This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_draw.c
Clément Foucault 35f1b3e43b Cleanup: GPU: Wrap GL_UNPACK_ROW_LENGTH in GPU_state
Also go back to default value of 0 after usage.
2020-07-18 03:43:52 +02:00

1470 lines
43 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*
* Utility functions for dealing with OpenGL texture & material context,
* mipmap generation and light objects.
*
* These are some obscure rendering functions shared between the game engine (not anymore)
* and the blender, in this module to avoid duplication
* and abstract them away from the rest a bit.
*/
#include <string.h>
#include "BLI_blenlib.h"
#include "BLI_boxpack_2d.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "DNA_image_types.h"
#include "DNA_movieclip_types.h"
#include "DNA_userdef_types.h"
#include "MEM_guardedalloc.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_main.h"
#include "BKE_movieclip.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
#include "GPU_glew.h"
#include "GPU_matrix.h"
#include "GPU_platform.h"
#include "GPU_texture.h"
#include "PIL_time.h"
static void gpu_free_image(Image *ima, const bool immediate);
static void gpu_free_unused_buffers(void);
//* Checking powers of two for images since OpenGL ES requires it */
#ifdef WITH_DDS
static bool is_power_of_2_resolution(int w, int h)
{
return is_power_of_2_i(w) && is_power_of_2_i(h);
}
#endif
static bool is_over_resolution_limit(GLenum textarget, int w, int h)
{
int size = (textarget == GL_TEXTURE_CUBE_MAP) ? GPU_max_cube_map_size() : GPU_max_texture_size();
int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, size) : size;
return (w > reslimit || h > reslimit);
}
static int smaller_power_of_2_limit(int num)
{
int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, GPU_max_texture_size()) :
GPU_max_texture_size();
/* take texture clamping into account */
if (num > reslimit) {
return reslimit;
}
return power_of_2_min_i(num);
}
/* Current OpenGL state caching for GPU_set_tpage */
static struct GPUTextureState {
/* also controls min/mag filtering */
bool domipmap;
/* only use when 'domipmap' is set */
bool linearmipmap;
/* store this so that new images created while texture painting won't be set to mipmapped */
bool texpaint;
float anisotropic;
} GTS = {1, 0, 0, 1.0f};
/* Mipmap settings */
void GPU_set_mipmap(Main *bmain, bool mipmap)
{
if (GTS.domipmap != mipmap) {
GPU_free_images(bmain);
GTS.domipmap = mipmap;
}
}
void GPU_set_linear_mipmap(bool linear)
{
if (GTS.linearmipmap != linear) {
GTS.linearmipmap = linear;
}
}
bool GPU_get_mipmap(void)
{
return GTS.domipmap && !GTS.texpaint;
}
bool GPU_get_linear_mipmap(void)
{
return GTS.linearmipmap;
}
static GLenum gpu_get_mipmap_filter(bool mag)
{
/* linearmipmap is off by default *when mipmapping is off,
* use unfiltered display */
if (mag) {
if (GTS.domipmap) {
return GL_LINEAR;
}
else {
return GL_NEAREST;
}
}
else {
if (GTS.domipmap) {
if (GTS.linearmipmap) {
return GL_LINEAR_MIPMAP_LINEAR;
}
else {
return GL_LINEAR_MIPMAP_NEAREST;
}
}
else {
return GL_NEAREST;
}
}
}
/* Anisotropic filtering settings */
void GPU_set_anisotropic(float value)
{
if (GTS.anisotropic != value) {
GPU_samplers_free();
/* Clamp value to the maximum value the graphics card supports */
const float max = GPU_max_texture_anisotropy();
if (value > max) {
value = max;
}
GTS.anisotropic = value;
GPU_samplers_init();
}
}
float GPU_get_anisotropic(void)
{
return GTS.anisotropic;
}
/* Set OpenGL state for an MTFace */
static GPUTexture **gpu_get_image_gputexture(Image *ima, GLenum textarget, const int multiview_eye)
{
if (textarget == GL_TEXTURE_2D) {
return &(ima->gputexture[TEXTARGET_TEXTURE_2D][multiview_eye]);
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
return &(ima->gputexture[TEXTARGET_TEXTURE_CUBE_MAP][multiview_eye]);
}
