
|
init_render_curve(re, obr, timeoffset);
|
|
else if(ob->type==OB_SURF)
|
|
init_render_surf(re, obr);
|
|
else if(ob->type==OB_MESH)
|
|
init_render_mesh(re, obr, timeoffset);
|
|
else if(ob->type==OB_MBALL)
|
|
init_render_mball(re, obr);
|
|
}
|
|
|
|
finalize_render_object(re, obr, timeoffset);
|
|
|
|
re->totvert += obr->totvert;
|
|
re->totvlak += obr->totvlak;
|
|
re->tothalo += obr->tothalo;
|
|
re->totstrand += obr->totstrand;
|
|
}
|
|
|
|
static void add_render_object(Render *re, Object *ob, Object *par, int index, int timeoffset, int instanceable, int vectorlay)
|
|
{
|
|
ObjectRen *obr;
|
|
ParticleSystem *psys;
|
|
int show_emitter, allow_render= 1, psysindex;
|
|
|
|
/* the emitter has to be processed first (render levels of modifiers) */
|
|
/* so here we only check if the emitter should be rendered */
|
|
if(ob->particlesystem.first) {
|
|
show_emitter= 0;
|
|
for(psys=ob->particlesystem.first; psys; psys=psys->next) {
|
|
show_emitter += psys->part->draw & PART_DRAW_EMITTER;
|
|
psys_render_set(ob, psys, re->viewmat, re->winmat, re->winx, re->winy, timeoffset);
|
|
}
|
|
|
|
/* if no psys has "show emitter" selected don't render emitter */
|
|
if(show_emitter == 0)
|
|
allow_render= 0;
|
|
}
|
|
|
|
/* one render object for the data itself */
|
|
if(allow_render) {
|
|
obr= RE_addRenderObject(re, ob, par, index, 0, ob->lay);
|
|
if(instanceable) {
|
|
obr->flag |= R_INSTANCEABLE;
|
|
Mat4CpyMat4(obr->obmat, ob->obmat);
|
|
}
|
|
if(obr->lay & vectorlay)
|
|
obr->flag |= R_NEED_VECTORS;
|
|
init_render_object_data(re, obr, timeoffset);
|
|
|
|
/* only add instance for objects that have not been used for dupli */
|
|
if(!(ob->transflag & OB_RENDER_DUPLI))
|
|
RE_addRenderInstance(re, obr, ob, par, index, 0, NULL);
|
|
else
|
|
find_dupli_instances(re, obr);
|
|
}
|
|
|
|
/* and one render object per particle system */
|
|
if(ob->particlesystem.first) {
|
|
psysindex= 1;
|
|
for(psys=ob->particlesystem.first; psys; psys=psys->next, psysindex++) {
|
|
obr= RE_addRenderObject(re, ob, par, index, psysindex, ob->lay);
|
|
if(instanceable) {
|
|
obr->flag |= R_INSTANCEABLE;
|
|
Mat4CpyMat4(obr->obmat, ob->obmat);
|
|
}
|
|
if(obr->lay & vectorlay)
|
|
obr->flag |= R_NEED_VECTORS;
|
|
init_render_object_data(re, obr, timeoffset);
|
|
psys_render_restore(ob, psys);
|
|
|
|
/* only add instance for objects that have not been used for dupli */
|
|
if(!(ob->transflag & OB_RENDER_DUPLI))
|
|
RE_addRenderInstance(re, obr, ob, par, index, psysindex, NULL);
|
|
else
|
|
find_dupli_instances(re, obr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* par = pointer to duplicator parent, needed for object lookup table */
|
|
/* index = when duplicater copies same object (particle), the counter */
|
|
static void init_render_object(Render *re, Object *ob, Object *par, int index, int timeoffset, int instanceable, int vectorlay)
|
|
{
|
|
static double lasttime= 0.0;
|
|
double time;
|
|
float mat[4][4];
|
|
|
|
if(ob->type==OB_LAMP)
|
|
add_render_lamp(re, ob);
|
|
else if(render_object_type(ob->type))
|
|
add_render_object(re, ob, par, index, timeoffset, instanceable, vectorlay);
|
|
else {
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat);
|
|
}
|
|
|
|
time= PIL_check_seconds_timer();
|
|
if(time - lasttime > 1.0) {
|
|
lasttime= time;
|
|
/* clumsy copying still */
|
|
re->i.totvert= re->totvert;
|
|
re->i.totface= re->totvlak;
|
|
re->i.totstrand= re->totstrand;
|
|
re->i.tothalo= re->tothalo;
|
|
re->i.totlamp= re->totlamp;
|
|
re->stats_draw(&re->i);
|
|
}
|
|
|
|
ob->flag |= OB_DONE;
|
|
}
|
|
|
|
void RE_Database_Free(Render *re)
|
|
{
|
|
Object *ob = NULL;
|
|
LampRen *lar;
|
|
|
|
/* statistics for debugging render memory usage */
|
|
if(G.f & G_DEBUG) {
|
|
if((re->r.scemode & R_PREVIEWBUTS)==0) {
|
|
BKE_image_print_memlist();
|
|
MEM_printmemlist_stats();
|
|
}
|
|
}
|
|
|
|
/* FREE */
|
|
|
|
for(lar= re->lampren.first; lar; lar= lar->next) {
|
|
freeshadowbuf(lar);
|
|
if(lar->jitter) MEM_freeN(lar->jitter);
|
|
if(lar->shadsamp) MEM_freeN(lar->shadsamp);
|
|
if(lar->qsa) free_lamp_qmcsampler(lar);
|
|
curvemapping_free(lar->curfalloff);
|
|
}
|
|
|
|
BLI_freelistN(&re->lampren);
|
|
BLI_freelistN(&re->lights);
|
|
|
|
free_renderdata_tables(re);
|
|
|
|
/* free orco. check all objects because of duplis and sets */
|
|
ob= G.main->object.first;
|
|
while(ob) {
|
|
