This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/raytrace/rayobject_octree.cpp
2013-01-07 03:24:22 +00:00

1099 lines
26 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 1990-1998 NeoGeo BV.
* All rights reserved.
*
* Contributors: 2004/2005 Blender Foundation, full recode
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/raytrace/rayobject_octree.cpp
* \ingroup render
*/
/* IMPORTANT NOTE: this code must be independent of any other render code
* to use it outside the renderer! */
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <float.h>
#include <assert.h>
#include "MEM_guardedalloc.h"
#include "DNA_material_types.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "rayintersection.h"
#include "rayobject.h"
/* ********** structs *************** */
#define BRANCH_ARRAY 1024
#define NODE_ARRAY 4096
typedef struct Branch {
struct Branch *b[8];
} Branch;
typedef struct OcVal {
short ocx, ocy, ocz;
} OcVal;
typedef struct Node {
struct RayFace *v[8];
struct OcVal ov[8];
struct Node *next;
} Node;
typedef struct Octree {
RayObject rayobj;
struct Branch **adrbranch;
struct Node **adrnode;
float ocsize; /* ocsize: mult factor, max size octree */
float ocfacx, ocfacy, ocfacz;
float min[3], max[3];
int ocres;
int branchcount, nodecount;
/* during building only */
char *ocface;
RayFace **ro_nodes;
int ro_nodes_size, ro_nodes_used;
} Octree;
static int RE_rayobject_octree_intersect(RayObject *o, Isect *isec);
static void RE_rayobject_octree_add(RayObject *o, RayObject *ob);
static void RE_rayobject_octree_done(RayObject *o);
static void RE_rayobject_octree_free(RayObject *o);
static void RE_rayobject_octree_bb(RayObject *o, float *min, float *max);
/*
* This function is not expected to be called by current code state.
*/
static float RE_rayobject_octree_cost(RayObject *UNUSED(o))
{
return 1.0;
}
static void RE_rayobject_octree_hint_bb(RayObject *UNUSED(o), RayHint *UNUSED(hint),
float *UNUSED(min), float *UNUSED(max))
{
return;
}
static RayObjectAPI octree_api =
{
RE_rayobject_octree_intersect,
RE_rayobject_octree_add,
RE_rayobject_octree_done,
RE_rayobject_octree_free,
RE_rayobject_octree_bb,
RE_rayobject_octree_cost,
RE_rayobject_octree_hint_bb
};
/* **************** ocval method ******************* */
/* within one octree node, a set of 3x15 bits defines a 'boundbox' to OR with */
#define OCVALRES 15
#define BROW16(min, max) (((max) >= OCVALRES ? 0xFFFF : (1 << (max + 1)) - 1) - ((min > 0) ? ((1 << (min)) - 1) : 0))
static void calc_ocval_face(float *v1, float *v2, float *v3, float *v4, short x, short y, short z, OcVal *ov)
{
float min[3], max[3];
int ocmin, ocmax;
copy_v3_v3(min, v1);
copy_v3_v3(max, v1);
DO_MINMAX(v2, min, max);
DO_MINMAX(v3, min, max);
if (v4) {
DO_MINMAX(v4, min, max);
}
ocmin = OCVALRES * (min[0] - x);
ocmax = OCVALRES * (max[0] - x);
ov->ocx = BROW16(ocmin, ocmax);
ocmin = OCVALRES * (min[1] - y);
ocmax = OCVALRES * (max[1] - y);
ov->ocy = BROW16(ocmin, ocmax);
ocmin = OCVALRES * (min[2] - z);
ocmax = OCVALRES * (max[2] - z);
ov->ocz = BROW16(ocmin, ocmax);
}
static void calc_ocval_ray(OcVal *ov, float xo, float yo, float zo, float *vec1, float *vec2)
{
int ocmin, ocmax;
if (vec1[0] < vec2[0]) {
ocmin = OCVALRES * (vec1[0] - xo);
ocmax = OCVALRES * (vec2[0] - xo);
}
else {
ocmin = OCVALRES * (vec2[0] - xo);
ocmax = OCVALRES * (vec1[0] - xo);
}
ov->ocx = BROW16(ocmin, ocmax);
if (vec1[1] < vec2[1]) {
ocmin = OCVALRES * (vec1[1] - yo);
ocmax = OCVALRES * (vec2[1] - yo);
}
else {
ocmin = OCVALRES * (vec2[1] - yo);
ocmax = OCVALRES * (vec1[1] - yo);
}
ov->ocy = BROW16(ocmin, ocmax);
if (vec1[2] < vec2[2]) {
ocmin = OCVALRES * (vec1[2] - zo);
ocmax = OCVALRES * (vec2[2] - zo);
}
else {
ocmin = OCVALRES * (vec2[2] - zo);