else if (textarget == GL_TEXTURE_2D_ARRAY) {
return &(ima->gputexture[TEXTARGET_TEXTURE_2D_ARRAY][multiview_eye]);
}
else if (textarget == GL_TEXTURE_1D_ARRAY) {
return &(ima->gputexture[TEXTARGET_TEXTURE_TILE_MAPPING][multiview_eye]);
}
return NULL;
}
static uint gpu_texture_create_tile_mapping(Image *ima, const int multiview_eye)
{
GPUTexture *tilearray = ima->gputexture[TEXTARGET_TEXTURE_2D_ARRAY][multiview_eye];
if (tilearray == NULL) {
return 0;
}
float array_w = GPU_texture_width(tilearray);
float array_h = GPU_texture_height(tilearray);
ImageTile *last_tile = ima->tiles.last;
/* Tiles are sorted by number. */
int max_tile = last_tile->tile_number - 1001;
/* create image */
int bindcode;
glGenTextures(1, (GLuint *)&bindcode);
glBindTexture(GL_TEXTURE_1D_ARRAY, bindcode);
int width = max_tile + 1;
float *data = MEM_callocN(width * 8 * sizeof(float), __func__);
for (int i = 0; i < width; i++) {
data[4 * i] = -1.0f;
}
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int i = tile->tile_number - 1001;
data[4 * i] = tile->runtime.tilearray_layer;
float *tile_info = &data[4 * width + 4 * i];
tile_info[0] = tile->runtime.tilearray_offset[0] / array_w;
tile_info[1] = tile->runtime.tilearray_offset[1] / array_h;
tile_info[2] = tile->runtime.tilearray_size[0] / array_w;
tile_info[3] = tile->runtime.tilearray_size[1] / array_h;
}
glTexImage2D(GL_TEXTURE_1D_ARRAY, 0, GL_RGBA32F, width, 2, 0, GL_RGBA, GL_FLOAT, data);
MEM_freeN(data);
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glBindTexture(GL_TEXTURE_1D_ARRAY, 0);
return bindcode;
}
typedef struct PackTile {
FixedSizeBoxPack boxpack;
ImageTile *tile;
float pack_score;
} PackTile;
static int compare_packtile(const void *a, const void *b)
{
const PackTile *tile_a = a;
const PackTile *tile_b = b;
return tile_a->pack_score < tile_b->pack_score;
}
static uint gpu_texture_create_tile_array(Image *ima, ImBuf *main_ibuf)
{
int arraywidth = 0, arrayheight = 0;
ListBase boxes = {NULL};
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
PackTile *packtile = MEM_callocN(sizeof(PackTile), __func__);
packtile->tile = tile;
packtile->boxpack.w = ibuf->x;
packtile->boxpack.h = ibuf->y;
if (is_over_resolution_limit(
GL_TEXTURE_2D_ARRAY, packtile->boxpack.w, packtile->boxpack.h)) {
packtile->boxpack.w = smaller_power_of_2_limit(packtile->boxpack.w);
packtile->boxpack.h = smaller_power_of_2_limit(packtile->boxpack.h);
}
arraywidth = max_ii(arraywidth, packtile->boxpack.w);
arrayheight = max_ii(arrayheight, packtile->boxpack.h);
/* We sort the tiles by decreasing size, with an additional penalty term
* for high aspect ratios. This improves packing efficiency. */
float w = packtile->boxpack.w, h = packtile->boxpack.h;
packtile->pack_score = max_ff(w, h) / min_ff(w, h) * w * h;
BKE_image_release_ibuf(ima, ibuf, NULL);
BLI_addtail(&boxes, packtile);
}
}
BLI_assert(arraywidth > 0 && arrayheight > 0);
BLI_listbase_sort(&boxes, compare_packtile);
int arraylayers = 0;
/* Keep adding layers until all tiles are packed. */
while (boxes.first != NULL) {
ListBase packed = {NULL};
BLI_box_pack_2d_fixedarea(&boxes, arraywidth, arrayheight, &packed);
BLI_assert(packed.first != NULL);
LISTBASE_FOREACH (PackTile *, packtile, &packed) {
ImageTile *tile = packtile->tile;
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
tileoffset[0] = packtile->boxpack.x;
tileoffset[1] = packtile->boxpack.y;
tilesize[0] = packtile->boxpack.w;
tilesize[1] = packtile->boxpack.h;
tile->runtime.tilearray_layer = arraylayers;
}
BLI_freelistN(&packed);
arraylayers++;
}
/* create image */
int bindcode;
glGenTextures(1, (GLuint *)&bindcode);
glBindTexture(GL_TEXTURE_2D_ARRAY, bindcode);
GLenum data_type, internal_format;
if (main_ibuf->rect_float) {
data_type = GL_FLOAT;
internal_format = (!(main_ibuf->flags & IB_halffloat) && (ima->flag & IMA_HIGH_BITDEPTH)) ?