if(ob->type==OB_MBALL) {
|
|
if(ob->disp.first && ob->disp.first!=ob->disp.last) {
|
|
DispList *dl= ob->disp.first;
|
|
BLI_remlink(&ob->disp, dl);
|
|
freedisplist(&ob->disp);
|
|
BLI_addtail(&ob->disp, dl);
|
|
}
|
|
}
|
|
ob= ob->id.next;
|
|
}
|
|
|
|
free_mesh_orco_hash(re);
|
|
|
|
end_radio_render();
|
|
end_render_materials();
|
|
|
|
if(re->wrld.aosphere) {
|
|
MEM_freeN(re->wrld.aosphere);
|
|
re->wrld.aosphere= NULL;
|
|
re->scene->world->aosphere= NULL;
|
|
}
|
|
if(re->wrld.aotables) {
|
|
MEM_freeN(re->wrld.aotables);
|
|
re->wrld.aotables= NULL;
|
|
re->scene->world->aotables= NULL;
|
|
}
|
|
if((re->r.mode & R_RAYTRACE) && (re->wrld.mode & WO_AMB_OCC) &&
|
|
(re->wrld.ao_samp_method == WO_AOSAMP_HAMMERSLEY) && (re->qsa))
|
|
free_render_qmcsampler(re);
|
|
|
|
if(re->r.mode & R_RAYTRACE) freeraytree(re);
|
|
|
|
free_sss(re);
|
|
free_occ(re);
|
|
free_strand_surface(re);
|
|
|
|
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
|
|
re->i.convertdone= 0;
|
|
|
|
if(re->scene)
|
|
if(re->scene->r.scemode & R_FREE_IMAGE)
|
|
if((re->r.scemode & R_PREVIEWBUTS)==0)
|
|
BKE_image_free_all_textures();
|
|
|
|
if(re->memArena) {
|
|
BLI_memarena_free(re->memArena);
|
|
re->memArena = NULL;
|
|
}
|
|
}
|
|
|
|
static int allow_render_object(Object *ob, int nolamps, int onlyselected, Object *actob)
|
|
{
|
|
/* override not showing object when duplis are used with particles */
|
|
if(ob->transflag & OB_DUPLIPARTS){
|
|
int allow= 0;
|
|
|
|
if(ob->particlesystem.first) {
|
|
ParticleSystem *psys;
|
|
ParticleSettings *part;
|
|
|
|
for(psys=ob->particlesystem.first; psys; psys=psys->next){
|
|
part=psys->part;
|
|
|
|
if(part->draw & PART_DRAW_EMITTER)
|
|
allow= 1;
|
|
}
|
|
}
|
|
|
|
if(!allow)
|
|
return 0;
|
|
}
|
|
else if(ob->transflag & OB_DUPLI)
|
|
return 0;
|
|
|
|
if(nolamps && (ob->type==OB_LAMP))
|
|
return 0;
|
|
|
|
if(onlyselected && (ob!=actob && !(ob->flag & SELECT)))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int allow_render_dupli_instance(Render *re, DupliObject *dob, Object *obd)
|
|
{
|
|
ParticleSystem *psys;
|
|
Material ***material;
|
|
short a, *totmaterial;
|
|
|
|
/* don't allow objects with halos */
|
|
totmaterial= give_totcolp(obd);
|
|
material= give_matarar(obd);
|
|
|
|
if(totmaterial && material) {
|
|
for(a= 0; a<*totmaterial; a++)
|
|
if((*material)[a]->mode & MA_HALO)
|
|
return 0;
|
|
}
|
|
|
|
for(psys=obd->particlesystem.first; psys; psys=psys->next)
|
|
if(!ELEM5(psys->part->draw_as, PART_DRAW_BB, PART_DRAW_LINE, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR))
|
|
return 0;
|
|
|
|
/* don't allow lamp, animated duplis, or radio render */
|
|
return (render_object_type(obd->type) &&
|
|
(!(dob->type == OB_DUPLIGROUP) || !dob->animated) &&
|
|
!(re->r.mode & R_RADIO));
|
|
}
|
|
|
|
static void dupli_render_particle_set(Render *re, Object *ob, int timeoffset, int level, int enable)
|
|
{
|
|
/* ugly function, but we need to set particle systems to their render
|
|
* settings before calling object_duplilist, to get render level duplis */
|
|
Group *group;
|
|
GroupObject *go;
|
|
ParticleSystem *psys;
|
|
DerivedMesh *dm;
|
|
|
|
if(level >= MAX_DUPLI_RECUR)
|
|
return;
|
|
|
|
if(ob->transflag & OB_DUPLIPARTS) {
|
|
for(psys=ob->particlesystem.first; psys; psys=psys->next) {
|
|
if(ELEM(psys->part->draw_as, PART_DRAW_OB, PART_DRAW_GR)) {
|
|
if(enable)
|
|
psys_render_set(ob, psys, re->viewmat, re->winmat, re->winx, re->winy, timeoffset);
|
|
else
|
|
psys_render_restore(ob, psys);
|
|
}
|
|
}
|
|
|
|
if(level == 0 && enable) {
|
|
/* this is to make sure we get render level duplis in groups:
|
|
* the derivedmesh must be created before init_render_mesh,
|
|
* since object_duplilist does dupliparticles before that */
|
|
dm = mesh_create_derived_render(ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
|
|
dm->release(dm);
|
|
|
|
for(psys=ob->particlesystem.first; psys; psys=psys->next)
|
|
psys_get_modifier(ob, psys)->flag &= ~eParticleSystemFlag_psys_updated;
|
|
}
|
|
}
|
|
|
|
if(ob->dup_group==NULL) return;
|
|
group= ob->dup_group;
|
|
|
|
for(go= group->gobject.first; go; go= go->next)
|
|
dupli_render_particle_set(re, go->ob, timeoffset, level+1, enable);
|
|
}
|
|
|
|
static int get_vector_renderlayers(Scene *sce)
|
|
{
|
|
SceneRenderLayer *srl;
|
|
int lay= 0;
|
|
|
|
for(srl= sce->r.layers.first; srl; srl= srl->next)
