This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/seqeffects.c
2013-01-07 03:24:22 +00:00

2833 lines
72 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s):
* - Blender Foundation, 2003-2009
* - Peter Schlaile <peter [at] schlaile [dot] de> 2005/2006
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/seqeffects.c
* \ingroup bke
*/
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_dynlib.h"
#include "BLI_math.h" /* windows needs for M_PI */
#include "BLI_utildefines.h"
#include "BLI_string.h"
#include "DNA_scene_types.h"
#include "DNA_sequence_types.h"
#include "DNA_anim_types.h"
#include "BKE_fcurve.h"
#include "BKE_main.h"
#include "BKE_sequencer.h"
#include "BKE_texture.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "IMB_colormanagement.h"
#include "RNA_access.h"
static void slice_get_byte_buffers(const SeqRenderData *context, const ImBuf *ibuf1, const ImBuf *ibuf2,
const ImBuf *ibuf3, const ImBuf *out, int start_line, unsigned char **rect1,
unsigned char **rect2, unsigned char **rect3, unsigned char **rect_out)
{
int offset = 4 * start_line * context->rectx;
*rect1 = (unsigned char *)ibuf1->rect + offset;
*rect_out = (unsigned char *)out->rect + offset;
if (ibuf2)
*rect2 = (unsigned char *)ibuf2->rect + offset;
if (ibuf3)
*rect3 = (unsigned char *)ibuf3->rect + offset;
}
static void slice_get_float_buffers(const SeqRenderData *context, const ImBuf *ibuf1, const ImBuf *ibuf2,
const ImBuf *ibuf3, const ImBuf *out, int start_line,
float **rect1, float **rect2, float **rect3, float **rect_out)
{
int offset = 4 * start_line * context->rectx;
*rect1 = ibuf1->rect_float + offset;
*rect_out = out->rect_float + offset;
if (ibuf2)
*rect2 = ibuf2->rect_float + offset;
if (ibuf3)
*rect3 = ibuf3->rect_float + offset;
}
/*********************** Glow effect *************************/
enum {
GlowR = 0,
GlowG = 1,
GlowB = 2,
GlowA = 3
};
static ImBuf *prepare_effect_imbufs(SeqRenderData context, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out;
int x = context.rectx;
int y = context.recty;
if (!ibuf1 && !ibuf2 && !ibuf3) {
/* hmmm, global float option ? */
out = IMB_allocImBuf(x, y, 32, IB_rect);
}
else if ((ibuf1 && ibuf1->rect_float) ||
(ibuf2 && ibuf2->rect_float) ||
(ibuf3 && ibuf3->rect_float))
{
/* if any inputs are rectfloat, output is float too */
out = IMB_allocImBuf(x, y, 32, IB_rectfloat);
}
else {
out = IMB_allocImBuf(x, y, 32, IB_rect);
}
if (ibuf1 && !ibuf1->rect_float && out->rect_float) {
BKE_sequencer_imbuf_to_sequencer_space(context.scene, ibuf1, TRUE);
}
if (ibuf2 && !ibuf2->rect_float && out->rect_float) {
BKE_sequencer_imbuf_to_sequencer_space(context.scene, ibuf2, TRUE);
}
if (ibuf3 && !ibuf3->rect_float && out->rect_float) {
BKE_sequencer_imbuf_to_sequencer_space(context.scene, ibuf3, TRUE);
}
if (ibuf1 && !ibuf1->rect && !out->rect_float) {
IMB_rect_from_float(ibuf1);
}
if (ibuf2 && !ibuf2->rect && !out->rect_float) {
IMB_rect_from_float(ibuf2);
}
if (ibuf3 && !ibuf3->rect && !out->rect_float) {
IMB_rect_from_float(ibuf3);
}
if (out->rect_float)
IMB_colormanagement_assign_float_colorspace(out, context.scene->sequencer_colorspace_settings.name);
return out;
}
/*********************** Alpha Over *************************/
static void init_alpha_over_or_under(Sequence *seq)
{
Sequence *seq1 = seq->seq1;
Sequence *seq2 = seq->seq2;
seq->seq2 = seq1;
seq->seq1 = seq2;
}
static void do_alphaover_effect_byte(float facf0, float facf1, int x, int y, unsigned char *rect1, unsigned char *rect2, unsigned char *out)
{
float fac2, mfac, fac, fac4;
int xo;
unsigned char *cp1, *cp2, *rt;
float tempc[4], rt1[4], rt2[4];
xo = x;
cp1 = rect1;
cp2 = rect2;
rt = out;
fac2 = facf0;
fac4 = facf1;
while (y--) {
x = xo;
while (x--) {
/* rt = rt1 over rt2 (alpha from rt1) */
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
fac = fac2;
mfac = 1.0f - fac2 * rt1[3];
if (fac <= 0.0f) *( (unsigned int *) rt) = *( (unsigned int *) cp2);
else if (mfac <= 0.0f) *( (unsigned int *) rt) = *( (unsigned int *) cp1);
else {
tempc[0] = fac * rt1[0] + mfac * rt2[0];
tempc[1] = fac * rt1[1] + mfac * rt2[1];
tempc[2] = fac * rt1[2] + mfac * rt2[2];
tempc[3] = fac * rt1[3] + mfac * rt2[3];
premul_float_to_straight_uchar(rt, tempc);
}
cp1 += 4; cp2 += 4; rt += 4;
}
if (y == 0) break;
y--;
x = xo;
while (x--) {
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
fac = fac4;
mfac = 1.0f - (fac4 * rt1[3]);
if (fac <= 0.0f) *( (unsigned int *) rt) = *( (unsigned int *) cp2);
else if (mfac <= 0.0f) *( (unsigned int *) rt) = *( (unsigned int *) cp1);
else {
tempc[0] = fac * rt1[0] + mfac * rt2[0];
tempc[1] = fac * rt1[1] + mfac * rt2[1];
tempc[2] = fac * rt1[2] + mfac * rt2[2];
tempc[3] = fac * rt1[3] + mfac * rt2[3];
premul_float_to_straight_uchar(rt, tempc);
}
cp1 += 4; cp2 += 4; rt += 4;
}
}
}
static void do_alphaover_effect_float(float facf0, float facf1, int x, int y, float *rect1, float *rect2, float *out)
{
float fac2, mfac, fac, fac4;
int xo;
float *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac2 = facf0;
fac4 = facf1;
while (y--) {
x = xo;
while (x--) {
/* rt = rt1 over rt2 (alpha from rt1) */
fac = fac2;
mfac = 1.0f - (fac2 * rt1[3]);
if (fac <= 0.0f) {
memcpy(rt, rt2, 4 * sizeof(float));
}
else if (mfac <= 0) {
memcpy(rt, rt1, 4 * sizeof(float));
}
else {
rt[0] = fac * rt1[0] + mfac * rt2[0];
rt[1] = fac * rt1[1] + mfac * rt2[1];
rt[2] = fac * rt1[2] + mfac * rt2[2];
rt[3] = fac * rt1[3] + mfac * rt2[3];
}
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
fac = fac4;
mfac = 1.0f - (fac4 * rt1[3]);
if (fac <= 0.0f) {
memcpy(rt, rt2, 4 * sizeof(float));
}
else if (mfac <= 0.0f) {
memcpy(rt, rt1, 4 * sizeof(float));
}
else {
rt[0] = fac * rt1[0] + mfac * rt2[0];
rt[1] = fac * rt1[1] + mfac * rt2[1];
rt[2] = fac * rt1[2] + mfac * rt2[2];
rt[3] = fac * rt1[3] + mfac * rt2[3];
}
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_alphaover_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra), float facf0,
float facf1, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3),
int start_line, int total_lines, ImBuf *out)
{
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_alphaover_effect_float(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_alphaover_effect_byte(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
}
/*********************** Alpha Under *************************/
static void do_alphaunder_effect_byte(float facf0, float facf1, int x, int y, unsigned char *rect1, unsigned char *rect2, unsigned char *out)
{
int fac2, mfac, fac, fac4;
int xo;
unsigned char *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac2 = (int)(256.0f * facf0);
fac4 = (int)(256.0f * facf1);
while (y--) {
x = xo;
while (x--) {
/* rt = rt1 under rt2 (alpha from rt2) */
/* this complex optimization is because the
* 'skybuf' can be crossed in
*/
if (rt2[3] == 0 && fac2 == 256) *( (unsigned int *) rt) = *( (unsigned int *) rt1);
else if (rt2[3] == 255) *( (unsigned int *) rt) = *( (unsigned int *) rt2);
else {
mfac = rt2[3];
fac = (fac2 * (256 - mfac)) >> 8;
if (fac == 0) *( (unsigned int *) rt) = *( (unsigned int *) rt2);
else {
rt[0] = (fac * rt1[0] + mfac * rt2[0]) >> 8;
rt[1] = (fac * rt1[1] + mfac * rt2[1]) >> 8;
rt[2] = (fac * rt1[2] + mfac * rt2[2]) >> 8;
rt[3] = (fac * rt1[3] + mfac * rt2[3]) >> 8;
}
}
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
if (rt2[3] == 0 && fac4 == 256) *( (unsigned int *) rt) = *( (unsigned int *) rt1);
else if (rt2[3] == 255) *( (unsigned int *) rt) = *( (unsigned int *) rt2);
else {
mfac = rt2[3];
fac = (fac4 * (256 - mfac)) >> 8;
if (fac == 0) *( (unsigned int *)rt) = *( (unsigned int *)rt2);
else {
rt[0] = (fac * rt1[0] + mfac * rt2[0]) >> 8;
rt[1] = (fac * rt1[1] + mfac * rt2[1]) >> 8;
rt[2] = (fac * rt1[2] + mfac * rt2[2]) >> 8;
rt[3] = (fac * rt1[3] + mfac * rt2[3]) >> 8;