GL_RGBA32F :
GL_RGBA16F;
}
else {
data_type = GL_UNSIGNED_BYTE;
internal_format = GL_RGBA8;
if (!IMB_colormanagement_space_is_data(main_ibuf->rect_colorspace) &&
!IMB_colormanagement_space_is_scene_linear(main_ibuf->rect_colorspace)) {
internal_format = GL_SRGB8_ALPHA8;
}
}
glTexImage3D(GL_TEXTURE_2D_ARRAY,
0,
internal_format,
arraywidth,
arrayheight,
arraylayers,
0,
GL_RGBA,
data_type,
NULL);
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
int tilelayer = tile->runtime.tilearray_layer;
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
if (tilesize[0] == 0 || tilesize[1] == 0) {
continue;
}
ImageUser iuser;
BKE_imageuser_default(&iuser);
iuser.tile = tile->tile_number;
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, &iuser, NULL);
if (ibuf) {
bool needs_scale = (ibuf->x != tilesize[0] || ibuf->y != tilesize[1]);
ImBuf *scale_ibuf = NULL;
if (ibuf->rect_float) {
float *rect_float = ibuf->rect_float;
const bool store_premultiplied = ima->alpha_mode != IMA_ALPHA_STRAIGHT;
if (ibuf->channels != 4 || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * ibuf->x * ibuf->y, __func__);
IMB_colormanagement_imbuf_to_float_texture(
rect_float, 0, 0, ibuf->x, ibuf->y, ibuf, store_premultiplied);
}
float *pixeldata = rect_float;
if (needs_scale) {
scale_ibuf = IMB_allocFromBuffer(NULL, rect_float, ibuf->x, ibuf->y, 4);
IMB_scaleImBuf(scale_ibuf, tilesize[0], tilesize[1]);
pixeldata = scale_ibuf->rect_float;
}
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
tileoffset[0],
tileoffset[1],
tilelayer,
tilesize[0],
tilesize[1],
1,
GL_RGBA,
GL_FLOAT,
pixeldata);
if (rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
}
else {
unsigned int *rect = ibuf->rect;
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
rect = MEM_mallocN(sizeof(uchar) * 4 * ibuf->x * ibuf->y, __func__);
IMB_colormanagement_imbuf_to_byte_texture((uchar *)rect,
0,
0,
ibuf->x,
ibuf->y,
ibuf,
internal_format == GL_SRGB8_ALPHA8,
ima->alpha_mode == IMA_ALPHA_PREMUL);
}
unsigned int *pixeldata = rect;
if (needs_scale) {
scale_ibuf = IMB_allocFromBuffer(rect, NULL, ibuf->x, ibuf->y, 4);
IMB_scaleImBuf(scale_ibuf, tilesize[0], tilesize[1]);
pixeldata = scale_ibuf->rect;
}
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
tileoffset[0],
tileoffset[1],
tilelayer,
tilesize[0],
tilesize[1],
1,
GL_RGBA,
GL_UNSIGNED_BYTE,
pixeldata);
if (rect != ibuf->rect) {
MEM_freeN(rect);
}
}
if (scale_ibuf != NULL) {
IMB_freeImBuf(scale_ibuf);
}
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
if (GPU_get_mipmap()) {
glGenerateMipmap(GL_TEXTURE_2D_ARRAY);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
return bindcode;
}
static uint gpu_texture_create_from_ibuf(Image *ima, ImBuf *ibuf, int textarget)
{
uint bindcode = 0;
const bool mipmap = GPU_get_mipmap();
const bool half_float = (ibuf->flags & IB_halffloat) != 0;
#ifdef WITH_DDS
if (ibuf->ftype == IMB_FTYPE_DDS) {
/* DDS is loaded directly in compressed form. */
GPU_create_gl_tex_compressed(&bindcode, textarget, ima, ibuf);
return bindcode;
}
#endif
/* Regular uncompressed texture. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
bool compress_as_srgb = false;
if (rect_float == NULL) {
/* Byte image is in original colorspace from the file. If the file is sRGB
* scene linear, or non-color data no conversion is needed. Otherwise we
* compress as scene linear + sRGB transfer function to avoid precision loss
* in common cases.
*
* We must also convert to premultiplied for correct texture interpolation
* and consistency with float images. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace);
rect = MEM_mallocN(sizeof(uchar) * 4 * ibuf->x * ibuf->y, __func__);
if (rect == NULL) {
return bindcode;
}
/* Texture storage of images is defined by the alpha mode of the image. The
* downside of this is that there can be artifacts near alpha edges. However,
* this allows us to use sRGB texture formats and preserves color values in
* zero alpha areas, and appears generally closer to what game engines that we
* want to be compatible with do. */
const bool store_premultiplied = ima ? (ima->alpha_mode == IMA_ALPHA_PREMUL) : true;
IMB_colormanagement_imbuf_to_byte_texture(
rect, 0, 0, ibuf->x, ibuf->y, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float image is already in scene linear colorspace or non-color data by
* convention, no colorspace conversion needed. But we do require 4 channels