|
|
if(srl->passflag & SCE_PASS_VECTOR)
|
|
lay |= srl->lay;
|
|
|
|
return lay;
|
|
}
|
|
|
|
static void database_init_objects(Render *re, unsigned int renderlay, int nolamps, int onlyselected, Object *actob, int timeoffset)
|
|
{
|
|
Base *base;
|
|
Object *ob;
|
|
ObjectInstanceRen *obi;
|
|
Scene *sce;
|
|
float mat[4][4];
|
|
int lay, vectorlay;
|
|
|
|
for(SETLOOPER(re->scene, base)) {
|
|
ob= base->object;
|
|
/* imat objects has to be done here, since displace can have texture using Object map-input */
|
|
MTC_Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
MTC_Mat4Invert(ob->imat, mat);
|
|
/* each object should only be rendered once */
|
|
ob->flag &= ~OB_DONE;
|
|
ob->transflag &= ~OB_RENDER_DUPLI;
|
|
}
|
|
|
|
for(SETLOOPER(re->scene, base)) {
|
|
ob= base->object;
|
|
|
|
vectorlay= get_vector_renderlayers(sce);
|
|
lay= (timeoffset)? renderlay & vectorlay: renderlay;
|
|
|
|
/* if the object has been restricted from rendering in the outliner, ignore it */
|
|
if(ob->restrictflag & OB_RESTRICT_RENDER) continue;
|
|
|
|
/* OB_DONE means the object itself got duplicated, so was already converted */
|
|
if(ob->flag & OB_DONE) {
|
|
if(ob->transflag & OB_RENDER_DUPLI)
|
|
if(allow_render_object(ob, nolamps, onlyselected, actob))
|
|
init_render_object(re, ob, NULL, 0, timeoffset, 1, vectorlay);
|
|
}
|
|
else if((base->lay & lay) || (ob->type==OB_LAMP && (base->lay & re->scene->lay)) ) {
|
|
if((ob->transflag & OB_DUPLI) && (ob->type!=OB_MBALL)) {
|
|
DupliObject *dob;
|
|
ListBase *lb;
|
|
|
|
dupli_render_particle_set(re, ob, timeoffset, 0, 1);
|
|
lb= object_duplilist(sce, ob);
|
|
dupli_render_particle_set(re, ob, timeoffset, 0, 0);
|
|
|
|
for(dob= lb->first; dob; dob= dob->next) {
|
|
Object *obd= dob->ob;
|
|
|
|
Mat4CpyMat4(obd->obmat, dob->mat);
|
|
|
|
/* group duplis need to set ob matrices correct, for deform. so no_draw is part handled */
|
|
if(!(obd->transflag & OB_RENDER_DUPLI) && dob->no_draw)
|
|
continue;
|
|
|
|
if(obd->restrictflag & OB_RESTRICT_RENDER)
|
|
continue;
|
|
|
|
if(obd->type==OB_MBALL)
|
|
continue;
|
|
|
|
if(!allow_render_object(obd, nolamps, onlyselected, actob))
|
|
continue;
|
|
|
|
if(allow_render_dupli_instance(re, dob, obd)) {
|
|
ParticleSystem *psys;
|
|
ObjectRen *obr = NULL;
|
|
int psysindex;
|
|
float mat[4][4];
|
|
|
|
if(dob->type != OB_DUPLIGROUP || (obr=find_dupligroup_dupli(re, obd, 0))) {
|
|
Mat4MulMat4(mat, dob->mat, re->viewmat);
|
|
obi= RE_addRenderInstance(re, NULL, obd, ob, dob->index, 0, mat);
|
|
|
|
if(dob->type != OB_DUPLIGROUP) {
|
|
VECCOPY(obi->dupliorco, dob->orco);
|
|
obi->dupliuv[0]= dob->uv[0];
|
|
obi->dupliuv[1]= dob->uv[1];
|
|
}
|
|
else {
|
|
assign_dupligroup_dupli(re, obi, obr);
|
|
if(obd->transflag & OB_RENDER_DUPLI)
|
|
find_dupli_instances(re, obr);
|
|
}
|
|
}
|
|
else
|
|
init_render_object(re, obd, ob, dob->index, timeoffset, !dob->animated, vectorlay);
|
|
|
|
psysindex= 1;
|
|
for(psys=obd->particlesystem.first; psys; psys=psys->next) {
|
|
if(dob->type != OB_DUPLIGROUP || (obr=find_dupligroup_dupli(re, ob, psysindex))) {
|
|
obi= RE_addRenderInstance(re, NULL, obd, ob, dob->index, psysindex++, mat);
|
|
if(dob->type != OB_DUPLIGROUP) {
|
|
VECCOPY(obi->dupliorco, dob->orco);
|
|
obi->dupliuv[0]= dob->uv[0];
|
|
obi->dupliuv[1]= dob->uv[1];
|
|
}
|
|
else {
|
|
assign_dupligroup_dupli(re, obi, obr);
|
|
if(obd->transflag & OB_RENDER_DUPLI)
|
|
find_dupli_instances(re, obr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(dob->type != OB_DUPLIGROUP) {
|
|
obd->flag |= OB_DONE;
|
|
obd->transflag |= OB_RENDER_DUPLI;
|
|
}
|
|
}
|
|
else
|
|
init_render_object(re, obd, ob, dob->index, timeoffset, !dob->animated, vectorlay);
|
|
|
|
if(re->test_break()) break;
|
|
}
|
|
free_object_duplilist(lb);
|
|
|
|
if(allow_render_object(ob, nolamps, onlyselected, actob))
|
|
init_render_object(re, ob, NULL, 0, timeoffset, 0, vectorlay);
|
|
}
|
|
else if(allow_render_object(ob, nolamps, onlyselected, actob))
|
|
init_render_object(re, ob, NULL, 0, timeoffset, 0, vectorlay);
|
|
}
|
|
|
|
if(re->test_break()) break;
|
|
}
|
|
|
|
if(!re->test_break())
|
|
RE_makeRenderInstances(re);
|
|
}
|
|
|
|
/* used to be 'rotate scene' */
|
|
void RE_Database_FromScene(Render *re, Scene *scene, int use_camera_view)
|
|
{
|
|
extern int slurph_opt; /* key.c */
|
|
Scene *sce;
|
|
float mat[4][4];
|
|