}
}
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_alphaunder_effect_float(float facf0, float facf1, int x, int y, float *rect1, float *rect2, float *out)
{
float fac2, mfac, fac, fac4;
int xo;
float *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac2 = facf0;
fac4 = facf1;
while (y--) {
x = xo;
while (x--) {
/* rt = rt1 under rt2 (alpha from rt2) */
/* this complex optimization is because the
* 'skybuf' can be crossed in
*/
if (rt2[3] <= 0 && fac2 >= 1.0f) {
memcpy(rt, rt1, 4 * sizeof(float));
}
else if (rt2[3] >= 1.0f) {
memcpy(rt, rt2, 4 * sizeof(float));
}
else {
mfac = rt2[3];
fac = fac2 * (1.0f - mfac);
if (fac == 0) {
memcpy(rt, rt2, 4 * sizeof(float));
}
else {
rt[0] = fac * rt1[0] + mfac * rt2[0];
rt[1] = fac * rt1[1] + mfac * rt2[1];
rt[2] = fac * rt1[2] + mfac * rt2[2];
rt[3] = fac * rt1[3] + mfac * rt2[3];
}
}
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
if (rt2[3] <= 0 && fac4 >= 1.0f) {
memcpy(rt, rt1, 4 * sizeof(float));
}
else if (rt2[3] >= 1.0f) {
memcpy(rt, rt2, 4 * sizeof(float));
}
else {
mfac = rt2[3];
fac = fac4 * (1.0f - mfac);
if (fac == 0) {
memcpy(rt, rt2, 4 * sizeof(float));
}
else {
rt[0] = fac * rt1[0] + mfac * rt2[0];
rt[1] = fac * rt1[1] + mfac * rt2[1];
rt[2] = fac * rt1[2] + mfac * rt2[2];
rt[3] = fac * rt1[3] + mfac * rt2[3];
}
}
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_alphaunder_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra),
float facf0, float facf1, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3),
int start_line, int total_lines, ImBuf *out)
{
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_alphaunder_effect_float(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_alphaunder_effect_byte(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
}
/*********************** Cross *************************/
static void do_cross_effect_byte(float facf0, float facf1, int x, int y, unsigned char *rect1, unsigned char *rect2, unsigned char *out)
{
int fac1, fac2, fac3, fac4;
int xo;
unsigned char *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac2 = (int) (256.0f * facf0);
fac1 = 256 - fac2;
fac4 = (int) (256.0f * facf1);
fac3 = 256 - fac4;
while (y--) {
x = xo;
while (x--) {
rt[0] = (fac1 * rt1[0] + fac2 * rt2[0]) >> 8;
rt[1] = (fac1 * rt1[1] + fac2 * rt2[1]) >> 8;
rt[2] = (fac1 * rt1[2] + fac2 * rt2[2]) >> 8;
rt[3] = (fac1 * rt1[3] + fac2 * rt2[3]) >> 8;
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
rt[0] = (fac3 * rt1[0] + fac4 * rt2[0]) >> 8;
rt[1] = (fac3 * rt1[1] + fac4 * rt2[1]) >> 8;
rt[2] = (fac3 * rt1[2] + fac4 * rt2[2]) >> 8;
rt[3] = (fac3 * rt1[3] + fac4 * rt2[3]) >> 8;
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_cross_effect_float(float facf0, float facf1, int x, int y, float *rect1, float *rect2, float *out)
{
float fac1, fac2, fac3, fac4;
int xo;
float *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac2 = facf0;
fac1 = 1.0f - fac2;
fac4 = facf1;
fac3 = 1.0f - fac4;
while (y--) {
x = xo;
while (x--) {
rt[0] = fac1 * rt1[0] + fac2 * rt2[0];
rt[1] = fac1 * rt1[1] + fac2 * rt2[1];
rt[2] = fac1 * rt1[2] + fac2 * rt2[2];
rt[3] = fac1 * rt1[3] + fac2 * rt2[3];
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
rt[0] = fac3 * rt1[0] + fac4 * rt2[0];
rt[1] = fac3 * rt1[1] + fac4 * rt2[1];
rt[2] = fac3 * rt1[2] + fac4 * rt2[2];
rt[3] = fac3 * rt1[3] + fac4 * rt2[3];
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_cross_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra),
float facf0, float facf1, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3),
int start_line, int total_lines, ImBuf *out)
{
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_cross_effect_float(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_cross_effect_byte(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
}
/*********************** Gamma Cross *************************/
/* copied code from initrender.c */
static unsigned short gamtab[65536];
static unsigned short igamtab1[256];
static int gamma_tabs_init = FALSE;
#define RE_GAMMA_TABLE_SIZE 400
static float gamma_range_table[RE_GAMMA_TABLE_SIZE + 1];
static float gamfactor_table[RE_GAMMA_TABLE_SIZE];
static float inv_gamma_range_table[RE_GAMMA_TABLE_SIZE + 1];
static float inv_gamfactor_table[RE_GAMMA_TABLE_SIZE];
static float color_domain_table[RE_GAMMA_TABLE_SIZE + 1];
static float color_step;
static float inv_color_step;
static float valid_gamma;
static float valid_inv_gamma;
static void makeGammaTables(float gamma)
{
/* we need two tables: one forward, one backward */
int i;
valid_gamma = gamma;
valid_inv_gamma = 1.0f / gamma;
color_step = 1.0f / RE_GAMMA_TABLE_SIZE;
inv_color_step = (float) RE_GAMMA_TABLE_SIZE;
/* We could squeeze out the two range tables to gain some memory */
for (i = 0; i < RE_GAMMA_TABLE_SIZE; i++) {
color_domain_table[i] = i * color_step;
gamma_range_table[i] = pow(color_domain_table[i], valid_gamma);
inv_gamma_range_table[i] = pow(color_domain_table[i], valid_inv_gamma);
}
/* The end of the table should match 1.0 carefully. In order to avoid
* rounding errors, we just set this explicitly. The last segment may
* have a different length than the other segments, but our
* interpolation is insensitive to that
*/
color_domain_table[RE_GAMMA_TABLE_SIZE] = 1.0;
gamma_range_table[RE_GAMMA_TABLE_SIZE] = 1.0;
inv_gamma_range_table[RE_GAMMA_TABLE_SIZE] = 1.0;
/* To speed up calculations, we make these calc factor tables. They are
* multiplication factors used in scaling the interpolation
*/
for (i = 0; i < RE_GAMMA_TABLE_SIZE; i++) {
gamfactor_table[i] = inv_color_step * (gamma_range_table[i + 1] - gamma_range_table[i]);
inv_gamfactor_table[i] = inv_color_step * (inv_gamma_range_table[i + 1] - inv_gamma_range_table[i]);
}
}
static float gammaCorrect(float c)
{
int i;
float res = 0.0;
i = floor(c * inv_color_step);
/* Clip to range [0, 1]: outside, just do the complete calculation.
* We may have some performance problems here. Stretching up the LUT
* may help solve that, by exchanging LUT size for the interpolation.
* Negative colors are explicitly handled.
*/
if (i < 0) res = -pow(abs(c), valid_gamma);
else if (i >= RE_GAMMA_TABLE_SIZE) res = pow(c, valid_gamma);
else res = gamma_range_table[i] + ( (c - color_domain_table[i]) * gamfactor_table[i]);
return res;
}
/* ------------------------------------------------------------------------- */
static float invGammaCorrect(float col)
{
int i;
float res = 0.0;
i = floor(col * inv_color_step);
/* Negative colors are explicitly handled */
if (i < 0) res = -pow(abs(col), valid_inv_gamma);
else if (i >= RE_GAMMA_TABLE_SIZE) res = pow(col, valid_inv_gamma);
else res = inv_gamma_range_table[i] + ( (col - color_domain_table[i]) * inv_gamfactor_table[i]);
return res;
}
static void gamtabs(float gamma)
{
float val, igamma = 1.0f / gamma;
int a;
/* gamtab: in short, out short */
for (a = 0; a < 65536; a++) {
val = a;
val /= 65535.0f;
if (gamma == 2.0f) val = sqrt(val);
else if (gamma != 1.0f) val = pow(val, igamma);
gamtab[a] = (65535.99f * val);
}
/* inverse gamtab1 : in byte, out short */
for (a = 1; a <= 256; a++) {
if (gamma == 2.0f) igamtab1[a - 1] = a * a - 1;
else if (gamma == 1.0f) igamtab1[a - 1] = 256 * a - 1;
else {
val = a / 256.0f;
igamtab1[a - 1] = (65535.0 * pow(val, gamma)) - 1;
}
}
}
static void build_gammatabs(void)
{
if (gamma_tabs_init == FALSE) {
gamtabs(2.0f);
makeGammaTables(2.0f);
gamma_tabs_init = TRUE;
}
}
static void init_gammacross(Sequence *UNUSED(seq))
{
}
static void load_gammacross(Sequence *UNUSED(seq))
{
}
static void free_gammacross(Sequence *UNUSED(seq))
{
}
static void do_gammacross_effect_byte(float facf0, float UNUSED(facf1), int x, int y, unsigned char *rect1,
unsigned char *rect2, unsigned char *out)
{
float fac1, fac2;
int xo;
unsigned char *cp1, *cp2, *rt;