* currently. */
const bool store_premultiplied = ima ? (ima->alpha_mode != IMA_ALPHA_STRAIGHT) : false;
if (ibuf->channels != 4 || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * ibuf->x * ibuf->y, __func__);
if (rect_float == NULL) {
return bindcode;
}
IMB_colormanagement_imbuf_to_float_texture(
rect_float, 0, 0, ibuf->x, ibuf->y, ibuf, store_premultiplied);
}
}
/* Create OpenGL texture. */
GPU_create_gl_tex(&bindcode,
(uint *)rect,
rect_float,
ibuf->x,
ibuf->y,
textarget,
mipmap,
half_float,
compress_as_srgb,
ima);
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
return bindcode;
}
static GPUTexture **gpu_get_movieclip_gputexture(MovieClip *clip,
MovieClipUser *cuser,
GLenum textarget)
{
MovieClip_RuntimeGPUTexture *tex;
for (tex = clip->runtime.gputextures.first; tex; tex = tex->next) {
if (memcmp(&tex->user, cuser, sizeof(MovieClipUser)) == 0) {
break;
}
}
if (tex == NULL) {
tex = MEM_mallocN(sizeof(MovieClip_RuntimeGPUTexture), __func__);
for (int i = 0; i < TEXTARGET_COUNT; i++) {
tex->gputexture[i] = NULL;
}
memcpy(&tex->user, cuser, sizeof(MovieClipUser));
BLI_addtail(&clip->runtime.gputextures, tex);
}
if (textarget == GL_TEXTURE_2D) {
return &tex->gputexture[TEXTARGET_TEXTURE_2D];
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
return &tex->gputexture[TEXTARGET_TEXTURE_CUBE_MAP];
}
return NULL;
}
static ImBuf *update_do_scale(uchar *rect,
float *rect_float,
int *x,
int *y,
int *w,
int *h,
int limit_w,
int limit_h,
int full_w,
int full_h)
{
/* Partial update with scaling. */
float xratio = limit_w / (float)full_w;
float yratio = limit_h / (float)full_h;
int part_w = *w, part_h = *h;
/* Find sub coordinates in scaled image. Take ceiling because we will be
* losing 1 pixel due to rounding errors in x,y. */
*x *= xratio;
*y *= yratio;
*w = (int)ceil(xratio * (*w));
*h = (int)ceil(yratio * (*h));
/* ...but take back if we are over the limit! */
if (*x + *w > limit_w) {
(*w)--;
}
if (*y + *h > limit_h) {
(*h)--;
}
/* Scale pixels. */
ImBuf *ibuf = IMB_allocFromBuffer((uint *)rect, rect_float, part_w, part_h, 4);
IMB_scaleImBuf(ibuf, *w, *h);
return ibuf;
}
static void gpu_texture_update_scaled_array(uchar *rect,
float *rect_float,
int full_w,
int full_h,
int x,
int y,
int layer,
const int *tile_offset,
const int *tile_size,
int w,
int h)
{
ImBuf *ibuf = update_do_scale(
rect, rect_float, &x, &y, &w, &h, tile_size[0], tile_size[1], full_w, full_h);
/* Shift to account for tile packing. */
x += tile_offset[0];
y += tile_offset[1];
if (ibuf->rect_float) {
glTexSubImage3D(
GL_TEXTURE_2D_ARRAY, 0, x, y, layer, w, h, 1, GL_RGBA, GL_FLOAT, ibuf->rect_float);
}
else {
glTexSubImage3D(
GL_TEXTURE_2D_ARRAY, 0, x, y, layer, w, h, 1, GL_RGBA, GL_UNSIGNED_BYTE, ibuf->rect);
}
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_scaled(
uchar *rect, float *rect_float, int full_w, int full_h, int x, int y, int w, int h)
{
/* Partial update with scaling. */
int limit_w = smaller_power_of_2_limit(full_w);
int limit_h = smaller_power_of_2_limit(full_h);
ImBuf *ibuf = update_do_scale(
rect, rect_float, &x, &y, &w, &h, limit_w, limit_h, full_w, full_h);
if (ibuf->rect_float) {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, ibuf->rect_float);
}
else {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, ibuf->rect);
}
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_unscaled(uchar *rect,
float *rect_float,
int x,
int y,
int layer,
int w,
int h,
GLint tex_stride,
GLint tex_offset)
{
/* Partial update without scaling. Stride and offset are used to copy only a
* subset of a possible larger buffer than what we are updating. */
GPU_unpack_row_length_set(tex_stride);
if (layer >= 0) {
if (rect_float == NULL) {
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
x,
y,
layer,
w,
h,
1,
GL_RGBA,
GL_UNSIGNED_BYTE,
rect + tex_offset);
}
else {
glTexSubImage3D(GL_TEXTURE_2D_ARRAY,
0,
x,
y,
layer,
w,
h,
1,
GL_RGBA,
GL_FLOAT,
rect_float + tex_offset);
}
}
else {
if (rect_float == NULL) {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, rect + tex_offset);
}
else {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, rect_float + tex_offset);
}
}
/* Restore default. */
GPU_unpack_row_length_set(0);
}
static void gpu_texture_update_from_ibuf(
GPUTexture *tex, Image *ima, ImBuf *ibuf, ImageTile *tile, int x, int y, int w, int h)
{
/* Partial update of texture for texture painting. This is often much