unsigned int lay;
|
|
|
|
re->scene= scene;
|
|
|
|
/* per second, per object, stats print this */
|
|
re->i.infostr= "Preparing Scene data";
|
|
|
|
/* XXX add test if dbase was filled already? */
|
|
|
|
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
|
|
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
|
|
re->lights.first= re->lights.last= NULL;
|
|
re->lampren.first= re->lampren.last= NULL;
|
|
|
|
slurph_opt= 0;
|
|
re->i.partsdone= 0; /* signal now in use for previewrender */
|
|
|
|
/* in localview, lamps are using normal layers, objects only local bits */
|
|
if(re->scene->lay & 0xFF000000) lay= re->scene->lay & 0xFF000000;
|
|
else lay= re->scene->lay;
|
|
|
|
/* applies changes fully */
|
|
if((re->r.scemode & R_PREVIEWBUTS)==0)
|
|
scene_update_for_newframe(re->scene, lay);
|
|
|
|
/* if no camera, viewmat should have been set! */
|
|
if(use_camera_view && re->scene->camera) {
|
|
Mat4Ortho(re->scene->camera->obmat);
|
|
Mat4Invert(mat, re->scene->camera->obmat);
|
|
RE_SetView(re, mat);
|
|
}
|
|
|
|
init_render_world(re); /* do first, because of ambient. also requires re->osa set correct */
|
|
if((re->r.mode & R_RAYTRACE) && (re->wrld.mode & WO_AMB_OCC)) {
|
|
if (re->wrld.ao_samp_method == WO_AOSAMP_HAMMERSLEY)
|
|
init_render_hammersley(re);
|
|
else if (re->wrld.ao_samp_method == WO_AOSAMP_CONSTANT)
|
|
init_ao_sphere(&re->wrld);
|
|
}
|
|
|
|
/* still bad... doing all */
|
|
init_render_textures(re);
|
|
init_render_materials(re->r.mode, &re->wrld.ambr);
|
|
set_node_shader_lamp_loop(shade_material_loop);
|
|
|
|
/* MAKE RENDER DATA */
|
|
database_init_objects(re, lay, 0, 0, 0, 0);
|
|
|
|
if(!re->test_break()) {
|
|
int tothalo;
|
|
|
|
set_material_lightgroups(re);
|
|
for(sce= re->scene; sce; sce= sce->set)
|
|
set_renderlayer_lightgroups(re, sce);
|
|
|
|
slurph_opt= 1;
|
|
|
|
/* for now some clumsy copying still */
|
|
re->i.totvert= re->totvert;
|
|
re->i.totface= re->totvlak;
|
|
re->i.totstrand= re->totstrand;
|
|
re->i.tothalo= re->tothalo;
|
|
re->i.totlamp= re->totlamp;
|
|
re->stats_draw(&re->i);
|
|
|
|
/* don't sort stars */
|
|
tothalo= re->tothalo;
|
|
if(!re->test_break())
|
|
if(re->wrld.mode & WO_STARS)
|
|
RE_make_stars(re, NULL, NULL, NULL);
|
|
sort_halos(re, tothalo);
|
|
|
|
re->i.infostr= "Creating Shadowbuffers";
|
|
re->stats_draw(&re->i);
|
|
|
|
/* SHADOW BUFFER */
|
|
threaded_makeshadowbufs(re);
|
|
|
|
/* yafray: 'direct' radiosity, environment maps and raytree init not needed for yafray render */
|
|
/* although radio mode could be useful at some point, later */
|
|
if (re->r.renderer==R_INTERN) {
|
|
/* RADIO (uses no R anymore) */
|
|
if(!re->test_break())
|
|
if(re->r.mode & R_RADIO) do_radio_render(re);
|
|
|
|
/* raytree */
|
|
if(!re->test_break()) {
|
|
if(re->r.mode & R_RAYTRACE) {
|
|
makeraytree(re);
|
|
}
|
|
}
|
|
/* ENVIRONMENT MAPS */
|
|
if(!re->test_break())
|
|
make_envmaps(re);
|
|
}
|
|
|
|
if(!re->test_break())
|
|
project_renderdata(re, projectverto, re->r.mode & R_PANORAMA, 0, 1);
|
|
|
|
/* Occlusion */
|
|
if((re->wrld.mode & WO_AMB_OCC) && !re->test_break())
|
|
if(re->wrld.ao_gather_method == WO_AOGATHER_APPROX)
|
|
if(re->r.renderer==R_INTERN)
|
|
make_occ_tree(re);
|
|
|
|
/* SSS */
|
|
if((re->r.mode & R_SSS) && !re->test_break())
|
|
if(re->r.renderer==R_INTERN)
|
|
make_sss_tree(re);
|
|
}
|
|
|
|
if(re->test_break())
|
|
RE_Database_Free(re);
|
|
else
|
|
re->i.convertdone= 1;
|
|
|
|
re->i.infostr= NULL;
|
|
re->stats_draw(&re->i);
|
|
}
|
|
|
|
/* exported call to recalculate hoco for vertices, when winmat changed */
|
|
void RE_DataBase_ApplyWindow(Render *re)
|
|
{
|
|
project_renderdata(re, projectverto, 0, 0, 0);
|
|
}
|
|
|
|
void RE_DataBase_GetView(Render *re, float mat[][4])
|
|
{
|
|
Mat4CpyMat4(mat, re->viewmat);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Speed Vectors */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void database_fromscene_vectors(Render *re, Scene *scene, int timeoffset)
|
|
{
|
|
extern int slurph_opt; /* key.c */
|
|
float mat[4][4];
|
|
unsigned int lay;
|
|
|
|
re->scene= scene;
|
|
|
|
/* XXX add test if dbase was filled already? */
|
|
|
|
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
|
|
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
|
|
re->i.totface=re->i.totvert=re->i.totstrand=re->i.totlamp=re->i.tothalo= 0;
|
|