float rt1[4], rt2[4], tempc[4];
xo = x;
cp1 = rect1;
cp2 = rect2;
rt = out;
fac2 = facf0;
fac1 = 1.0f - fac2;
while (y--) {
x = xo;
while (x--) {
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
tempc[0] = gammaCorrect(fac1 * invGammaCorrect(rt1[0]) + fac2 * invGammaCorrect(rt2[0]));
tempc[1] = gammaCorrect(fac1 * invGammaCorrect(rt1[1]) + fac2 * invGammaCorrect(rt2[1]));
tempc[2] = gammaCorrect(fac1 * invGammaCorrect(rt1[2]) + fac2 * invGammaCorrect(rt2[2]));
tempc[3] = gammaCorrect(fac1 * invGammaCorrect(rt1[3]) + fac2 * invGammaCorrect(rt2[3]));
premul_float_to_straight_uchar(rt, tempc);
cp1 += 4; cp2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
tempc[0] = gammaCorrect(fac1 * invGammaCorrect(rt1[0]) + fac2 * invGammaCorrect(rt2[0]));
tempc[1] = gammaCorrect(fac1 * invGammaCorrect(rt1[1]) + fac2 * invGammaCorrect(rt2[1]));
tempc[2] = gammaCorrect(fac1 * invGammaCorrect(rt1[2]) + fac2 * invGammaCorrect(rt2[2]));
tempc[3] = gammaCorrect(fac1 * invGammaCorrect(rt1[3]) + fac2 * invGammaCorrect(rt2[3]));
premul_float_to_straight_uchar(rt, tempc);
cp1 += 4; cp2 += 4; rt += 4;
}
}
}
static void do_gammacross_effect_float(float facf0, float UNUSED(facf1), int x, int y, float *rect1,
float *rect2, float *out)
{
float fac1, fac2;
int xo;
float *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac2 = facf0;
fac1 = 1.0f - fac2;
while (y--) {
x = xo * 4;
while (x--) {
*rt = gammaCorrect(fac1 * invGammaCorrect(*rt1) + fac2 * invGammaCorrect(*rt2));
rt1++; rt2++; rt++;
}
if (y == 0)
break;
y--;
x = xo * 4;
while (x--) {
*rt = gammaCorrect(fac1 * invGammaCorrect(*rt1) + fac2 * invGammaCorrect(*rt2));
rt1++; rt2++; rt++;
}
}
}
static struct ImBuf *gammacross_init_execution(SeqRenderData context, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out = prepare_effect_imbufs(context, ibuf1, ibuf2, ibuf3);
build_gammatabs();
return out;
}
static void do_gammacross_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra),
float facf0, float facf1, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3),
int start_line, int total_lines, ImBuf *out)
{
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_gammacross_effect_float(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_gammacross_effect_byte(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
}
/*********************** Add *************************/
static void do_add_effect_byte(float facf0, float facf1, int x, int y, unsigned char *rect1, unsigned char *rect2,
unsigned char *out)
{
int xo;
unsigned char *cp1, *cp2, *rt;
float fac1, fac3;
float tempc[4], rt1[4], rt2[4];
xo = x;
cp1 = rect1;
cp2 = rect2;
rt = out;
fac1 = facf0;
fac3 = facf1;
while (y--) {
x = xo;
while (x--) {
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
tempc[0] = rt1[0] + fac1 * rt2[0];
tempc[1] = rt1[1] + fac1 * rt2[1];
tempc[2] = rt1[2] + fac1 * rt2[2];
tempc[3] = min_ff(1.0f, rt1[3] + fac1 * rt2[3]);
premul_float_to_straight_uchar(rt, tempc);
cp1 += 4; cp2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
tempc[0] = rt1[0] + fac3 * rt2[0];
tempc[1] = rt1[1] + fac3 * rt2[1];
tempc[2] = rt1[2] + fac3 * rt2[2];
tempc[3] = min_ff(1.0f, rt1[3] + fac3 * rt2[3]);
premul_float_to_straight_uchar(rt, tempc);
cp1 += 4; cp2 += 4; rt += 4;
}
}
}
static void do_add_effect_float(float facf0, float facf1, int x, int y, float *rect1, float *rect2, float *out)
{
int xo;
float fac1, fac3;
float *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac1 = facf0;
fac3 = facf1;
while (y--) {
x = xo;
while (x--) {
rt[0] = rt1[0] + fac1 * rt2[0];
rt[1] = rt1[1] + fac1 * rt2[1];
rt[2] = rt1[2] + fac1 * rt2[2];
rt[3] = min_ff(1.0f, rt1[3] + fac1 * rt2[3]);
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
rt[0] = rt1[0] + fac1 * rt2[0];
rt[1] = rt1[1] + fac1 * rt2[1];
rt[2] = rt1[2] + fac1 * rt2[2];
rt[3] = min_ff(1.0f, rt1[3] + fac3 * rt2[3]);
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_add_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra), float facf0, float facf1,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3), int start_line, int total_lines, ImBuf *out)
{
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_add_effect_float(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_add_effect_byte(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
}
/*********************** Sub *************************/
static void do_sub_effect_byte(float facf0, float facf1, int x, int y, unsigned char *rect1, unsigned char *rect2, unsigned char *out)
{
int xo;
unsigned char *cp1, *cp2, *rt;
float fac1, fac3;
float tempc[4], rt1[4], rt2[4];
xo = x;
cp1 = rect1;
cp2 = rect2;
rt = out;
fac1 = facf0;
fac3 = facf1;
while (y--) {
x = xo;
while (x--) {
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
tempc[0] = rt1[0] - fac1 * rt2[0];
tempc[1] = rt1[1] - fac1 * rt2[1];
tempc[2] = rt1[2] - fac1 * rt2[2];
tempc[3] = rt1[3] - fac1 * rt2[3];
premul_float_to_straight_uchar(rt, tempc);
cp1 += 4; cp2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
tempc[0] = rt1[0] - fac3 * rt2[0];
tempc[1] = rt1[1] - fac3 * rt2[1];
tempc[2] = rt1[2] - fac3 * rt2[2];
tempc[3] = rt1[3] - fac3 * rt2[3];
premul_float_to_straight_uchar(rt, tempc);
cp1 += 4; cp2 += 4; rt += 4;
}
}
}
static void do_sub_effect_float(float facf0, float facf1, int x, int y, float *rect1, float *rect2, float *out)
{
int xo;
float fac1, fac3;
float *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac1 = facf0;
fac3 = facf1;
while (y--) {
x = xo * 4;
while (x--) {
*rt = *rt1 - fac1 * (*rt2);
rt1++; rt2++; rt++;
}
if (y == 0)
break;
y--;
x = xo * 4;
while (x--) {
*rt = *rt1 - fac3 * (*rt2);
rt1++; rt2++; rt++;
}
}
}
static void do_sub_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra), float facf0, float facf1,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3), int start_line, int total_lines, ImBuf *out)
{
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_sub_effect_float(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_sub_effect_byte(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
}
/*********************** Drop *************************/
/* Must be > 0 or add precopy, etc to the function */
#define XOFF 8
#define YOFF 8
static void do_drop_effect_byte(float facf0, float facf1, int x, int y, unsigned char *rect2i, unsigned char *rect1i, unsigned char *outi)
{
int height, width, temp, fac, fac1, fac2;
unsigned char *rt1, *rt2, *out;
int field = 1;
width = x;
height = y;
fac1 = (int) (70.0f * facf0);
fac2 = (int) (70.0f * facf1);
rt2 = (unsigned char *) (rect2i + YOFF * width);
rt1 = (unsigned char *) rect1i;
out = (unsigned char *) outi;
for (y = 0; y < height - YOFF; y++) {
if (field) fac = fac1;
else fac = fac2;
field = !field;
memcpy(out, rt1, sizeof(int) * XOFF);
rt1 += XOFF * 4;
out += XOFF * 4;
for (x = XOFF; x < width; x++) {
temp = ((fac * rt2[3]) >> 8);
*(out++) = MAX2(0, *rt1 - temp); rt1++;
*(out++) = MAX2(0, *rt1 - temp); rt1++;
*(out++) = MAX2(0, *rt1 - temp); rt1++;
*(out++) = MAX2(0, *rt1 - temp); rt1++;
rt2 += 4;
}
rt2 += XOFF * 4;
}
memcpy(out, rt1, sizeof(int) * YOFF * width);
}
static void do_drop_effect_float(float facf0, float facf1, int x, int y, float *rect2i, float *rect1i, float *outi)
{
int height, width;
float temp, fac, fac1, fac2;
float *rt1, *rt2, *out;
int field = 1;
width = x;
height = y;
fac1 = 70.0f * facf0;
fac2 = 70.0f * facf1;
rt2 = (rect2i + YOFF * width);
rt1 = rect1i;
out = outi;
for (y = 0; y < height - YOFF; y++) {
if (field) fac = fac1;
else fac = fac2;
field = !field;
memcpy(out, rt1, 4 * sizeof(float) * XOFF);
rt1 += XOFF * 4;
out += XOFF * 4;
for (x = XOFF; x < width; x++) {
temp = fac * rt2[3];
*(out++) = MAX2(0.0f, *rt1 - temp); rt1++;
*(out++) = MAX2(0.0f, *rt1 - temp); rt1++;
*(out++) = MAX2(0.0f, *rt1 - temp); rt1++;
*(out++) = MAX2(0.0f, *rt1 - temp); rt1++;
