This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/pointdensity.c
Campbell Barton 4ca67869cc Code cleanup: remove unused includes
Opted to keep includes if they are used indirectly (even if removing is possible).
2014-05-01 04:47:51 +10:00

546 lines
14 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributors: Matt Ebb
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/pointdensity.c
* \ingroup render
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_noise.h"
#include "BLI_kdopbvh.h"
#include "BLI_utildefines.h"
#include "BLF_translation.h"
#include "BKE_DerivedMesh.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_texture.h"
#include "BKE_colortools.h"
#include "DNA_meshdata_types.h"
#include "DNA_texture_types.h"
#include "DNA_particle_types.h"
#include "render_types.h"
#include "renderdatabase.h"
#include "texture.h"
#include "pointdensity.h"
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
/* only to be used here in this file, it's for speed */
extern struct Render R;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
static int point_data_used(PointDensity *pd)
{
int pd_bitflag = 0;
if (pd->source == TEX_PD_PSYS) {
if ((pd->noise_influence == TEX_PD_NOISE_VEL) || (pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) || (pd->color_source == TEX_PD_COLOR_PARTVEL) || (pd->color_source == TEX_PD_COLOR_PARTSPEED))
pd_bitflag |= POINT_DATA_VEL;
if ((pd->noise_influence == TEX_PD_NOISE_AGE) || (pd->color_source == TEX_PD_COLOR_PARTAGE) || (pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE))
pd_bitflag |= POINT_DATA_LIFE;
}
return pd_bitflag;
}
/* additional data stored alongside the point density BVH,
* accessible by point index number to retrieve other information
* such as particle velocity or lifetime */
static void alloc_point_data(PointDensity *pd, int total_particles, int point_data_used)
{
int data_size = 0;
if (point_data_used & POINT_DATA_VEL) {
/* store 3 channels of velocity data */
data_size += 3;
}
if (point_data_used & POINT_DATA_LIFE) {
/* store 1 channel of lifetime data */
data_size += 1;
}
if (data_size)
pd->point_data = MEM_mallocN(sizeof(float)*data_size*total_particles, "particle point data");
}
static void pointdensity_cache_psys(Render *re, PointDensity *pd, Object *ob, ParticleSystem *psys)
{
DerivedMesh* dm;
ParticleKey state;
ParticleCacheKey *cache;
ParticleSimulationData sim= {NULL};
ParticleData *pa=NULL;
float cfra = BKE_scene_frame_get(re->scene);
int i /*, childexists*/ /* UNUSED */;
int total_particles, offset=0;
int data_used = point_data_used(pd);
float partco[3];
float obview[4][4];
/* init everything */
if (!psys || !ob || !pd) return;
mul_m4_m4m4(obview, ob->obmat, re->viewinv);
/* Just to create a valid rendering context for particles */
psys_render_set(ob, psys, re->viewmat, re->winmat, re->winx, re->winy, 0);
dm = mesh_create_derived_render(re->scene, ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
if ( !psys_check_enabled(ob, psys)) {
psys_render_restore(ob, psys);
return;
}
sim.scene= re->scene;
sim.ob= ob;
sim.psys= psys;
/* in case ob->imat isn't up-to-date */
invert_m4_m4(ob->imat, ob->obmat);
total_particles = psys->totpart+psys->totchild;
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
pd->point_tree = BLI_bvhtree_new(total_particles, 0.0, 4, 6);
alloc_point_data(pd, total_particles, data_used);
pd->totpoints = total_particles;
if (data_used & POINT_DATA_VEL) offset = pd->totpoints*3;
#if 0 /* UNUSED */
if (psys->totchild > 0 && !(psys->part->draw & PART_DRAW_PARENT))
childexists = 1;
#endif
for (i=0, pa=psys->particles; i < total_particles; i++, pa++) {
if (psys->part->type == PART_HAIR) {
/* hair particles */
if (i < psys->totpart && psys->pathcache)
cache = psys->pathcache[i];
else if (i >= psys->totpart && psys->childcache)
cache = psys->childcache[i - psys->totpart];
else
continue;
cache += cache->steps; /* use endpoint */
copy_v3_v3(state.co, cache->co);
zero_v3(state.vel);
state.time = 0.0f;
}
else {
/* emitter particles */
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, 0))
continue;
if (data_used & POINT_DATA_LIFE) {
if (i < psys->totpart) {
state.time = (cfra - pa->time)/pa->lifetime;
}
else {