re->lights.first= re->lights.last= NULL;
|
|
|
|
slurph_opt= 0;
|
|
|
|
/* in localview, lamps are using normal layers, objects only local bits */
|
|
if(re->scene->lay & 0xFF000000) lay= re->scene->lay & 0xFF000000;
|
|
else lay= re->scene->lay;
|
|
|
|
/* applies changes fully, still using G.scene for timing... */
|
|
G.scene->r.cfra+=timeoffset;
|
|
scene_update_for_newframe(re->scene, lay);
|
|
|
|
/* if no camera, viewmat should have been set! */
|
|
if(re->scene->camera) {
|
|
Mat4Ortho(re->scene->camera->obmat);
|
|
Mat4Invert(mat, re->scene->camera->obmat);
|
|
RE_SetView(re, mat);
|
|
}
|
|
|
|
/* MAKE RENDER DATA */
|
|
database_init_objects(re, lay, 0, 0, 0, timeoffset);
|
|
|
|
if(!re->test_break())
|
|
project_renderdata(re, projectverto, re->r.mode & R_PANORAMA, 0, 1);
|
|
|
|
/* do this in end, particles for example need cfra */
|
|
G.scene->r.cfra-=timeoffset;
|
|
}
|
|
|
|
/* choose to use static, to prevent giving too many args to this call */
|
|
static void speedvector_project(Render *re, float *zco, float *co, float *ho)
|
|
{
|
|
static float pixelphix=0.0f, pixelphiy=0.0f, zmulx=0.0f, zmuly=0.0f;
|
|
static int pano= 0;
|
|
float div;
|
|
|
|
/* initialize */
|
|
if(re) {
|
|
pano= re->r.mode & R_PANORAMA;
|
|
|
|
/* precalculate amount of radians 1 pixel rotates */
|
|
if(pano) {
|
|
/* size of 1 pixel mapped to viewplane coords */
|
|
float psize= (re->viewplane.xmax-re->viewplane.xmin)/(float)re->winx;
|
|
/* x angle of a pixel */
|
|
pixelphix= atan(psize/re->clipsta);
|
|
|
|
psize= (re->viewplane.ymax-re->viewplane.ymin)/(float)re->winy;
|
|
/* y angle of a pixel */
|
|
pixelphiy= atan(psize/re->clipsta);
|
|
}
|
|
zmulx= re->winx/2;
|
|
zmuly= re->winy/2;
|
|
|
|
return;
|
|
}
|
|
|
|
/* now map hocos to screenspace, uses very primitive clip still */
|
|
if(ho[3]<0.1f) div= 10.0f;
|
|
else div= 1.0f/ho[3];
|
|
|
|
/* use cylinder projection */
|
|
if(pano) {
|
|
float vec[3], ang;
|
|
/* angle between (0,0,-1) and (co) */
|
|
VECCOPY(vec, co);
|
|
|
|
ang= saacos(-vec[2]/sqrt(vec[0]*vec[0] + vec[2]*vec[2]));
|
|
if(vec[0]<0.0f) ang= -ang;
|
|
zco[0]= ang/pixelphix + zmulx;
|
|
|
|
ang= 0.5f*M_PI - saacos(vec[1]/sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]));
|
|
zco[1]= ang/pixelphiy + zmuly;
|
|
|
|
}
|
|
else {
|
|
zco[0]= zmulx*(1.0f+ho[0]*div);
|
|
zco[1]= zmuly*(1.0f+ho[1]*div);
|
|
}
|
|
}
|
|
|
|
static void calculate_speedvector(float *vectors, int step, float winsq, float winroot, float *co, float *ho, float *speed)
|
|
{
|
|
float zco[2], len;
|
|
|
|
speedvector_project(NULL, zco, co, ho);
|
|
|
|
zco[0]= vectors[0] - zco[0];
|
|
zco[1]= vectors[1] - zco[1];
|
|
|
|
/* enable nice masks for hardly moving stuff or float inaccuracy */
|
|
if(zco[0]<0.1f && zco[0]>-0.1f && zco[1]<0.1f && zco[1]>-0.1f ) {
|
|
zco[0]= 0.0f;
|
|
zco[1]= 0.0f;
|
|
}
|
|
|
|
/* maximize speed for image width, otherwise it never looks good */
|
|
len= zco[0]*zco[0] + zco[1]*zco[1];
|
|
if(len > winsq) {
|
|
len= winroot/sqrt(len);
|
|
zco[0]*= len;
|
|
zco[1]*= len;
|
|
}
|
|
|
|
/* note; in main vecblur loop speedvec is negated again */
|
|
if(step) {
|
|
speed[2]= -zco[0];
|
|
speed[3]= -zco[1];
|
|
}
|
|
else {
|
|
speed[0]= zco[0];
|
|
speed[1]= zco[1];
|
|
}
|
|
}
|
|
|
|
static float *calculate_strandsurface_speedvectors(Render *re, ObjectInstanceRen *obi, StrandSurface *mesh)
|
|
{
|
|
float winsq= re->winx*re->winy, winroot= sqrt(winsq), (*winspeed)[4];
|
|
float ho[4], prevho[4], nextho[4], winmat[4][4], vec[2];
|
|
int a;
|
|
|
|
if(mesh->co && mesh->prevco && mesh->nextco) {
|
|
if(obi->flag & R_TRANSFORMED)
|
|
Mat4MulMat4(winmat, obi->mat, re->winmat);
|
|
else
|
|
Mat4CpyMat4(winmat, re->winmat);
|
|
|
|
winspeed= MEM_callocN(sizeof(float)*4*mesh->totvert, "StrandSurfWin");
|
|
|
|
for(a=0; a<mesh->totvert; a++) {
|
|
projectvert(mesh->co[a], winmat, ho);
|
|
|
|
projectvert(mesh->prevco[a], winmat, prevho);
|
|
speedvector_project(NULL, vec, mesh->prevco[a], prevho);
|
|
calculate_speedvector(vec, 0, winsq, winroot, mesh->co[a], ho, winspeed[a]);
|
|
|
|
projectvert(mesh->nextco[a], winmat, nextho);
|
|
speedvector_project(NULL, vec, mesh->nextco[a], nextho);
|
|
calculate_speedvector(vec, 1, winsq, winroot, mesh->co[a], ho, winspeed[a]);
|
|
}
|
|
|
|
return (float*)winspeed;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void calculate_speedvectors(Render *re, ObjectInstanceRen *obi, float *vectors, int step)