rt2 += 4;
}
rt2 += XOFF * 4;
}
memcpy(out, rt1, 4 * sizeof(float) * YOFF * width);
}
/*********************** Mul *************************/
static void do_mul_effect_byte(float facf0, float facf1, int x, int y, unsigned char *rect1, unsigned char *rect2,
unsigned char *out)
{
int xo, fac1, fac3;
unsigned char *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac1 = (int)(256.0f * facf0);
fac3 = (int)(256.0f * facf1);
/* formula:
* fac * (a * b) + (1 - fac) * a => fac * a * (b - 1) + axaux = c * px + py * s; //+centx
* yaux = -s * px + c * py; //+centy
*/
while (y--) {
x = xo;
while (x--) {
rt[0] = rt1[0] + ((fac1 * rt1[0] * (rt2[0] - 256)) >> 16);
rt[1] = rt1[1] + ((fac1 * rt1[1] * (rt2[1] - 256)) >> 16);
rt[2] = rt1[2] + ((fac1 * rt1[2] * (rt2[2] - 256)) >> 16);
rt[3] = rt1[3] + ((fac1 * rt1[3] * (rt2[3] - 256)) >> 16);
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0) break;
y--;
x = xo;
while (x--) {
rt[0] = rt1[0] + ((fac3 * rt1[0] * (rt2[0] - 256)) >> 16);
rt[1] = rt1[1] + ((fac3 * rt1[1] * (rt2[1] - 256)) >> 16);
rt[2] = rt1[2] + ((fac3 * rt1[2] * (rt2[2] - 256)) >> 16);
rt[3] = rt1[3] + ((fac3 * rt1[3] * (rt2[3] - 256)) >> 16);
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_mul_effect_float(float facf0, float facf1, int x, int y, float *rect1, float *rect2, float *out)
{
int xo;
float fac1, fac3;
float *rt1, *rt2, *rt;
xo = x;
rt1 = rect1;
rt2 = rect2;
rt = out;
fac1 = facf0;
fac3 = facf1;
/* formula:
* fac * (a * b) + (1 - fac) * a => fac * a * (b - 1) + a
*/
while (y--) {
x = xo;
while (x--) {
rt[0] = rt1[0] + fac1 * rt1[0] * (rt2[0] - 1.0f);
rt[1] = rt1[1] + fac1 * rt1[1] * (rt2[1] - 1.0f);
rt[2] = rt1[2] + fac1 * rt1[2] * (rt2[2] - 1.0f);
rt[3] = rt1[3] + fac1 * rt1[3] * (rt2[3] - 1.0f);
rt1 += 4; rt2 += 4; rt += 4;
}
if (y == 0)
break;
y--;
x = xo;
while (x--) {
rt[0] = rt1[0] + fac3 * rt1[0] * (rt2[0] - 1.0f);
rt[1] = rt1[1] + fac3 * rt1[1] * (rt2[1] - 1.0f);
rt[2] = rt1[2] + fac3 * rt1[2] * (rt2[2] - 1.0f);
rt[3] = rt1[3] + fac3 * rt1[3] * (rt2[3] - 1.0f);
rt1 += 4; rt2 += 4; rt += 4;
}
}
}
static void do_mul_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra), float facf0, float facf1,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3), int start_line, int total_lines, ImBuf *out)
{
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_mul_effect_float(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_mul_effect_byte(facf0, facf1, context.rectx, total_lines, rect1, rect2, rect_out);
}
}
/*********************** Wipe *************************/
typedef struct WipeZone {
float angle;
int flip;
int xo, yo;
int width;
float pythangle;
} WipeZone;
static void precalc_wipe_zone(WipeZone *wipezone, WipeVars *wipe, int xo, int yo)
{
wipezone->flip = (wipe->angle < 0);
wipezone->angle = tanf(DEG2RADF(fabsf(wipe->angle)));
wipezone->xo = xo;
wipezone->yo = yo;
wipezone->width = (int)(wipe->edgeWidth * ((xo + yo) / 2.0f));
wipezone->pythangle = 1.0f / sqrtf(wipezone->angle * wipezone->angle + 1.0f);
}
/* This function calculates the blur band for the wipe effects */
static float in_band(float width, float dist, int side, int dir)
{
float alpha;
if (width == 0)
return (float)side;
if (width < dist)
return (float)side;
if (side == 1)
alpha = (dist + 0.5f * width) / (width);
else
alpha = (0.5f * width - dist) / (width);
if (dir == 0)
alpha = 1 - alpha;
return alpha;
}
static float check_zone(WipeZone *wipezone, int x, int y, Sequence *seq, float facf0)
{
float posx, posy, hyp, hyp2, angle, hwidth, b1, b2, b3, pointdist;
/* some future stuff */
/* float hyp3, hyp4, b4, b5 */
float temp1, temp2, temp3, temp4; /* some placeholder variables */
int xo = wipezone->xo;
int yo = wipezone->yo;
float halfx = xo * 0.5f;
float halfy = yo * 0.5f;
float widthf, output = 0;
WipeVars *wipe = (WipeVars *)seq->effectdata;
int width;
if (wipezone->flip) x = xo - x;
angle = wipezone->angle;
if (wipe->forward) {
posx = facf0 * xo;
posy = facf0 * yo;
}
else {
posx = xo - facf0 * xo;
posy = yo - facf0 * yo;
}
switch (wipe->wipetype) {
case DO_SINGLE_WIPE:
width = wipezone->width;
if (angle == 0.0f) {
b1 = posy;
b2 = y;
hyp = fabs(y - posy);
}
else {
b1 = posy - (-angle) * posx;
b2 = y - (-angle) * x;
hyp = fabsf(angle * x + y + (-posy - angle * posx)) * wipezone->pythangle;
}
if (angle < 0) {
temp1 = b1;
b1 = b2;
b2 = temp1;
}
if (wipe->forward) {
if (b1 < b2)
output = in_band(width, hyp, 1, 1);
else
output = in_band(width, hyp, 0, 1);
}
else {
if (b1 < b2)
output = in_band(width, hyp, 0, 1);
else
output = in_band(width, hyp, 1, 1);
}
break;
case DO_DOUBLE_WIPE:
if (!wipe->forward)
facf0 = 1.0f - facf0; /* Go the other direction */
width = wipezone->width; /* calculate the blur width */
hwidth = width * 0.5f;
if (angle == 0) {
b1 = posy * 0.5f;
b3 = yo - posy * 0.5f;
b2 = y;
hyp = abs(y - posy * 0.5f);
hyp2 = abs(y - (yo - posy * 0.5f));
}
else {
b1 = posy * 0.5f - (-angle) * posx * 0.5f;
b3 = (yo - posy * 0.5f) - (-angle) * (xo - posx * 0.5f);
b2 = y - (-angle) * x;
hyp = fabsf(angle * x + y + (-posy * 0.5f - angle * posx * 0.5f)) * wipezone->pythangle;
hyp2 = fabsf(angle * x + y + (-(yo - posy * 0.5f) - angle * (xo - posx * 0.5f))) * wipezone->pythangle;
}
hwidth = min_ff(hwidth, fabsf(b3 - b1) / 2.0f);
if (b2 < b1 && b2 < b3) {
output = in_band(hwidth, hyp, 0, 1);
}
else if (b2 > b1 && b2 > b3) {
output = in_band(hwidth, hyp2, 0, 1);
}
else {
if (hyp < hwidth && hyp2 > hwidth)
output = in_band(hwidth, hyp, 1, 1);
else if (hyp > hwidth && hyp2 < hwidth)
output = in_band(hwidth, hyp2, 1, 1);
else
output = in_band(hwidth, hyp2, 1, 1) * in_band(hwidth, hyp, 1, 1);
}
if (!wipe->forward) output = 1 - output;
break;
case DO_CLOCK_WIPE:
/*
* temp1: angle of effect center in rads
* temp2: angle of line through (halfx, halfy) and (x, y) in rads
* temp3: angle of low side of blur
* temp4: angle of high side of blur
*/
output = 1.0f - facf0;
widthf = wipe->edgeWidth * 2.0f * (float)M_PI;
temp1 = 2.0f * (float)M_PI * facf0;
if (wipe->forward) {
temp1 = 2.0f * (float)M_PI - temp1;
}
x = x - halfx;
y = y - halfy;
temp2 = asin(abs(y) / sqrt(x * x + y * y));
if (x <= 0 && y >= 0) temp2 = (float)M_PI - temp2;
else if (x <= 0 && y <= 0) temp2 += (float)M_PI;
else if (x >= 0 && y <= 0) temp2 = 2.0f * (float)M_PI - temp2;
if (wipe->forward) {
temp3 = temp1 - (widthf * 0.5f) * facf0;
temp4 = temp1 + (widthf * 0.5f) * (1 - facf0);
}
else {
temp3 = temp1 - (widthf * 0.5f) * (1 - facf0);
temp4 = temp1 + (widthf * 0.5f) * facf0;
}
if (temp3 < 0) temp3 = 0;
if (temp4 > 2.0f * (float)M_PI) temp4 = 2.0f * (float)M_PI;
if (temp2 < temp3) output = 0;
else if (temp2 > temp4) output = 1;
else output = (temp2 - temp3) / (temp4 - temp3);
if (x == 0 && y == 0) output = 1;
if (output != output) output = 1;
if (wipe->forward) output = 1 - output;
break;
/* BOX WIPE IS NOT WORKING YET */
/* case DO_CROSS_WIPE: */
/* BOX WIPE IS NOT WORKING YET */
#if 0
case DO_BOX_WIPE:
if (invert) facf0 = 1 - facf0;
width = (int)(wipe->edgeWidth * ((xo + yo) / 2.0));
hwidth = (float)width / 2.0;
if (angle == 0) angle = 0.000001;
b1 = posy / 2 - (-angle) * posx / 2;
b3 = (yo - posy / 2) - (-angle) * (xo - posx / 2);
b2 = y - (-angle) * x;
hyp = abs(angle * x + y + (-posy / 2 - angle * posx / 2)) * wipezone->pythangle;
hyp2 = abs(angle * x + y + (-(yo - posy / 2) - angle * (xo - posx / 2))) * wipezone->pythangle;
temp1 = xo * (1 - facf0 / 2) - xo * facf0 / 2;
temp2 = yo * (1 - facf0 / 2) - yo * facf0 / 2;
pointdist = sqrt(temp1 * temp1 + temp2 * temp2);
if (b2 < b1 && b2 < b3) {
if (hwidth < pointdist)
output = in_band(wipezone, hwidth, hyp, facf0, 0, 1);
}
else if (b2 > b1 && b2 > b3) {
if (hwidth < pointdist)
output = in_band(wipezone, hwidth, hyp2, facf0, 0, 1);
}
else {
if (hyp < hwidth && hyp2 > hwidth)
output = in_band(wipezone, hwidth, hyp, facf0, 1, 1);