* quicker than fully updating the texture for high resolution images. */
GPU_texture_bind(tex, 0);
bool scaled;
if (tile != NULL) {
int *tilesize = tile->runtime.tilearray_size;
scaled = (ibuf->x != tilesize[0]) || (ibuf->y != tilesize[1]);
}
else {
scaled = is_over_resolution_limit(GL_TEXTURE_2D, ibuf->x, ibuf->y);
}
if (scaled) {
/* Extra padding to account for bleed from neighboring pixels. */
const int padding = 4;
const int xmax = min_ii(x + w + padding, ibuf->x);
const int ymax = min_ii(y + h + padding, ibuf->y);
x = max_ii(x - padding, 0);
y = max_ii(y - padding, 0);
w = xmax - x;
h = ymax - y;
}
/* Get texture data pointers. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
GLint tex_stride = ibuf->x;
GLint tex_offset = ibuf->channels * (y * ibuf->x + x);
if (rect_float == NULL) {
/* Byte pixels. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
const bool compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(
ibuf->rect_colorspace);
rect = MEM_mallocN(sizeof(uchar) * 4 * w * h, __func__);
if (rect == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
/* Convert to scene linear with sRGB compression, and premultiplied for
* correct texture interpolation. */
const bool store_premultiplied = (ima->alpha_mode == IMA_ALPHA_PREMUL);
IMB_colormanagement_imbuf_to_byte_texture(
rect, x, y, w, h, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float pixels. */
const bool store_premultiplied = (ima->alpha_mode != IMA_ALPHA_STRAIGHT);
if (ibuf->channels != 4 || scaled || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * w * h, __func__);
if (rect_float == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
IMB_colormanagement_imbuf_to_float_texture(
rect_float, x, y, w, h, ibuf, store_premultiplied);
}
}
if (scaled) {
/* Slower update where we first have to scale the input pixels. */
if (tile != NULL) {
int *tileoffset = tile->runtime.tilearray_offset;
int *tilesize = tile->runtime.tilearray_size;
int tilelayer = tile->runtime.tilearray_layer;
gpu_texture_update_scaled_array(
rect, rect_float, ibuf->x, ibuf->y, x, y, tilelayer, tileoffset, tilesize, w, h);
}
else {
gpu_texture_update_scaled(rect, rect_float, ibuf->x, ibuf->y, x, y, w, h);
}
}
else {
/* Fast update at same resolution. */
if (tile != NULL) {
int *tileoffset = tile->runtime.tilearray_offset;
int tilelayer = tile->runtime.tilearray_layer;
gpu_texture_update_unscaled(rect,
rect_float,
x + tileoffset[0],
y + tileoffset[1],
tilelayer,
w,
h,
tex_stride,
tex_offset);
}
else {
gpu_texture_update_unscaled(rect, rect_float, x, y, -1, w, h, tex_stride, tex_offset);
}
}
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
if (GPU_get_mipmap()) {
glGenerateMipmap((tile != NULL) ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D);
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_unbind(tex);
}
/* Get the GPUTexture for a given `Image`.
*
* `iuser` and `ibuf` are mutual exclusive parameters. The caller can pass the `ibuf` when already
* available. It is also required when requesting the GPUTexture for a render result. */
GPUTexture *GPU_texture_from_blender(Image *ima, ImageUser *iuser, ImBuf *ibuf, int textarget)
{
#ifndef GPU_STANDALONE
if (ima == NULL) {
return NULL;
}
/* Free any unused GPU textures, since we know we are in a thread with OpenGL
* context and might as well ensure we have as much space free as possible. */
gpu_free_unused_buffers();
/* currently, gpu refresh tagging is used by ima sequences */
if (ima->gpuflag & IMA_GPU_REFRESH) {
gpu_free_image(ima, true);
ima->gpuflag &= ~IMA_GPU_REFRESH;
}
/* Tag as in active use for garbage collector. */
BKE_image_tag_time(ima);
/* Test if we already have a texture. */
GPUTexture **tex = gpu_get_image_gputexture(ima, textarget, iuser ? iuser->multiview_eye : 0);
if (*tex) {
return *tex;
}
/* Check if we have a valid image. If not, we return a dummy
* texture with zero bindcode so we don't keep trying. */
uint bindcode = 0;
ImageTile *tile = BKE_image_get_tile(ima, 0);
if (tile == NULL || tile->ok == 0) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
/* check if we have a valid image buffer */
ImBuf *ibuf_intern = ibuf;
if (ibuf_intern == NULL) {
ibuf_intern = BKE_image_acquire_ibuf(ima, iuser, NULL);
if (ibuf_intern == NULL) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
}
if (textarget == GL_TEXTURE_2D_ARRAY) {