|
|
{
|
|
ObjectRen *obr= obi->obr;
|
|
VertRen *ver= NULL;
|
|
StrandRen *strand= NULL;
|
|
StrandBuffer *strandbuf;
|
|
StrandSurface *mesh= NULL;
|
|
float *speed, (*winspeed)[4]=NULL, ho[4], winmat[4][4];
|
|
float *co1, *co2, *co3, *co4, w[4];
|
|
float winsq= re->winx*re->winy, winroot= sqrt(winsq);
|
|
int a, *face, *index;
|
|
|
|
if(obi->flag & R_TRANSFORMED)
|
|
Mat4MulMat4(winmat, obi->mat, re->winmat);
|
|
else
|
|
Mat4CpyMat4(winmat, re->winmat);
|
|
|
|
if(obr->vertnodes) {
|
|
for(a=0; a<obr->totvert; a++, vectors+=2) {
|
|
if((a & 255)==0) ver= obr->vertnodes[a>>8].vert;
|
|
else ver++;
|
|
|
|
speed= RE_vertren_get_winspeed(obi, ver, 1);
|
|
projectvert(ver->co, winmat, ho);
|
|
calculate_speedvector(vectors, step, winsq, winroot, ver->co, ho, speed);
|
|
}
|
|
}
|
|
|
|
if(obr->strandnodes) {
|
|
strandbuf= obr->strandbuf;
|
|
mesh= (strandbuf)? strandbuf->surface: NULL;
|
|
|
|
/* compute speed vectors at surface vertices */
|
|
if(mesh)
|
|
winspeed= (float(*)[4])calculate_strandsurface_speedvectors(re, obi, mesh);
|
|
|
|
if(winspeed) {
|
|
for(a=0; a<obr->totstrand; a++, vectors+=2) {
|
|
if((a & 255)==0) strand= obr->strandnodes[a>>8].strand;
|
|
else strand++;
|
|
|
|
index= RE_strandren_get_face(obr, strand, 0);
|
|
if(index) {
|
|
speed= RE_strandren_get_winspeed(obi, strand, 1);
|
|
|
|
/* interpolate speed vectors from strand surface */
|
|
face= mesh->face[*index];
|
|
|
|
co1= mesh->co[face[0]];
|
|
co2= mesh->co[face[1]];
|
|
co3= mesh->co[face[2]];
|
|
co4= (face[3])? mesh->co[face[3]]: NULL;
|
|
|
|
InterpWeightsQ3Dfl(co1, co2, co3, co4, strand->vert->co, w);
|
|
|
|
speed[0]= speed[1]= speed[2]= speed[3]= 0.0f;
|
|
QUATADDFAC(speed, speed, winspeed[face[0]], w[0]);
|
|
QUATADDFAC(speed, speed, winspeed[face[1]], w[1]);
|
|
QUATADDFAC(speed, speed, winspeed[face[2]], w[2]);
|
|
if(face[3])
|
|
QUATADDFAC(speed, speed, winspeed[face[3]], w[3]);
|
|
}
|
|
}
|
|
|
|
MEM_freeN(winspeed);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int load_fluidsimspeedvectors(Render *re, ObjectInstanceRen *obi, float *vectors, int step)
|
|
{
|
|
ObjectRen *obr= obi->obr;
|
|
Object *fsob= obr->ob;
|
|
VertRen *ver= NULL;
|
|
float *speed, div, zco[2];
|
|
float zmulx= re->winx/2, zmuly= re->winy/2, len;
|
|
float winsq= re->winx*re->winy, winroot= sqrt(winsq);
|
|
int a, j;
|
|
float hoco[4], ho[4], fsvec[4], camco[4];
|
|
float mat[4][4], winmat[4][4];
|
|
float imat[4][4];
|
|
MVert *vverts;
|
|
|
|
/* only one step needed */
|
|
if(step) return 1;
|
|
|
|
Mat4CpyMat4(mat, re->viewmat);
|
|
MTC_Mat4Invert(imat, mat);
|
|
|
|
/* set first vertex OK */
|
|
if( (!fsob->fluidsimSettings) || (!fsob->fluidsimSettings->meshSurfNormals) ) return 0;
|
|
vverts = fsob->fluidsimSettings->meshSurfNormals;
|
|
//fprintf(stderr, "GZ_VEL obj '%s', calc load_fluidsimspeedvectors\n",fsob->id.name); // NT DEBUG
|
|
|
|
if( obr->totvert != fsob->fluidsimSettings->meshSurface->totvert ) {
|
|
//fprintf(stderr, "load_fluidsimspeedvectors - modified fluidsim mesh, not using speed vectors (%d,%d)...\n", obr->totvert, fsob->fluidsimSettings->meshSurface->totvert); // DEBUG
|
|
return 0;
|
|
}
|
|
|
|
if(obi->flag & R_TRANSFORMED)
|
|
Mat4MulMat4(winmat, obi->mat, re->winmat);
|
|
else
|
|
Mat4CpyMat4(winmat, re->winmat);
|
|
|
|
for(a=0; a<obr->totvert; a++, vectors+=2) {
|
|
if((a & 255)==0)
|
|
ver= obr->vertnodes[a>>8].vert;
|
|
else
|
|
ver++;
|
|
|
|
// get fluid velocity
|
|
fsvec[3] = 0.;
|
|
//fsvec[0] = fsvec[1] = fsvec[2] = fsvec[3] = 0.; fsvec[2] = 2.; // NT fixed test
|
|
for(j=0;j<3;j++) fsvec[j] = vverts[a].co[j];
|
|
|
|
// transform (=rotate) to cam space
|
|
camco[0]= imat[0][0]*fsvec[0] + imat[0][1]*fsvec[1] + imat[0][2]*fsvec[2];
|
|
camco[1]= imat[1][0]*fsvec[0] + imat[1][1]*fsvec[1] + imat[1][2]*fsvec[2];
|
|
camco[2]= imat[2][0]*fsvec[0] + imat[2][1]*fsvec[1] + imat[2][2]*fsvec[2];
|
|
|
|
// get homogenous coordinates
|
|
projectvert(camco, winmat, hoco);
|
|
projectvert(ver->co, winmat, ho);
|
|
|
|
/* now map hocos to screenspace, uses very primitive clip still */
|
|
// use ho[3] of original vertex, xy component of vel. direction
|
|
if(ho[3]<0.1f) div= 10.0f;
|
|
else div= 1.0f/ho[3];
|
|
zco[0]= zmulx*hoco[0]*div;
|
|
zco[1]= zmuly*hoco[1]*div;
|
|
|
|
// maximize speed as usual
|
|
len= zco[0]*zco[0] + zco[1]*zco[1];