else if (hyp > hwidth && hyp2 < hwidth)
output = in_band(wipezone, hwidth, hyp2, facf0, 1, 1);
else
output = in_band(wipezone, hwidth, hyp2, facf0, 1, 1) * in_band(wipezone, hwidth, hyp, facf0, 1, 1);
}
if (invert) facf0 = 1 - facf0;
angle = -1 / angle;
b1 = posy / 2 - (-angle) * posx / 2;
b3 = (yo - posy / 2) - (-angle) * (xo - posx / 2);
b2 = y - (-angle) * x;
hyp = abs(angle * x + y + (-posy / 2 - angle * posx / 2)) * wipezone->pythangle;
hyp2 = abs(angle * x + y + (-(yo - posy / 2) - angle * (xo - posx / 2))) * wipezone->pythangle;
if (b2 < b1 && b2 < b3) {
if (hwidth < pointdist)
output *= in_band(wipezone, hwidth, hyp, facf0, 0, 1);
}
else if (b2 > b1 && b2 > b3) {
if (hwidth < pointdist)
output *= in_band(wipezone, hwidth, hyp2, facf0, 0, 1);
}
else {
if (hyp < hwidth && hyp2 > hwidth)
output *= in_band(wipezone, hwidth, hyp, facf0, 1, 1);
else if (hyp > hwidth && hyp2 < hwidth)
output *= in_band(wipezone, hwidth, hyp2, facf0, 1, 1);
else
output *= in_band(wipezone, hwidth, hyp2, facf0, 1, 1) * in_band(wipezone, hwidth, hyp, facf0, 1, 1);
}
break;
#endif
case DO_IRIS_WIPE:
if (xo > yo) yo = xo;
else xo = yo;
if (!wipe->forward) facf0 = 1 - facf0;
width = wipezone->width;
hwidth = width * 0.5f;
temp1 = (halfx - (halfx) * facf0);
pointdist = sqrt(temp1 * temp1 + temp1 * temp1);
temp2 = sqrt((halfx - x) * (halfx - x) + (halfy - y) * (halfy - y));
if (temp2 > pointdist) output = in_band(hwidth, fabs(temp2 - pointdist), 0, 1);
else output = in_band(hwidth, fabs(temp2 - pointdist), 1, 1);
if (!wipe->forward) output = 1 - output;
break;
}
if (output < 0) output = 0;
else if (output > 1) output = 1;
return output;
}
static void init_wipe_effect(Sequence *seq)
{
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(WipeVars), "wipevars");
}
static int num_inputs_wipe(void)
{
return 1;
}
static void free_wipe_effect(Sequence *seq)
{
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = NULL;
}
static void copy_wipe_effect(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
static void do_wipe_effect_byte(Sequence *seq, float facf0, float UNUSED(facf1), int x, int y, unsigned char *rect1,
unsigned char *rect2, unsigned char *out)
{
WipeZone wipezone;
WipeVars *wipe = (WipeVars *)seq->effectdata;
int xo, yo;
unsigned char *cp1, *cp2, *rt;
precalc_wipe_zone(&wipezone, wipe, x, y);
cp1 = rect1;
cp2 = rect2;
rt = out;
xo = x;
yo = y;
for (y = 0; y < yo; y++) {
for (x = 0; x < xo; x++) {
float check = check_zone(&wipezone, x, y, seq, facf0);
if (check) {
if (cp1) {
float rt1[4], rt2[4], tempc[4];
straight_uchar_to_premul_float(rt1, cp1);
straight_uchar_to_premul_float(rt2, cp2);
tempc[0] = rt1[0] * check + rt2[0] * (1 - check);
tempc[1] = rt1[1] * check + rt2[1] * (1 - check);
tempc[2] = rt1[2] * check + rt2[2] * (1 - check);
tempc[3] = rt1[3] * check + rt2[3] * (1 - check);
premul_float_to_straight_uchar(rt, tempc);
}
else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 255;
}
}
else {
if (cp2) {
rt[0] = cp2[0];
rt[1] = cp2[1];
rt[2] = cp2[2];
rt[3] = cp2[3];
}
else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 255;
}
}
rt += 4;
if (cp1 != NULL) {
cp1 += 4;
}
if (cp2 != NULL) {
cp2 += 4;
}
}
}
}
static void do_wipe_effect_float(Sequence *seq, float facf0, float UNUSED(facf1), int x, int y, float *rect1,
float *rect2, float *out)
{
WipeZone wipezone;
WipeVars *wipe = (WipeVars *)seq->effectdata;
int xo, yo;
float *rt1, *rt2, *rt;
precalc_wipe_zone(&wipezone, wipe, x, y);
rt1 = rect1;
rt2 = rect2;
rt = out;
xo = x;
yo = y;
for (y = 0; y < yo; y++) {
for (x = 0; x < xo; x++) {
float check = check_zone(&wipezone, x, y, seq, facf0);
if (check) {
if (rt1) {
rt[0] = rt1[0] * check + rt2[0] * (1 - check);
rt[1] = rt1[1] * check + rt2[1] * (1 - check);
rt[2] = rt1[2] * check + rt2[2] * (1 - check);
rt[3] = rt1[3] * check + rt2[3] * (1 - check);
}
else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 1.0;
}
}
else {
if (rt2) {
rt[0] = rt2[0];
rt[1] = rt2[1];
rt[2] = rt2[2];
rt[3] = rt2[3];
}
else {
rt[0] = 0;
rt[1] = 0;
rt[2] = 0;
rt[3] = 1.0;
}
}
rt += 4;
if (rt1 != NULL) {
rt1 += 4;
}
if (rt2 != NULL) {
rt2 += 4;
}
}
}
}
static ImBuf *do_wipe_effect(SeqRenderData context, Sequence *seq, float UNUSED(cfra), float facf0, float facf1,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out = prepare_effect_imbufs(context, ibuf1, ibuf2, ibuf3);
if (out->rect_float) {
do_wipe_effect_float(seq, facf0, facf1, context.rectx, context.recty, ibuf1->rect_float,
ibuf2->rect_float, out->rect_float);
}
else {
do_wipe_effect_byte(seq, facf0, facf1, context.rectx, context.recty, (unsigned char *) ibuf1->rect,
(unsigned char *) ibuf2->rect, (unsigned char *) out->rect);
}
return out;
}
/*********************** Transform *************************/
static void init_transform_effect(Sequence *seq)
{
TransformVars *transform;
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(TransformVars), "transformvars");
transform = (TransformVars *) seq->effectdata;
transform->ScalexIni = 1.0f;
transform->ScaleyIni = 1.0f;
transform->xIni = 0.0f;
transform->yIni = 0.0f;
transform->rotIni = 0.0f;
transform->interpolation = 1;
transform->percent = 1;
transform->uniform_scale = 0;
}
static int num_inputs_transform(void)
{
return 1;
}
static void free_transform_effect(Sequence *seq)
{
if (seq->effectdata) MEM_freeN(seq->effectdata);
seq->effectdata = NULL;
}
static void copy_transform_effect(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
static void transform_image(int x, int y, ImBuf *ibuf1, ImBuf *out, float scale_x, float scale_y,
float translate_x, float translate_y, float rotate, int interpolation)
{
int xo, yo, xi, yi;
float xt, yt, xr, yr;
float s, c;
xo = x;
yo = y;
/* Rotate */
s = sin(rotate);
c = cos(rotate);
for (yi = 0; yi < yo; yi++) {
for (xi = 0; xi < xo; xi++) {
/* translate point */
xt = xi - translate_x;
yt = yi - translate_y;
/* rotate point with center ref */
xr = c * xt + s * yt;
yr = -s * xt + c * yt;
/* scale point with center ref */
xt = xr / scale_x;
yt = yr / scale_y;
/* undo reference center point */
xt += (xo / 2.0f);
yt += (yo / 2.0f);
/* interpolate */
switch (interpolation) {
case 0:
nearest_interpolation(ibuf1, out, xt, yt, xi, yi);
break;
case 1:
bilinear_interpolation(ibuf1, out, xt, yt, xi, yi);
break;
case 2:
bicubic_interpolation(ibuf1, out, xt, yt, xi, yi);
break;
}
}
}
}
static void do_transform(Scene *scene, Sequence *seq, float UNUSED(facf0), int x, int y, ImBuf *ibuf1, ImBuf *out)
{
TransformVars *transform = (TransformVars *) seq->effectdata;
float scale_x, scale_y, translate_x, translate_y, rotate_radians;
/* Scale */
if (transform->uniform_scale) {
scale_x = scale_y = transform->ScalexIni;
}
else {
scale_x = transform->ScalexIni;
scale_y = transform->ScaleyIni;
}
/* Translate */
if (!transform->percent) {
float rd_s = (scene->r.size / 100.0f);
translate_x = transform->xIni * rd_s + (x / 2.0f);
translate_y = transform->yIni * rd_s + (y / 2.0f);
}
else {
translate_x = x * (transform->xIni / 100.0f) + (x / 2.0f);
translate_y = y * (transform->yIni / 100.0f) + (y / 2.0f);
}
/* Rotate */
rotate_radians = DEG2RADF(transform->rotIni);
transform_image(x, y, ibuf1, out, scale_x, scale_y, translate_x, translate_y, rotate_radians, transform->interpolation);
}
static ImBuf *do_transform_effect(SeqRenderData context, Sequence *seq, float UNUSED(cfra), float facf0,
float UNUSED(facf1), ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out = prepare_effect_imbufs(context, ibuf1, ibuf2, ibuf3);
do_transform(context.scene, seq, facf0, context.rectx, context.recty, ibuf1, out);
return out;
}
/*********************** Glow *************************/
static void RVBlurBitmap2_float(float *map, int width, int height, float blur, int quality)
/* MUUUCCH better than the previous blur. */
/* We do the blurring in two passes which is a whole lot faster. */