ChildParticle *cpa= (psys->child + i) - psys->totpart;
float pa_birthtime, pa_dietime;
state.time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
}
}
}
copy_v3_v3(partco, state.co);
if (pd->psys_cache_space == TEX_PD_OBJECTSPACE)
mul_m4_v3(ob->imat, partco);
else if (pd->psys_cache_space == TEX_PD_OBJECTLOC) {
sub_v3_v3(partco, ob->loc);
}
else {
/* TEX_PD_WORLDSPACE */
}
BLI_bvhtree_insert(pd->point_tree, i, partco, 1);
if (data_used & POINT_DATA_VEL) {
pd->point_data[i*3 + 0] = state.vel[0];
pd->point_data[i*3 + 1] = state.vel[1];
pd->point_data[i*3 + 2] = state.vel[2];
}
if (data_used & POINT_DATA_LIFE) {
pd->point_data[offset + i] = state.time;
}
}
BLI_bvhtree_balance(pd->point_tree);
dm->release(dm);
if (psys->lattice_deform_data) {
end_latt_deform(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
psys_render_restore(ob, psys);
}
static void pointdensity_cache_object(Render *re, PointDensity *pd, Object *ob)
{
int i;
DerivedMesh *dm;
MVert *mvert = NULL;
dm = mesh_create_derived_render(re->scene, ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
mvert= dm->getVertArray(dm); /* local object space */
pd->totpoints= dm->getNumVerts(dm);
if (pd->totpoints == 0) return;
pd->point_tree = BLI_bvhtree_new(pd->totpoints, 0.0, 4, 6);
for (i=0; i < pd->totpoints; i++, mvert++) {
float co[3];
copy_v3_v3(co, mvert->co);
switch (pd->ob_cache_space) {
case TEX_PD_OBJECTSPACE:
break;
case TEX_PD_OBJECTLOC:
mul_m4_v3(ob->obmat, co);
sub_v3_v3(co, ob->loc);
break;
case TEX_PD_WORLDSPACE:
default:
mul_m4_v3(ob->obmat, co);
break;
}
BLI_bvhtree_insert(pd->point_tree, i, co, 1);
}
BLI_bvhtree_balance(pd->point_tree);
dm->release(dm);
}
void cache_pointdensity(Render *re, Tex *tex)
{
PointDensity *pd = tex->pd;
if (!pd)
return;
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
if (pd->source == TEX_PD_PSYS) {
Object *ob = pd->object;
ParticleSystem *psys;
if (!ob || !pd->psys) return;
psys= BLI_findlink(&ob->particlesystem, pd->psys-1);
if (!psys) return;
pointdensity_cache_psys(re, pd, ob, psys);
}
else if (pd->source == TEX_PD_OBJECT) {
Object *ob = pd->object;
if (ob && ob->type == OB_MESH)
pointdensity_cache_object(re, pd, ob);
}
}
static void free_pointdensity(Render *UNUSED(re), Tex *tex)
{
PointDensity *pd = tex->pd;
if (!pd) return;
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
if (pd->point_data) {
MEM_freeN(pd->point_data);
pd->point_data = NULL;
}
pd->totpoints = 0;
}
void make_pointdensities(Render *re)
{
Tex *tex;
if (re->scene->r.scemode & R_BUTS_PREVIEW)
return;
re->i.infostr = IFACE_("Caching Point Densities");
re->stats_draw(re->sdh, &re->i);
for (tex= re->main->tex.first; tex; tex= tex->id.next) {
if (tex->id.us && tex->type==TEX_POINTDENSITY) {
cache_pointdensity(re, tex);
}
}
re->i.infostr = NULL;
re->stats_draw(re->sdh, &re->i);
}
void free_pointdensities(Render *re)
{
Tex *tex;
if (re->scene->r.scemode & R_BUTS_PREVIEW)
return;
for (tex= re->main->tex.first; tex; tex= tex->id.next) {
if (tex->id.us && tex->type==TEX_POINTDENSITY) {
free_pointdensity(re, tex);
}
}
}
typedef struct PointDensityRangeData {
float *density;
float squared_radius;
const float *point_data;
float *vec;
float softness;
short falloff_type;
short noise_influence;
float *age;
int point_data_used;
int offset;
struct CurveMapping *density_curve;
float velscale;
} PointDensityRangeData;
static void accum_density(void *userdata, int index, float squared_dist)
{
PointDensityRangeData *pdr = (PointDensityRangeData *)userdata;
const float dist = (pdr->squared_radius - squared_dist) / pdr->squared_radius * 0.5f;
float density = 0.0f;
if (pdr->point_data_used & POINT_DATA_VEL) {
pdr->vec[0] += pdr->point_data[index*3 + 0]; // * density;
pdr->vec[1] += pdr->point_data[index*3 + 1]; // * density;
pdr->vec[2] += pdr->point_data[index*3 + 2]; // * density;
}
if (pdr->point_data_used & POINT_DATA_LIFE) {
*pdr->age += pdr->point_data[pdr->offset + index]; // * density;
}
if (pdr->falloff_type == TEX_PD_FALLOFF_STD)
density = dist;
else if (pdr->falloff_type == TEX_PD_FALLOFF_SMOOTH)
density = 3.0f*dist*dist - 2.0f*dist*dist*dist;
else if (pdr->falloff_type == TEX_PD_FALLOFF_SOFT)
density = pow(dist, pdr->softness);
else if (pdr->falloff_type == TEX_PD_FALLOFF_CONSTANT)