|
|
if(len > winsq) {
|
|
len= winroot/sqrt(len);
|
|
zco[0]*= len; zco[1]*= len;
|
|
}
|
|
|
|
speed= RE_vertren_get_winspeed(obi, ver, 1);
|
|
// set both to the same value
|
|
speed[0]= speed[2]= zco[0];
|
|
speed[1]= speed[3]= zco[1];
|
|
//if(a<20) fprintf(stderr,"speed %d %f,%f | camco %f,%f,%f | hoco %f,%f,%f,%f \n", a, speed[0], speed[1], camco[0],camco[1], camco[2], hoco[0],hoco[1], hoco[2],hoco[3]); // NT DEBUG
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* makes copy per object of all vectors */
|
|
/* result should be that we can free entire database */
|
|
static void copy_dbase_object_vectors(Render *re, ListBase *lb)
|
|
{
|
|
ObjectInstanceRen *obi, *obilb;
|
|
ObjectRen *obr;
|
|
VertRen *ver= NULL;
|
|
float *vec, ho[4], winmat[4][4];
|
|
int a, totvector;
|
|
|
|
for(obi= re->instancetable.first; obi; obi= obi->next) {
|
|
obr= obi->obr;
|
|
|
|
obilb= MEM_mallocN(sizeof(ObjectInstanceRen), "ObInstanceVector");
|
|
memcpy(obilb, obi, sizeof(ObjectInstanceRen));
|
|
BLI_addtail(lb, obilb);
|
|
|
|
obilb->totvector= totvector= obr->totvert;
|
|
|
|
if(totvector > 0) {
|
|
vec= obilb->vectors= MEM_mallocN(2*sizeof(float)*totvector, "vector array");
|
|
|
|
if(obi->flag & R_TRANSFORMED)
|
|
Mat4MulMat4(winmat, obi->mat, re->winmat);
|
|
else
|
|
Mat4CpyMat4(winmat, re->winmat);
|
|
|
|
for(a=0; a<obr->totvert; a++, vec+=2) {
|
|
if((a & 255)==0) ver= obr->vertnodes[a>>8].vert;
|
|
else ver++;
|
|
|
|
projectvert(ver->co, winmat, ho);
|
|
speedvector_project(NULL, vec, ver->co, ho);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void free_dbase_object_vectors(ListBase *lb)
|
|
{
|
|
ObjectInstanceRen *obi;
|
|
|
|
for(obi= lb->first; obi; obi= obi->next)
|
|
if(obi->vectors)
|
|
MEM_freeN(obi->vectors);
|
|
BLI_freelistN(lb);
|
|
}
|
|
|
|
void RE_Database_FromScene_Vectors(Render *re, Scene *sce)
|
|
{
|
|
ObjectInstanceRen *obi, *oldobi;
|
|
StrandSurface *mesh;
|
|
ListBase *table;
|
|
ListBase oldtable= {NULL, NULL}, newtable= {NULL, NULL};
|
|
ListBase strandsurface;
|
|
int step;
|
|
|
|
re->i.infostr= "Calculating previous vectors";
|
|
re->r.mode |= R_SPEED;
|
|
|
|
speedvector_project(re, NULL, NULL, NULL); /* initializes projection code */
|
|
|
|
/* creates entire dbase */
|
|
database_fromscene_vectors(re, sce, -1);
|
|
|
|
/* copy away vertex info */
|
|
copy_dbase_object_vectors(re, &oldtable);
|
|
|
|
/* free dbase and make the future one */
|
|
strandsurface= re->strandsurface;
|
|
memset(&re->strandsurface, 0, sizeof(ListBase));
|
|
RE_Database_Free(re);
|
|
re->strandsurface= strandsurface;
|
|
|
|
if(!re->test_break()) {
|
|
/* creates entire dbase */
|
|
re->i.infostr= "Calculating next frame vectors";
|
|
|
|
database_fromscene_vectors(re, sce, +1);
|
|
}
|
|
/* copy away vertex info */
|
|
copy_dbase_object_vectors(re, &newtable);
|
|
|
|
/* free dbase and make the real one */
|
|
strandsurface= re->strandsurface;
|
|
memset(&re->strandsurface, 0, sizeof(ListBase));
|
|
RE_Database_Free(re);
|
|
re->strandsurface= strandsurface;
|
|
|
|
if(!re->test_break())
|
|
RE_Database_FromScene(re, sce, 1);
|
|
|
|
if(!re->test_break()) {
|
|
for(step= 0; step<2; step++) {
|
|
|
|
if(step)
|
|
table= &newtable;
|
|
else
|
|
table= &oldtable;
|
|
|
|
oldobi= table->first;
|
|
for(obi= re->instancetable.first; obi && oldobi; obi= obi->next) {
|
|
int ok= 1;
|
|
|
|
if(!(obi->obr->flag & R_NEED_VECTORS))
|
|
continue;
|
|
|
|
obi->totvector= obi->obr->totvert;
|
|
|
|
/* find matching object in old table */
|
|
if(oldobi->ob!=obi->ob || oldobi->par!=obi->par || oldobi->index!=obi->index || oldobi->psysindex!=obi->psysindex) {
|
|
ok= 0;
|
|
for(oldobi= table->first; oldobi; oldobi= oldobi->next)
|
|
if(oldobi->ob==obi->ob && oldobi->par==obi->par && oldobi->index==obi->index && oldobi->psysindex==obi->psysindex)
|
|
break;
|
|
if(oldobi==NULL)
|
|
oldobi= table->first;
|
|
else
|
|
ok= 1;
|
|
}
|
|
if(ok==0) {
|
|
printf("speed table: missing object %s\n", obi->ob->id.name+2);
|
|
continue;
|
|
}
|
|
|
|
// NT check for fluidsim special treatment
|
|
if((obi->ob->fluidsimFlag & OB_FLUIDSIM_ENABLE) && (obi->ob->fluidsimSettings->type & OB_FLUIDSIM_DOMAIN)) {
|
|
// use preloaded per vertex simulation data , only does calculation for step=1
|
|
// NOTE/FIXME - velocities and meshes loaded unnecessarily often during the database_fromscene_vectors calls...