bindcode = gpu_texture_create_tile_array(ima, ibuf_intern);
}
else if (textarget == GL_TEXTURE_1D_ARRAY) {
bindcode = gpu_texture_create_tile_mapping(ima, iuser ? iuser->multiview_eye : 0);
}
else {
bindcode = gpu_texture_create_from_ibuf(ima, ibuf_intern, textarget);
}
/* if `ibuf` was given, we don't own the `ibuf_intern` */
if (ibuf == NULL) {
BKE_image_release_ibuf(ima, ibuf_intern, NULL);
}
*tex = GPU_texture_from_bindcode(textarget, bindcode);
GPU_texture_orig_size_set(*tex, ibuf_intern->x, ibuf_intern->y);
if (textarget == GL_TEXTURE_1D_ARRAY) {
/* Special for tile mapping. */
GPU_texture_mipmap_mode(*tex, false, false);
}
return *tex;
#endif
return NULL;
}
GPUTexture *GPU_texture_from_movieclip(MovieClip *clip, MovieClipUser *cuser, int textarget)
{
#ifndef GPU_STANDALONE
if (clip == NULL) {
return NULL;
}
GPUTexture **tex = gpu_get_movieclip_gputexture(clip, cuser, textarget);
if (*tex) {
return *tex;
}
/* check if we have a valid image buffer */
uint bindcode = 0;
ImBuf *ibuf = BKE_movieclip_get_ibuf(clip, cuser);
if (ibuf == NULL) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
bindcode = gpu_texture_create_from_ibuf(NULL, ibuf, textarget);
IMB_freeImBuf(ibuf);
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
#else
return NULL;
#endif
}
void GPU_free_texture_movieclip(struct MovieClip *clip)
{
/* number of gpu textures to keep around as cache
* We don't want to keep too many GPU textures for
* movie clips around, as they can be large.*/
const int MOVIECLIP_NUM_GPUTEXTURES = 1;
while (BLI_listbase_count(&clip->runtime.gputextures) > MOVIECLIP_NUM_GPUTEXTURES) {
MovieClip_RuntimeGPUTexture *tex = BLI_pophead(&clip->runtime.gputextures);
for (int i = 0; i < TEXTARGET_COUNT; i++) {
/* free glsl image binding */
if (tex->gputexture[i]) {
GPU_texture_free(tex->gputexture[i]);
tex->gputexture[i] = NULL;
}
}
MEM_freeN(tex);
}
}
static void **gpu_gen_cube_map(uint *rect, float *frect, int rectw, int recth)
{
size_t block_size = frect ? sizeof(float[4]) : sizeof(uchar[4]);
void **sides = NULL;
int h = recth / 2;
int w = rectw / 3;
if (w != h) {
return sides;
}
/* PosX, NegX, PosY, NegY, PosZ, NegZ */
sides = MEM_mallocN(sizeof(void *) * 6, "");
for (int i = 0; i < 6; i++) {
sides[i] = MEM_mallocN(block_size * w * h, "");
}
/* divide image into six parts */
/* ______________________
* | | | |
* | NegX | NegY | PosX |
* |______|______|______|
* | | | |
* | NegZ | PosZ | PosY |
* |______|______|______|
*/
if (frect) {
float(*frectb)[4] = (float(*)[4])frect;
float(**fsides)[4] = (float(**)[4])sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
memcpy(&fsides[0][x * h + y], &frectb[(recth - y - 1) * rectw + 2 * w + x], block_size);
memcpy(&fsides[1][x * h + y], &frectb[(y + h) * rectw + w - 1 - x], block_size);
memcpy(
&fsides[3][y * w + x], &frectb[(recth - y - 1) * rectw + 2 * w - 1 - x], block_size);
memcpy(&fsides[5][y * w + x], &frectb[(h - y - 1) * rectw + w - 1 - x], block_size);
}
memcpy(&fsides[2][y * w], frectb[y * rectw + 2 * w], block_size * w);
memcpy(&fsides[4][y * w], frectb[y * rectw + w], block_size * w);
}
}
else {
uint **isides = (uint **)sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
isides[0][x * h + y] = rect[(recth - y - 1) * rectw + 2 * w + x];
isides[1][x * h + y] = rect[(y + h) * rectw + w - 1 - x];
isides[3][y * w + x] = rect[(recth - y - 1) * rectw + 2 * w - 1 - x];
isides[5][y * w + x] = rect[(h - y - 1) * rectw + w - 1 - x];
}
memcpy(&isides[2][y * w], &rect[y * rectw + 2 * w], block_size * w);
memcpy(&isides[4][y * w], &rect[y * rectw + w], block_size * w);
}
}
return sides;
}
static void gpu_del_cube_map(void **cube_map)
{
int i;
if (cube_map == NULL) {
return;
}
for (i = 0; i < 6; i++) {
MEM_freeN(cube_map[i]);
}
MEM_freeN(cube_map);
}
/* Image *ima can be NULL */
void GPU_create_gl_tex(uint *bind,
uint *rect,
float *frect,
int rectw,
int recth,
int textarget,
bool mipmap,
bool half_float,
bool use_srgb,
Image *ima)
{
ImBuf *ibuf = NULL;
if (textarget == GL_TEXTURE_2D && is_over_resolution_limit(textarget, rectw, recth)) {
int tpx = rectw;
int tpy = recth;
rectw = smaller_power_of_2_limit(rectw);
recth = smaller_power_of_2_limit(recth);
if (frect) {
ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy, 4);
IMB_scaleImBuf(ibuf, rectw, recth);
frect = ibuf->rect_float;
}
else {
ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy, 4);
IMB_scaleImBuf(ibuf, rectw, recth);