density = pdr->squared_radius;
else if (pdr->falloff_type == TEX_PD_FALLOFF_ROOT)
density = sqrt(dist);
else if (pdr->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE) {
if (pdr->point_data_used & POINT_DATA_LIFE)
density = dist*MIN2(pdr->point_data[pdr->offset + index], 1.0f);
else
density = dist;
}
else if (pdr->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) {
if (pdr->point_data_used & POINT_DATA_VEL)
density = dist*len_v3(pdr->point_data + index*3)*pdr->velscale;
else
density = dist;
}
if (pdr->density_curve && dist != 0.0f) {
curvemapping_initialize(pdr->density_curve);
density = curvemapping_evaluateF(pdr->density_curve, 0, density/dist)*dist;
}
*pdr->density += density;
}
static void init_pointdensityrangedata(PointDensity *pd, PointDensityRangeData *pdr,
float *density, float *vec, float *age, struct CurveMapping *density_curve, float velscale)
{
pdr->squared_radius = pd->radius*pd->radius;
pdr->density = density;
pdr->point_data = pd->point_data;
pdr->falloff_type = pd->falloff_type;
pdr->vec = vec;
pdr->age = age;
pdr->softness = pd->falloff_softness;
pdr->noise_influence = pd->noise_influence;
pdr->point_data_used = point_data_used(pd);
pdr->offset = (pdr->point_data_used & POINT_DATA_VEL)?pd->totpoints*3:0;
pdr->density_curve = density_curve;
pdr->velscale = velscale;
}
int pointdensitytex(Tex *tex, const float texvec[3], TexResult *texres)
{
int retval = TEX_INT;
PointDensity *pd = tex->pd;
PointDensityRangeData pdr;
float density=0.0f, age=0.0f, time=0.0f;
float vec[3] = {0.0f, 0.0f, 0.0f}, co[3];
float col[4];
float turb, noise_fac;
int num=0;
texres->tin = 0.0f;
if ((!pd) || (!pd->point_tree))
return 0;
init_pointdensityrangedata(pd, &pdr, &density, vec, &age,
(pd->flag&TEX_PD_FALLOFF_CURVE ? pd->falloff_curve : NULL), pd->falloff_speed_scale*0.001f);
noise_fac = pd->noise_fac * 0.5f; /* better default */
copy_v3_v3(co, texvec);
if (point_data_used(pd)) {
/* does a BVH lookup to find accumulated density and additional point data *
* stores particle velocity vector in 'vec', and particle lifetime in 'time' */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f/num);
}
/* reset */
density = vec[0] = vec[1] = vec[2] = 0.0f;
}
if (pd->flag & TEX_PD_TURBULENCE) {
if (pd->noise_influence == TEX_PD_NOISE_AGE) {
turb = BLI_gTurbulence(pd->noise_size, texvec[0]+age, texvec[1]+age, texvec[2]+age, pd->noise_depth, 0, pd->noise_basis);
}
else if (pd->noise_influence == TEX_PD_NOISE_TIME) {
time = R.r.cfra / (float)R.r.efra;
turb = BLI_gTurbulence(pd->noise_size, texvec[0]+time, texvec[1]+time, texvec[2]+time, pd->noise_depth, 0, pd->noise_basis);
//turb = BLI_turbulence(pd->noise_size, texvec[0]+time, texvec[1]+time, texvec[2]+time, pd->noise_depth);
}
else {
turb = BLI_gTurbulence(pd->noise_size, texvec[0]+vec[0], texvec[1]+vec[1], texvec[2]+vec[2], pd->noise_depth, 0, pd->noise_basis);
}
turb -= 0.5f; /* re-center 0.0-1.0 range around 0 to prevent offsetting result */
/* now we have an offset coordinate to use for the density lookup */
co[0] = texvec[0] + noise_fac * turb;
co[1] = texvec[1] + noise_fac * turb;
co[2] = texvec[2] + noise_fac * turb;
}
/* BVH query with the potentially perturbed coordinates */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f/num);
}
texres->tin = density;
BRICONT;
if (pd->color_source == TEX_PD_COLOR_CONSTANT)
return retval;
retval |= TEX_RGB;
switch (pd->color_source) {
case TEX_PD_COLOR_PARTAGE:
if (pd->coba) {
if (do_colorband(pd->coba, age, col)) {
texres->talpha = true;
copy_v3_v3(&texres->tr, col);
texres->tin *= col[3];
texres->ta = texres->tin;
}
}
break;
case TEX_PD_COLOR_PARTSPEED:
{
float speed = len_v3(vec) * pd->speed_scale;
if (pd->coba) {
if (do_colorband(pd->coba, speed, col)) {
texres->talpha = true;
copy_v3_v3(&texres->tr, col);
texres->tin *= col[3];
texres->ta = texres->tin;
}
}
break;
}
case TEX_PD_COLOR_PARTVEL:
texres->talpha = true;
mul_v3_fl(vec, pd->speed_scale);
copy_v3_v3(&texres->tr, vec);
texres->ta = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
texres->tr = texres->tg = texres->tb = texres->ta = 1.0f;
break;
}
BRICONTRGB;
return retval;
#if 0
if (texres->nor!=NULL) {
texres->nor[0] = texres->nor[1] = texres->nor[2] = 0.0f;
}
#endif
}