|
|
load_fluidsimspeedvectors(re, obi, oldobi->vectors, step);
|
|
} else {
|
|
/* check if both have same amounts of vertices */
|
|
if(obi->totvector==oldobi->totvector)
|
|
calculate_speedvectors(re, obi, oldobi->vectors, step);
|
|
else
|
|
printf("Warning: object %s has different amount of vertices or strands on other frame\n", obi->ob->id.name+2);
|
|
} // not fluidsim
|
|
|
|
oldobi= oldobi->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
free_dbase_object_vectors(&oldtable);
|
|
free_dbase_object_vectors(&newtable);
|
|
|
|
for(mesh=re->strandsurface.first; mesh; mesh=mesh->next) {
|
|
if(mesh->prevco) {
|
|
MEM_freeN(mesh->prevco);
|
|
mesh->prevco= NULL;
|
|
}
|
|
if(mesh->nextco) {
|
|
MEM_freeN(mesh->nextco);
|
|
mesh->nextco= NULL;
|
|
}
|
|
}
|
|
|
|
re->i.infostr= NULL;
|
|
re->stats_draw(&re->i);
|
|
}
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Baking */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* setup for shaded view or bake, so only lamps and materials are initialized */
|
|
/* type:
|
|
RE_BAKE_LIGHT: for shaded view, only add lamps
|
|
RE_BAKE_ALL: for baking, all lamps and objects
|
|
RE_BAKE_NORMALS:for baking, no lamps and only selected objects
|
|
RE_BAKE_AO: for baking, no lamps, but all objects
|
|
RE_BAKE_TEXTURE:for baking, no lamps, only selected objects
|
|
RE_BAKE_DISPLACEMENT:for baking, no lamps, only selected objects
|
|
*/
|
|
void RE_Database_Baking(Render *re, Scene *scene, int type, Object *actob)
|
|
{
|
|
float mat[4][4];
|
|
unsigned int lay;
|
|
int onlyselected, nolamps;
|
|
|
|
re->scene= scene;
|
|
|
|
/* renderdata setup and exceptions */
|
|
re->r= scene->r;
|
|
re->r.mode &= ~R_OSA;
|
|
re->flag |= R_GLOB_NOPUNOFLIP;
|
|
re->excludeob= actob;
|
|
if(type == RE_BAKE_LIGHT)
|
|
re->flag |= R_SKIP_MULTIRES;
|
|
|
|
if(type==RE_BAKE_NORMALS && re->r.bake_normal_space==R_BAKE_SPACE_TANGENT)
|
|
re->flag |= R_NEED_TANGENT;
|
|
|
|
if(!actob && ELEM4(type, RE_BAKE_LIGHT, RE_BAKE_NORMALS, RE_BAKE_TEXTURE, RE_BAKE_DISPLACEMENT)) {
|
|
re->r.mode &= ~R_SHADOW;
|
|
re->r.mode &= ~R_RAYTRACE;
|
|
}
|
|
|
|
/* setup render stuff */
|
|
if(type!=RE_BAKE_LIGHT)
|
|
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE);
|
|
|
|
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
|
|
re->lights.first= re->lights.last= NULL;
|
|
re->lampren.first= re->lampren.last= NULL;
|
|
|
|
/* in localview, lamps are using normal layers, objects only local bits */
|
|
if(re->scene->lay & 0xFF000000) lay= re->scene->lay & 0xFF000000;
|
|
else lay= re->scene->lay;
|
|
|
|
/* if no camera, set unit */
|
|
if(re->scene->camera) {
|
|
Mat4Ortho(re->scene->camera->obmat);
|
|
Mat4Invert(mat, re->scene->camera->obmat);
|
|
RE_SetView(re, mat);
|
|
}
|
|
else {
|
|
Mat4One(mat);
|
|
RE_SetView(re, mat);
|
|
}
|
|
|
|
init_render_world(re); /* do first, because of ambient. also requires re->osa set correct */
|
|
if((re->r.mode & R_RAYTRACE) && (re->wrld.mode & WO_AMB_OCC)) {
|
|
if (re->wrld.ao_samp_method == WO_AOSAMP_HAMMERSLEY)
|
|
init_render_hammersley(re);
|
|
else if (re->wrld.ao_samp_method == WO_AOSAMP_CONSTANT)
|
|
init_ao_sphere(&re->wrld);
|
|
}
|
|
|
|
/* still bad... doing all */
|
|
init_render_textures(re);
|
|
init_render_materials(re->r.mode, &re->wrld.ambr);
|
|
set_node_shader_lamp_loop(shade_material_loop);
|
|
|
|
/* MAKE RENDER DATA */
|
|
nolamps= !ELEM(type, RE_BAKE_LIGHT, RE_BAKE_ALL);
|
|
onlyselected= ELEM3(type, RE_BAKE_NORMALS, RE_BAKE_TEXTURE, RE_BAKE_DISPLACEMENT);
|
|
|
|
database_init_objects(re, lay, nolamps, onlyselected, actob, 0);
|
|
|
|
set_material_lightgroups(re);
|
|
|
|
/* SHADOW BUFFER */
|
|
if(type!=RE_BAKE_LIGHT)
|
|
if(re->r.mode & R_SHADOW)
|
|
threaded_makeshadowbufs(re);
|
|
|
|
/* raytree */
|
|
if(!re->test_break())
|
|
if(re->r.mode & R_RAYTRACE)
|
|
makeraytree(re);
|
|
|
|
/* occlusion */
|
|
if((re->wrld.mode & WO_AMB_OCC) && !re->test_break())
|
|
if(re->wrld.ao_gather_method == WO_AOGATHER_APPROX)
|
|
make_occ_tree(re);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Sticky texture coords */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
void RE_make_sticky(void)
|
|
{
|
|
Object *ob;
|
|
Base *base;
|
|
MVert *mvert;
|
|
Mesh *me;
|
|
MSticky *ms;
|
|
Render *re;
|
|
float ho[4], mat[4][4];
|
|
int a;
|
|
|
|
if(G.vd==NULL) {
|
|
printf("Need a 3d view to make sticky\n");
|
|
return;
|
|
}
|
|
|
|
if(G.scene->camera==NULL) {
|
|
printf("Need camera to make sticky\n");
|
|
return;
|
|
}
|
|
if(G.obedit) {
|
|
printf("Unable to make sticky in Edit Mode\n");
|
|
return;
|
|
}
|
|
|
|
re= RE_NewRender("_make sticky_");
|
|
RE_InitState(re, NULL, &G.scene->r, G.scene->r.xsch, G.scene->r.ysch, NULL);
|
|
|
|
/* use renderdata and camera to set viewplane */
|
|
RE_SetCamera(re, G.scene->camera);
|
|
|
|
/* and set view matrix */
|
|
Mat4Ortho(G.scene->camera->obmat);
|
|
Mat4Invert(mat, G.scene->camera->obmat);
|
|
RE_SetView(re, mat);
|
|
|
|
for(base= FIRSTBASE; base; base= base->next) {
|
|
if TESTBASELIB(base) {
|
|
if(base->object->type==OB_MESH) {
|
|
ob= base->object;
|
|
|
|
me= ob->data;
|
|
mvert= me->mvert;
|
|
if(me->msticky)
|
|
CustomData_free_layer_active(&me->vdata, CD_MSTICKY, me->totvert);
|
|
me->msticky= CustomData_add_layer(&me->vdata, CD_MSTICKY,
|
|
CD_CALLOC, NULL, me->totvert);
|
|
|
|
where_is_object(ob);
|
|
Mat4MulMat4(mat, ob->obmat, re->viewmat);
|
|
|
|
ms= me->msticky;
|
|
for(a=0; a<me->totvert; a++, ms++, mvert++) {
|
|
VECCOPY(ho, mvert->co);
|
|
Mat4MulVecfl(mat, ho);
|
|
projectverto(ho, re->winmat, ho);
|
|
ms->co[0]= ho[0]/ho[3];
|
|
ms->co[1]= ho[1]/ho[3];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|