rect = ibuf->rect;
}
}
/* create image */
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
GLenum float_format = (!half_float && (ima && (ima->flag & IMA_HIGH_BITDEPTH))) ? GL_RGBA32F :
GL_RGBA16F;
GLenum internal_format = (frect) ? float_format : (use_srgb) ? GL_SRGB8_ALPHA8 : GL_RGBA8;
if (textarget == GL_TEXTURE_2D) {
if (frect) {
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_FLOAT, frect);
}
else {
glTexImage2D(
GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_UNSIGNED_BYTE, rect);
}
if (GPU_get_mipmap() && mipmap) {
glGenerateMipmap(GL_TEXTURE_2D);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
int w = rectw / 3, h = recth / 2;
if (h == w && is_power_of_2_i(h) && !is_over_resolution_limit(textarget, h, w)) {
void **cube_map = gpu_gen_cube_map(rect, frect, rectw, recth);
GLenum type = frect ? GL_FLOAT : GL_UNSIGNED_BYTE;
if (cube_map) {
for (int i = 0; i < 6; i++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
0,
internal_format,
w,
h,
0,
GL_RGBA,
type,
cube_map[i]);
}
}
if (GPU_get_mipmap() && mipmap) {
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
gpu_del_cube_map(cube_map);
}
else {
printf("Incorrect envmap size\n");
}
}
glBindTexture(textarget, 0);
if (ibuf) {
IMB_freeImBuf(ibuf);
}
}
/**
* GPU_upload_dxt_texture() assumes that the texture is already bound and ready to go.
* This is so the viewport and the BGE can share some code.
* Returns false if the provided ImBuf doesn't have a supported DXT compression format
*/
bool GPU_upload_dxt_texture(ImBuf *ibuf, bool use_srgb)
{
#ifdef WITH_DDS
GLint format = 0;
int blocksize, height, width, i, size, offset = 0;
width = ibuf->x;
height = ibuf->y;
if (GLEW_EXT_texture_compression_s3tc) {
if (ibuf->dds_data.fourcc == FOURCC_DXT1) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
else if (ibuf->dds_data.fourcc == FOURCC_DXT3) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
}
else if (ibuf->dds_data.fourcc == FOURCC_DXT5) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
}
if (format == 0) {
fprintf(stderr, "Unable to find a suitable DXT compression, falling back to uncompressed\n");
return false;
}
if (!is_power_of_2_resolution(width, height)) {
fprintf(
stderr,
"Unable to load non-power-of-two DXT image resolution, falling back to uncompressed\n");
return false;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
/* Reset to opengl Defaults. (Untested, might not be needed) */
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
blocksize = (ibuf->dds_data.fourcc == FOURCC_DXT1) ? 8 : 16;
for (i = 0; i < ibuf->dds_data.nummipmaps && (width || height); i++) {
if (width == 0) {
width = 1;
}
if (height == 0) {
height = 1;
}
size = ((width + 3) / 4) * ((height + 3) / 4) * blocksize;
glCompressedTexImage2D(
GL_TEXTURE_2D, i, format, width, height, 0, size, ibuf->dds_data.data + offset);
offset += size;
width >>= 1;
height >>= 1;
}
/* Restore Blender default. */
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
/* set number of mipmap levels we have, needed in case they don't go down to 1x1 */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, i - 1);
return true;
#else
UNUSED_VARS(ibuf, use_srgb);
return false;
#endif
}
void GPU_create_gl_tex_compressed(unsigned int *bind, int textarget, Image *ima, ImBuf *ibuf)
{
/* For DDS we only support data, scene linear and sRGB. Converting to
* different colorspace would break the compression. */
const bool use_srgb = !(IMB_colormanagement_space_is_data(ibuf->rect_colorspace) ||
IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace));
const bool mipmap = GPU_get_mipmap();
const bool half_float = (ibuf->flags & IB_halffloat) != 0;
#ifndef WITH_DDS
(void)ibuf;
/* Fall back to uncompressed if DDS isn't enabled */
GPU_create_gl_tex(
bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, half_float, use_srgb, ima);
#else
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
if (textarget == GL_TEXTURE_2D && GPU_upload_dxt_texture(ibuf, use_srgb) == 0) {
glDeleteTextures(1, (GLuint *)bind);
GPU_create_gl_tex(
bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, half_float, use_srgb, ima);
}
glBindTexture(textarget, 0);
#endif
}
/* these two functions are called on entering and exiting texture paint mode,
* temporary disabling/enabling mipmapping on all images for quick texture
* updates with glTexSubImage2D. images that didn't change don't have to be