/* I changed the math arount to implement an actual Gaussian */
/* distribution. */
/* */
/* Watch out though, it tends to misbehaven with large blur values on */
/* a small bitmap. Avoid avoid avoid. */
/*=============================== */
{
float *temp = NULL, *swap;
float *filter = NULL;
int x, y, i, fx, fy;
int index, ix, halfWidth;
float fval, k, curColor[3], curColor2[3], weight = 0;
/* If we're not really blurring, bail out */
if (blur <= 0)
return;
/* Allocate memory for the tempmap and the blur filter matrix */
temp = MEM_mallocN((width * height * 4 * sizeof(float)), "blurbitmaptemp");
if (!temp)
return;
/* Allocate memory for the filter elements */
halfWidth = ((quality + 1) * blur);
filter = (float *)MEM_mallocN(sizeof(float) * halfWidth * 2, "blurbitmapfilter");
if (!filter) {
MEM_freeN(temp);
return;
}
/* Apparently we're calculating a bell curve based on the standard deviation (or radius)
* This code is based on an example posted to comp.graphics.algorithms by
* Blancmange (bmange@airdmhor.gen.nz)
*/
k = -1.0f / (2.0f * (float)M_PI * blur * blur);
for (ix = 0; ix < halfWidth; ix++) {
weight = (float)exp(k * (ix * ix));
filter[halfWidth - ix] = weight;
filter[halfWidth + ix] = weight;
}
filter[0] = weight;
/* Normalize the array */
fval = 0;
for (ix = 0; ix < halfWidth * 2; ix++)
fval += filter[ix];
for (ix = 0; ix < halfWidth * 2; ix++)
filter[ix] /= fval;
/* Blur the rows */
for (y = 0; y < height; y++) {
/* Do the left & right strips */
for (x = 0; x < halfWidth; x++) {
index = (x + y * width) * 4;
fx = 0;
curColor[0] = curColor[1] = curColor[2] = 0.0f;
curColor2[0] = curColor2[1] = curColor2[2] = 0.0f;
for (i = x - halfWidth; i < x + halfWidth; i++) {
if ((i >= 0) && (i < width)) {
curColor[0] += map[(i + y * width) * 4 + GlowR] * filter[fx];
curColor[1] += map[(i + y * width) * 4 + GlowG] * filter[fx];
curColor[2] += map[(i + y * width) * 4 + GlowB] * filter[fx];
curColor2[0] += map[(width - 1 - i + y * width) * 4 + GlowR] * filter[fx];
curColor2[1] += map[(width - 1 - i + y * width) * 4 + GlowG] * filter[fx];
curColor2[2] += map[(width - 1 - i + y * width) * 4 + GlowB] * filter[fx];
}
fx++;
}
temp[index + GlowR] = curColor[0];
temp[index + GlowG] = curColor[1];
temp[index + GlowB] = curColor[2];
temp[((width - 1 - x + y * width) * 4) + GlowR] = curColor2[0];
temp[((width - 1 - x + y * width) * 4) + GlowG] = curColor2[1];
temp[((width - 1 - x + y * width) * 4) + GlowB] = curColor2[2];
}
/* Do the main body */
for (x = halfWidth; x < width - halfWidth; x++) {
index = (x + y * width) * 4;
fx = 0;
zero_v3(curColor);
for (i = x - halfWidth; i < x + halfWidth; i++) {
curColor[0] += map[(i + y * width) * 4 + GlowR] * filter[fx];
curColor[1] += map[(i + y * width) * 4 + GlowG] * filter[fx];
curColor[2] += map[(i + y * width) * 4 + GlowB] * filter[fx];
fx++;
}
temp[index + GlowR] = curColor[0];
temp[index + GlowG] = curColor[1];
temp[index + GlowB] = curColor[2];
}
}
/* Swap buffers */
swap = temp; temp = map; map = swap;
/* Blur the columns */
for (x = 0; x < width; x++) {
/* Do the top & bottom strips */
for (y = 0; y < halfWidth; y++) {
index = (x + y * width) * 4;
fy = 0;
zero_v3(curColor);
zero_v3(curColor2);
for (i = y - halfWidth; i < y + halfWidth; i++) {
if ((i >= 0) && (i < height)) {
/* Bottom */
curColor[0] += map[(x + i * width) * 4 + GlowR] * filter[fy];
curColor[1] += map[(x + i * width) * 4 + GlowG] * filter[fy];
curColor[2] += map[(x + i * width) * 4 + GlowB] * filter[fy];
/* Top */
curColor2[0] += map[(x + (height - 1 - i) * width) * 4 + GlowR] * filter[fy];
curColor2[1] += map[(x + (height - 1 - i) * width) * 4 + GlowG] * filter[fy];
curColor2[2] += map[(x + (height - 1 - i) * width) * 4 + GlowB] * filter[fy];
}
fy++;
}
temp[index + GlowR] = curColor[0];
temp[index + GlowG] = curColor[1];
temp[index + GlowB] = curColor[2];
temp[((x + (height - 1 - y) * width) * 4) + GlowR] = curColor2[0];
temp[((x + (height - 1 - y) * width) * 4) + GlowG] = curColor2[1];
temp[((x + (height - 1 - y) * width) * 4) + GlowB] = curColor2[2];
}
/* Do the main body */
for (y = halfWidth; y < height - halfWidth; y++) {
index = (x + y * width) * 4;
fy = 0;
zero_v3(curColor);
for (i = y - halfWidth; i < y + halfWidth; i++) {
curColor[0] += map[(x + i * width) * 4 + GlowR] * filter[fy];
curColor[1] += map[(x + i * width) * 4 + GlowG] * filter[fy];
curColor[2] += map[(x + i * width) * 4 + GlowB] * filter[fy];
fy++;
}
temp[index + GlowR] = curColor[0];
temp[index + GlowG] = curColor[1];
temp[index + GlowB] = curColor[2];
}
}
/* Swap buffers */
swap = temp; temp = map; /* map = swap; */ /* UNUSED */
/* Tidy up */
MEM_freeN(filter);
MEM_freeN(temp);
}
static void RVAddBitmaps_float(float *a, float *b, float *c, int width, int height)
{
int x, y, index;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
index = (x + y * width) * 4;
c[index + GlowR] = MIN2(1.0f, a[index + GlowR] + b[index + GlowR]);
c[index + GlowG] = MIN2(1.0f, a[index + GlowG] + b[index + GlowG]);
c[index + GlowB] = MIN2(1.0f, a[index + GlowB] + b[index + GlowB]);
c[index + GlowA] = MIN2(1.0f, a[index + GlowA] + b[index + GlowA]);
}
}
}
static void RVIsolateHighlights_float(float *in, float *out, int width, int height, float threshold, float boost, float clamp)
{
int x, y, index;
float intensity;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
index = (x + y * width) * 4;
/* Isolate the intensity */
intensity = (in[index + GlowR] + in[index + GlowG] + in[index + GlowB] - threshold);
if (intensity > 0) {
out[index + GlowR] = MIN2(clamp, (in[index + GlowR] * boost * intensity));
out[index + GlowG] = MIN2(clamp, (in[index + GlowG] * boost * intensity));
out[index + GlowB] = MIN2(clamp, (in[index + GlowB] * boost * intensity));
out[index + GlowA] = MIN2(clamp, (in[index + GlowA] * boost * intensity));
}
else {
out[index + GlowR] = 0;
out[index + GlowG] = 0;
out[index + GlowB] = 0;
out[index + GlowA] = 0;
}
}
}
}
static void init_glow_effect(Sequence *seq)
{
GlowVars *glow;
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(GlowVars), "glowvars");
glow = (GlowVars *)seq->effectdata;
glow->fMini = 0.25;
glow->fClamp = 1.0;
glow->fBoost = 0.5;
glow->dDist = 3.0;
glow->dQuality = 3;
glow->bNoComp = 0;
}
static int num_inputs_glow(void)
{
return 1;
}
static void free_glow_effect(Sequence *seq)
{
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = NULL;
}
static void copy_glow_effect(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
static void do_glow_effect_byte(Sequence *seq, int render_size, float facf0, float UNUSED(facf1), int x, int y,
unsigned char *rect1, unsigned char *UNUSED(rect2), unsigned char *out)
{
float *outbuf, *inbuf;
GlowVars *glow = (GlowVars *)seq->effectdata;
inbuf = MEM_mallocN(4 * sizeof(float) * x * y, "glow effect input");
outbuf = MEM_mallocN(4 * sizeof(float) * x * y, "glow effect output");
IMB_buffer_float_from_byte(inbuf, rect1, IB_PROFILE_SRGB, IB_PROFILE_SRGB, FALSE, x, y, x, x);
IMB_buffer_float_premultiply(inbuf, x, y);
RVIsolateHighlights_float(inbuf, outbuf, x, y, glow->fMini * 3.0f, glow->fBoost * facf0, glow->fClamp);
RVBlurBitmap2_float(outbuf, x, y, glow->dDist * (render_size / 100.0f), glow->dQuality);
if (!glow->bNoComp)
RVAddBitmaps_float(inbuf, outbuf, outbuf, x, y);
IMB_buffer_float_unpremultiply(outbuf, x, y);
IMB_buffer_byte_from_float(out, outbuf, 4, 0.0f, IB_PROFILE_SRGB, IB_PROFILE_SRGB, FALSE, x, y, x, x);
MEM_freeN(inbuf);
MEM_freeN(outbuf);
}
static void do_glow_effect_float(Sequence *seq, int render_size, float facf0, float UNUSED(facf1), int x, int y,
float *rect1, float *UNUSED(rect2), float *out)
{
float *outbuf = out;
float *inbuf = rect1;
GlowVars *glow = (GlowVars *)seq->effectdata;
RVIsolateHighlights_float(inbuf, outbuf, x, y, glow->fMini * 3.0f, glow->fBoost * facf0, glow->fClamp);
RVBlurBitmap2_float(outbuf, x, y, glow->dDist * (render_size / 100.0f), glow->dQuality);
if (!glow->bNoComp)
RVAddBitmaps_float(inbuf, outbuf, outbuf, x, y);
}
static ImBuf *do_glow_effect(SeqRenderData context, Sequence *seq, float UNUSED(cfra), float facf0, float facf1,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out = prepare_effect_imbufs(context, ibuf1, ibuf2, ibuf3);
int render_size = 100 * context.rectx / context.scene->r.xsch;
if (out->rect_float) {
do_glow_effect_float(seq, render_size, facf0, facf1, context.rectx, context.recty,
ibuf1->rect_float, ibuf2->rect_float, out->rect_float);
}
else {
do_glow_effect_byte(seq, render_size, facf0, facf1, context.rectx, context.recty,
(unsigned char *) ibuf1->rect, (unsigned char *) ibuf2->rect, (unsigned char *) out->rect);
}
return out;
}
/*********************** Solid color *************************/
static void init_solid_color(Sequence *seq)
{
SolidColorVars *cv;
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(SolidColorVars), "solidcolor");
cv = (SolidColorVars *)seq->effectdata;
cv->col[0] = cv->col[1] = cv->col[2] = 0.5;
}
static int num_inputs_color(void)
{
return 0;
}
static void free_solid_color(Sequence *seq)
{
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = NULL;
}
static void copy_solid_color(Sequence *dst, Sequence *src)
{
dst->effectdata = MEM_dupallocN(src->effectdata);
}
static int early_out_color(Sequence *UNUSED(seq), float UNUSED(facf0), float UNUSED(facf1))
{
return EARLY_NO_INPUT;
}
static ImBuf *do_solid_color(SeqRenderData context, Sequence *seq, float UNUSED(cfra), float facf0, float facf1,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out = prepare_effect_imbufs(context, ibuf1, ibuf2, ibuf3);
SolidColorVars *cv = (SolidColorVars *)seq->effectdata;
unsigned char *rect;
float *rect_float;
int x; /*= context.rectx;*/ /*UNUSED*/
int y; /*= context.recty;*/ /*UNUSED*/
if (out->rect) {
unsigned char col0[3];
unsigned char col1[3];
col0[0] = facf0 * cv->col[0] * 255;
col0[1] = facf0 * cv->col[1] * 255;
col0[2] = facf0 * cv->col[2] * 255;
col1[0] = facf1 * cv->col[0] * 255;
col1[1] = facf1 * cv->col[1] * 255;
col1[2] = facf1 * cv->col[2] * 255;
rect = (unsigned char *)out->rect;
for (y = 0; y < out->y; y++) {
for (x = 0; x < out->x; x++, rect += 4) {
rect[0] = col0[0];
rect[1] = col0[1];
rect[2] = col0[2];
rect[3] = 255;
}
y++;
if (y < out->y) {
for (x = 0; x < out->x; x++, rect += 4) {
rect[0] = col1[0];
rect[1] = col1[1];
rect[2] = col1[2];
rect[3] = 255;
}
}
}
}
else if (out->rect_float) {
float col0[3];
float col1[3];
col0[0] = facf0 * cv->col[0];
col0[1] = facf0 * cv->col[1];
col0[2] = facf0 * cv->col[2];
col1[0] = facf1 * cv->col[0];
col1[1] = facf1 * cv->col[1];
col1[2] = facf1 * cv->col[2];
rect_float = out->rect_float;
for (y = 0; y < out->y; y++) {
for (x = 0; x < out->x; x++, rect_float += 4) {
rect_float[0] = col0[0];
rect_float[1] = col0[1];
rect_float[2] = col0[2];
rect_float[3] = 1.0;
}
y++;
if (y < out->y) {
for (x = 0; x < out->x; x++, rect_float += 4) {
rect_float[0] = col1[0];
rect_float[1] = col1[1];
rect_float[2] = col1[2];
rect_float[3] = 1.0;
}
}
}
}
return out;
}
/*********************** Mulitcam *************************/
/* no effect inputs for multicam, we use give_ibuf_seq */
static int num_inputs_multicam(void)
{
return 0;
}
static int early_out_multicam(Sequence *UNUSED(seq), float UNUSED(facf0), float UNUSED(facf1))
{
return EARLY_NO_INPUT;
}
static ImBuf *do_multicam(SeqRenderData context, Sequence *seq, float cfra, float UNUSED(facf0), float UNUSED(facf1),
ImBuf *UNUSED(ibuf1), ImBuf *UNUSED(ibuf2), ImBuf *UNUSED(ibuf3))
{
ImBuf *i;
ImBuf *out;
Editing *ed;
ListBase *seqbasep;
if (seq->multicam_source == 0 || seq->multicam_source >= seq->machine) {
return NULL;
}
ed = context.scene->ed;
if (!ed) {
return NULL;
}
seqbasep = BKE_sequence_seqbase(&ed->seqbase, seq);
if (!seqbasep) {
return NULL;
}
i = BKE_sequencer_give_ibuf_seqbase(context, cfra, seq->multicam_source, seqbasep);
if (!i) {
return NULL;
}
if (BKE_sequencer_input_have_to_preprocess(context, seq, cfra)) {
out = IMB_dupImBuf(i);
IMB_freeImBuf(i);
}
else {
out = i;
}
return out;
}
/*********************** Adjustment *************************/
/* no effect inputs for adjustment, we use give_ibuf_seq */
static int num_inputs_adjustment(void)
{
return 0;
}
static int early_out_adjustment(Sequence *UNUSED(seq), float UNUSED(facf0), float UNUSED(facf1))
{
return EARLY_NO_INPUT;
}
static ImBuf *do_adjustment_impl(SeqRenderData context, Sequence *seq, float cfra)
{
Editing *ed;
ListBase *seqbasep;
ImBuf *i = NULL;
ed = context.scene->ed;
seqbasep = BKE_sequence_seqbase(&ed->seqbase, seq);
if (seq->machine > 1) {
i = BKE_sequencer_give_ibuf_seqbase(context, cfra, seq->machine - 1, seqbasep);
}
/* found nothing? so let's work the way up the metastrip stack, so
* that it is possible to group a bunch of adjustment strips into
* a metastrip and have that work on everything below the metastrip
*/
if (!i) {
Sequence *meta;
meta = BKE_sequence_metastrip(&ed->seqbase, NULL, seq);
if (meta) {
i = do_adjustment_impl(context, meta, cfra);
}
}
return i;
}
static ImBuf *do_adjustment(SeqRenderData context, Sequence *seq, float cfra, float UNUSED(facf0), float UNUSED(facf1),
ImBuf *UNUSED(ibuf1), ImBuf *UNUSED(ibuf2), ImBuf *UNUSED(ibuf3))
{
ImBuf *i = NULL;
ImBuf *out;
Editing *ed;
ed = context.scene->ed;
if (!ed) {
return NULL;
}
i = do_adjustment_impl(context, seq, cfra);
if (BKE_sequencer_input_have_to_preprocess(context, seq, cfra)) {
out = IMB_dupImBuf(i);
IMB_freeImBuf(i);
}
else {
out = i;
}
return out;
}
/*********************** Speed *************************/
static void init_speed_effect(Sequence *seq)
{
SpeedControlVars *v;
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = MEM_callocN(sizeof(SpeedControlVars), "speedcontrolvars");
v = (SpeedControlVars *)seq->effectdata;
v->globalSpeed = 1.0;
v->frameMap = NULL;
v->flags |= SEQ_SPEED_INTEGRATE; /* should be default behavior */
v->length = 0;
}
static void load_speed_effect(Sequence *seq)
{
SpeedControlVars *v = (SpeedControlVars *)seq->effectdata;
v->frameMap = NULL;
v->length = 0;
}
static int num_inputs_speed(void)
{
return 1;
}
static void free_speed_effect(Sequence *seq)
{
SpeedControlVars *v = (SpeedControlVars *)seq->effectdata;
if (v->frameMap)
MEM_freeN(v->frameMap);
if (seq->effectdata)
MEM_freeN(seq->effectdata);
seq->effectdata = NULL;
}
static void copy_speed_effect(Sequence *dst, Sequence *src)
{
SpeedControlVars *v;
dst->effectdata = MEM_dupallocN(src->effectdata);
v = (SpeedControlVars *)dst->effectdata;
v->frameMap = NULL;
v->length = 0;
}
static int early_out_speed(Sequence *UNUSED(seq), float UNUSED(facf0), float UNUSED(facf1))
{
return EARLY_USE_INPUT_1;
}
static void store_icu_yrange_speed(Sequence *seq, short UNUSED(adrcode), float *ymin, float *ymax)
{
SpeedControlVars *v = (SpeedControlVars *)seq->effectdata;
/* if not already done, load / initialize data */
BKE_sequence_get_effect(seq);
if ((v->flags & SEQ_SPEED_INTEGRATE) != 0) {
*ymin = -100.0;
*ymax = 100.0;
}
else {
if (v->flags & SEQ_SPEED_COMPRESS_IPO_Y) {
*ymin = 0.0;
*ymax = 1.0;
}
else {
*ymin = 0.0;
*ymax = seq->len;
}
}
}
void BKE_sequence_effect_speed_rebuild_map(Scene *scene, Sequence *seq, int force)
{
int cfra;
float fallback_fac = 1.0f;
SpeedControlVars *v = (SpeedControlVars *) seq->effectdata;
FCurve *fcu = NULL;
int flags = v->flags;
/* if not already done, load / initialize data */
BKE_sequence_get_effect(seq);
if ((force == FALSE) &&
(seq->len == v->length) &&
(v->frameMap != NULL))
{
return;
}
if ((seq->seq1 == NULL) || (seq->len < 1)) {
/* make coverity happy and check for (CID 598) input strip ... */
return;
}
/* XXX - new in 2.5x. should we use the animation system this way?