* re-uploaded to OpenGL */
void GPU_paint_set_mipmap(Main *bmain, bool mipmap)
{
#ifndef GPU_STANDALONE
if (!GTS.domipmap) {
return;
}
GTS.texpaint = !mipmap;
if (mipmap) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->gpuflag & IMA_GPU_MIPMAP_COMPLETE) {
for (int eye = 0; eye < 2; eye++) {
for (int a = 0; a < TEXTARGET_COUNT; a++) {
if (ELEM(a, TEXTARGET_TEXTURE_2D, TEXTARGET_TEXTURE_2D_ARRAY)) {
GPUTexture *tex = ima->gputexture[a][eye];
if (tex != NULL) {
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(tex);
}
}
}
}
}
else {
GPU_free_image(ima);
}
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
}
}
else {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
for (int eye = 0; eye < 2; eye++) {
for (int a = 0; a < TEXTARGET_COUNT; a++) {
if (ELEM(a, TEXTARGET_TEXTURE_2D, TEXTARGET_TEXTURE_2D_ARRAY)) {
GPUTexture *tex = ima->gputexture[a][eye];
if (tex != NULL) {
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(tex);
}
}
}
}
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
}
}
#endif /* GPU_STANDALONE */
}
void GPU_paint_update_image(Image *ima, ImageUser *iuser, int x, int y, int w, int h)
{
#ifndef GPU_STANDALONE
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
ImageTile *tile = BKE_image_get_tile_from_iuser(ima, iuser);
if ((ibuf == NULL) || (w == 0) || (h == 0)) {
/* Full reload of texture. */
GPU_free_image(ima);
}
GPUTexture *tex = ima->gputexture[TEXTARGET_TEXTURE_2D][0];
/* Check if we need to update the main gputexture. */
if (tex != NULL && tile == ima->tiles.first) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, NULL, x, y, w, h);
}
/* Check if we need to update the array gputexture. */
tex = ima->gputexture[TEXTARGET_TEXTURE_2D_ARRAY][0];
if (tex != NULL) {
gpu_texture_update_from_ibuf(tex, ima, ibuf, tile, x, y, w, h);
}
BKE_image_release_ibuf(ima, ibuf, NULL);
#endif
}
/* Delayed GPU texture free. Image datablocks can be deleted by any thread,
* but there may not be any active OpenGL context. In that case we push them
* into a queue and free the buffers later. */
static LinkNode *gpu_texture_free_queue = NULL;
static ThreadMutex gpu_texture_queue_mutex = BLI_MUTEX_INITIALIZER;
static void gpu_free_unused_buffers()
{
if (gpu_texture_free_queue == NULL) {
return;
}
BLI_mutex_lock(&gpu_texture_queue_mutex);
if (gpu_texture_free_queue != NULL) {
for (LinkNode *node = gpu_texture_free_queue; node; node = node->next) {
GPUTexture *tex = node->link;
GPU_texture_free(tex);
}
BLI_linklist_free(gpu_texture_free_queue, NULL);
gpu_texture_free_queue = NULL;
}
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
static void gpu_free_image(Image *ima, const bool immediate)
{
for (int eye = 0; eye < 2; eye++) {
for (int i = 0; i < TEXTARGET_COUNT; i++) {
if (ima->gputexture[i][eye] != NULL) {
if (immediate) {
GPU_texture_free(ima->gputexture[i][eye]);
}
else {
BLI_mutex_lock(&gpu_texture_queue_mutex);
BLI_linklist_prepend(&gpu_texture_free_queue, ima->gputexture[i][eye]);
BLI_mutex_unlock(&gpu_texture_queue_mutex);
}
ima->gputexture[i][eye] = NULL;
}
}
}
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
void GPU_free_unused_buffers()
{
if (BLI_thread_is_main()) {
gpu_free_unused_buffers();
}
}
void GPU_free_image(Image *ima)
{
gpu_free_image(ima, BLI_thread_is_main());
}
void GPU_free_images(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
GPU_free_image(ima);
}
}
}
/* same as above but only free animated images */
void GPU_free_images_anim(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_is_animated(ima)) {
GPU_free_image(ima);
}
}
}
}
void GPU_free_images_old(Main *bmain)
{
static int lasttime = 0;
int ctime = (int)PIL_check_seconds_timer();
/*
* Run garbage collector once for every collecting period of time
* if textimeout is 0, that's the option to NOT run the collector
*/
if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) {
return;
}
/* of course not! */
if (G.is_rendering) {
return;
}
lasttime = ctime;
Image *ima = bmain->images.first;
while (ima) {
if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) {
/* If it's in GL memory, deallocate and set time tag to current time
* This gives textures a "second chance" to be used before dying. */
if (BKE_image_has_opengl_texture(ima)) {
GPU_free_image(ima);
ima->lastused = ctime;
}
/* Otherwise, just kill the buffers */
else {
BKE_image_free_buffers(ima);
}
}
ima = ima->id.next;
}
}