* The fcurve is needed because many frames need evaluating at once - campbell */
fcu = id_data_find_fcurve(&scene->id, seq, &RNA_Sequence, "speed_factor", 0, NULL);
if (!v->frameMap || v->length != seq->len) {
if (v->frameMap) MEM_freeN(v->frameMap);
v->length = seq->len;
v->frameMap = MEM_callocN(sizeof(float) * v->length, "speedcontrol frameMap");
}
fallback_fac = 1.0;
if (seq->flag & SEQ_USE_EFFECT_DEFAULT_FADE) {
if ((seq->seq1->enddisp != seq->seq1->start) &&
(seq->seq1->len != 0))
{
fallback_fac = (float) seq->seq1->len / (float) (seq->seq1->enddisp - seq->seq1->start);
flags = SEQ_SPEED_INTEGRATE;
fcu = NULL;
}
}
else {
/* if there is no fcurve, use value as simple multiplier */
if (!fcu) {
fallback_fac = seq->speed_fader; /* same as speed_factor in rna*/
}
}
if (flags & SEQ_SPEED_INTEGRATE) {
float cursor = 0;
float facf;
v->frameMap[0] = 0;
v->lastValidFrame = 0;
for (cfra = 1; cfra < v->length; cfra++) {
if (fcu) {
facf = evaluate_fcurve(fcu, seq->startdisp + cfra);
}
else {
facf = fallback_fac;
}
facf *= v->globalSpeed;
cursor += facf;
if (cursor >= seq->seq1->len) {
v->frameMap[cfra] = seq->seq1->len - 1;
}
else {
v->frameMap[cfra] = cursor;
v->lastValidFrame = cfra;
}
}
}
else {
float facf;
v->lastValidFrame = 0;
for (cfra = 0; cfra < v->length; cfra++) {
if (fcu) {
facf = evaluate_fcurve(fcu, seq->startdisp + cfra);
}
else {
facf = fallback_fac;
}
if (flags & SEQ_SPEED_COMPRESS_IPO_Y) {
facf *= seq->seq1->len;
}
facf *= v->globalSpeed;
if (facf >= seq->seq1->len) {
facf = seq->seq1->len - 1;
}
else {
v->lastValidFrame = cfra;
}
v->frameMap[cfra] = facf;
}
}
}
static ImBuf *do_speed_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra),
float facf0, float facf1, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out = prepare_effect_imbufs(context, ibuf1, ibuf2, ibuf3);
if (out->rect_float) {
do_cross_effect_float(facf0, facf1, context.rectx, context.recty,
ibuf1->rect_float, ibuf2->rect_float, out->rect_float);
}
else {
do_cross_effect_byte(facf0, facf1, context.rectx, context.recty,
(unsigned char *) ibuf1->rect, (unsigned char *) ibuf2->rect, (unsigned char *) out->rect);
}
return out;
}
/*********************** overdrop *************************/
static void do_overdrop_effect(SeqRenderData context, Sequence *UNUSED(seq), float UNUSED(cfra), float facf0, float facf1,
ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *UNUSED(ibuf3), int start_line, int total_lines, ImBuf *out)
{
int x = context.rectx;
int y = total_lines;
if (out->rect_float) {
float *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_float_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_drop_effect_float(facf0, facf1, x, y, rect1, rect2, rect_out);
do_alphaover_effect_float(facf0, facf1, x, y, rect1, rect2, rect_out);
}
else {
unsigned char *rect1 = NULL, *rect2 = NULL, *rect_out = NULL;
slice_get_byte_buffers(&context, ibuf1, ibuf2, NULL, out, start_line, &rect1, &rect2, NULL, &rect_out);
do_drop_effect_byte(facf0, facf1, x, y, rect1, rect2, rect_out);
do_alphaover_effect_byte(facf0, facf1, x, y, rect1, rect2, rect_out);
}
}
/*********************** sequence effect factory *************************/
static void init_noop(Sequence *UNUSED(seq))
{
}
static void load_noop(Sequence *UNUSED(seq))
{
}
static void free_noop(Sequence *UNUSED(seq))
{
}
static int num_inputs_default(void)
{
return 2;
}
static int early_out_noop(Sequence *UNUSED(seq), float UNUSED(facf0), float UNUSED(facf1))
{
return EARLY_DO_EFFECT;
}
static int early_out_fade(Sequence *UNUSED(seq), float facf0, float facf1)
{
if (facf0 == 0.0f && facf1 == 0.0f) {
return EARLY_USE_INPUT_1;
}
else if (facf0 == 1.0f && facf1 == 1.0f) {
return EARLY_USE_INPUT_2;
}
return EARLY_DO_EFFECT;
}
static int early_out_mul_input2(Sequence *UNUSED(seq), float facf0, float facf1)
{
if (facf0 == 0.0f && facf1 == 0.0f) {
return EARLY_USE_INPUT_1;
}
return EARLY_DO_EFFECT;
}
static void store_icu_yrange_noop(Sequence *UNUSED(seq), short UNUSED(adrcode), float *UNUSED(ymin), float *UNUSED(ymax))
{
/* defaults are fine */
}
static void get_default_fac_noop(Sequence *UNUSED(seq), float UNUSED(cfra), float *facf0, float *facf1)
{
*facf0 = *facf1 = 1.0;
}
static void get_default_fac_fade(Sequence *seq, float cfra, float *facf0, float *facf1)
{
*facf0 = (float)(cfra - seq->startdisp);
*facf1 = (float)(*facf0 + 0.5f);
*facf0 /= seq->len;
*facf1 /= seq->len;
}
static struct ImBuf *init_execution(SeqRenderData context, ImBuf *ibuf1, ImBuf *ibuf2, ImBuf *ibuf3)
{
ImBuf *out = prepare_effect_imbufs(context, ibuf1, ibuf2, ibuf3);
return out;
}
static struct SeqEffectHandle get_sequence_effect_impl(int seq_type)
{
struct SeqEffectHandle rval;
int sequence_type = seq_type;
rval.multithreaded = FALSE;
rval.supports_mask = FALSE;
rval.init = init_noop;
rval.num_inputs = num_inputs_default;
rval.load = load_noop;
rval.free = free_noop;
rval.early_out = early_out_noop;
rval.get_default_fac = get_default_fac_noop;
rval.store_icu_yrange = store_icu_yrange_noop;
rval.execute = NULL;
rval.init_execution = init_execution;
rval.execute_slice = NULL;
rval.copy = NULL;
switch (sequence_type) {
case SEQ_TYPE_CROSS:
rval.multithreaded = TRUE;
rval.execute_slice = do_cross_effect;
rval.early_out = early_out_fade;
rval.get_default_fac = get_default_fac_fade;
break;
case SEQ_TYPE_GAMCROSS:
rval.multithreaded = TRUE;
rval.init = init_gammacross;
rval.load = load_gammacross;
rval.free = free_gammacross;
rval.early_out = early_out_fade;
rval.get_default_fac = get_default_fac_fade;
rval.init_execution = gammacross_init_execution;
rval.execute_slice = do_gammacross_effect;
break;
case SEQ_TYPE_ADD:
rval.multithreaded = TRUE;
rval.execute_slice = do_add_effect;
rval.early_out = early_out_mul_input2;
break;
case SEQ_TYPE_SUB:
rval.multithreaded = TRUE;
rval.execute_slice = do_sub_effect;
rval.early_out = early_out_mul_input2;
break;
case SEQ_TYPE_MUL:
rval.multithreaded = TRUE;
rval.execute_slice = do_mul_effect;
rval.early_out = early_out_mul_input2;
break;
case SEQ_TYPE_ALPHAOVER:
rval.multithreaded = TRUE;
rval.init = init_alpha_over_or_under;
rval.execute_slice = do_alphaover_effect;
break;
case SEQ_TYPE_OVERDROP:
rval.multithreaded = TRUE;
rval.execute_slice = do_overdrop_effect;
break;
case SEQ_TYPE_ALPHAUNDER:
rval.multithreaded = TRUE;
rval.init = init_alpha_over_or_under;
rval.execute_slice = do_alphaunder_effect;
break;
case SEQ_TYPE_WIPE:
rval.init = init_wipe_effect;
rval.num_inputs = num_inputs_wipe;
rval.free = free_wipe_effect;
rval.copy = copy_wipe_effect;
rval.early_out = early_out_fade;
rval.get_default_fac = get_default_fac_fade;
rval.execute = do_wipe_effect;
break;
case SEQ_TYPE_GLOW:
rval.init = init_glow_effect;
rval.num_inputs = num_inputs_glow;
rval.free = free_glow_effect;
rval.copy = copy_glow_effect;
rval.execute = do_glow_effect;
break;
case SEQ_TYPE_TRANSFORM:
rval.init = init_transform_effect;
rval.num_inputs = num_inputs_transform;
rval.free = free_transform_effect;
rval.copy = copy_transform_effect;
rval.execute = do_transform_effect;
break;
case SEQ_TYPE_SPEED:
rval.init = init_speed_effect;
rval.num_inputs = num_inputs_speed;
rval.load = load_speed_effect;
rval.free = free_speed_effect;
rval.copy = copy_speed_effect;
rval.execute = do_speed_effect;
rval.early_out = early_out_speed;
rval.store_icu_yrange = store_icu_yrange_speed;
break;
case SEQ_TYPE_COLOR:
rval.init = init_solid_color;
rval.num_inputs = num_inputs_color;
rval.early_out = early_out_color;
rval.free = free_solid_color;
rval.copy = copy_solid_color;
rval.execute = do_solid_color;
break;
case SEQ_TYPE_MULTICAM:
rval.num_inputs = num_inputs_multicam;
rval.early_out = early_out_multicam;
rval.execute = do_multicam;
break;
case SEQ_TYPE_ADJUSTMENT:
rval.supports_mask = TRUE;
rval.num_inputs = num_inputs_adjustment;
rval.early_out = early_out_adjustment;
rval.execute = do_adjustment;
break;
}
return rval;
}
struct SeqEffectHandle BKE_sequence_get_effect(Sequence *seq)
{
struct SeqEffectHandle rval = {FALSE, FALSE, NULL};
if (seq->type & SEQ_TYPE_EFFECT) {
rval = get_sequence_effect_impl(seq->type);
if ((seq->flag & SEQ_EFFECT_NOT_LOADED) != 0) {
rval.load(seq);
seq->flag &= ~SEQ_EFFECT_NOT_LOADED;
}
}
return rval;
}
struct SeqEffectHandle BKE_sequence_get_blend(Sequence *seq)
{
struct SeqEffectHandle rval = {FALSE, FALSE, NULL};
if (seq->blend_mode != 0) {
rval = get_sequence_effect_impl(seq->blend_mode);
if ((seq->flag & SEQ_EFFECT_NOT_LOADED) != 0) {
rval.load(seq);
seq->flag &= ~SEQ_EFFECT_NOT_LOADED;
}
}
return rval;
}
int BKE_sequence_effect_get_num_inputs(int seq_type)
{
struct SeqEffectHandle rval = get_sequence_effect_impl(seq_type);
int cnt = rval.num_inputs();
if (rval.execute || (rval.execute_slice && rval.init_execution)) {
return cnt;
}
return 0;
}
int BKE_sequence_effect_get_supports_mask(int seq_type)
{
struct SeqEffectHandle rval = get_sequence_effect_impl(seq_type);
return rval.supports_mask;
}