ocmax = OCVALRES * (vec1[2] - zo);
}
ov->ocz = BROW16(ocmin, ocmax);
}
/* ************* octree ************** */
static Branch *addbranch(Octree *oc, Branch *br, short ocb)
{
int index;
if (br->b[ocb]) return br->b[ocb];
oc->branchcount++;
index = oc->branchcount >> 12;
if (oc->adrbranch[index] == NULL)
oc->adrbranch[index] = (Branch *)MEM_callocN(4096 * sizeof(Branch), "new oc branch");
if (oc->branchcount >= BRANCH_ARRAY * 4096) {
printf("error; octree branches full\n");
oc->branchcount = 0;
}
return br->b[ocb] = oc->adrbranch[index] + (oc->branchcount & 4095);
}
static Node *addnode(Octree *oc)
{
int index;
oc->nodecount++;
index = oc->nodecount >> 12;
if (oc->adrnode[index] == NULL)
oc->adrnode[index] = (Node *)MEM_callocN(4096 * sizeof(Node), "addnode");
if (oc->nodecount > NODE_ARRAY * NODE_ARRAY) {
printf("error; octree nodes full\n");
oc->nodecount = 0;
}
return oc->adrnode[index] + (oc->nodecount & 4095);
}
static int face_in_node(RayFace *face, short x, short y, short z, float rtf[4][3])
{
static float nor[3], d;
float fx, fy, fz;
// init static vars
if (face) {
normal_tri_v3(nor, rtf[0], rtf[1], rtf[2]);
d = -nor[0] * rtf[0][0] - nor[1] * rtf[0][1] - nor[2] * rtf[0][2];
return 0;
}
fx = x;
fy = y;
fz = z;
if ((fx) * nor[0] + (fy) * nor[1] + (fz) * nor[2] + d > 0.0f) {
if ((fx + 1) * nor[0] + (fy ) * nor[1] + (fz ) * nor[2] + d < 0.0f) return 1;
if ((fx ) * nor[0] + (fy + 1) * nor[1] + (fz ) * nor[2] + d < 0.0f) return 1;
if ((fx + 1) * nor[0] + (fy + 1) * nor[1] + (fz ) * nor[2] + d < 0.0f) return 1;
if ((fx ) * nor[0] + (fy ) * nor[1] + (fz + 1) * nor[2] + d < 0.0f) return 1;
if ((fx + 1) * nor[0] + (fy ) * nor[1] + (fz + 1) * nor[2] + d < 0.0f) return 1;
if ((fx ) * nor[0] + (fy + 1) * nor[1] + (fz + 1) * nor[2] + d < 0.0f) return 1;
if ((fx + 1) * nor[0] + (fy + 1) * nor[1] + (fz + 1) * nor[2] + d < 0.0f) return 1;
}
else {
if ((fx + 1) * nor[0] + (fy ) * nor[1] + (fz ) * nor[2] + d > 0.0f) return 1;
if ((fx ) * nor[0] + (fy + 1) * nor[1] + (fz ) * nor[2] + d > 0.0f) return 1;
if ((fx + 1) * nor[0] + (fy + 1) * nor[1] + (fz ) * nor[2] + d > 0.0f) return 1;
if ((fx ) * nor[0] + (fy ) * nor[1] + (fz + 1) * nor[2] + d > 0.0f) return 1;
if ((fx + 1) * nor[0] + (fy ) * nor[1] + (fz + 1) * nor[2] + d > 0.0f) return 1;
if ((fx ) * nor[0] + (fy + 1) * nor[1] + (fz + 1) * nor[2] + d > 0.0f) return 1;
if ((fx + 1) * nor[0] + (fy + 1) * nor[1] + (fz + 1) * nor[2] + d > 0.0f) return 1;
}
return 0;
}
static void ocwrite(Octree *oc, RayFace *face, int quad, short x, short y, short z, float rtf[4][3])
{
Branch *br;
Node *no;
short a, oc0, oc1, oc2, oc3, oc4, oc5;
x <<= 2;
y <<= 1;
br = oc->adrbranch[0];
if (oc->ocres == 512) {
oc0 = ((x & 1024) + (y & 512) + (z & 256)) >> 8;
br = addbranch(oc, br, oc0);
}
if (oc->ocres >= 256) {
oc0 = ((x & 512) + (y & 256) + (z & 128)) >> 7;
br = addbranch(oc, br, oc0);
}
if (oc->ocres >= 128) {
oc0 = ((x & 256) + (y & 128) + (z & 64)) >> 6;
br = addbranch(oc, br, oc0);
}
oc0 = ((x & 128) + (y & 64) + (z & 32)) >> 5;
oc1 = ((x & 64) + (y & 32) + (z & 16)) >> 4;
oc2 = ((x & 32) + (y & 16) + (z & 8)) >> 3;
oc3 = ((x & 16) + (y & 8) + (z & 4)) >> 2;
oc4 = ((x & 8) + (y & 4) + (z & 2)) >> 1;
oc5 = ((x & 4) + (y & 2) + (z & 1));
br = addbranch(oc, br, oc0);
br = addbranch(oc, br, oc1);
br = addbranch(oc, br, oc2);
br = addbranch(oc, br, oc3);
br = addbranch(oc, br, oc4);
no = (Node *)br->b[oc5];
if (no == NULL) br->b[oc5] = (Branch *)(no = addnode(oc));
while (no->next) no = no->next;
a = 0;
if (no->v[7]) { /* node full */
no->next = addnode(oc);
no = no->next;
}
else {
while (no->v[a] != NULL) a++;
}
no->v[a] = (RayFace *) RE_rayobject_align(face);
if (quad)
calc_ocval_face(rtf[0], rtf[1], rtf[2], rtf[3], x >> 2, y >> 1, z, &no->ov[a]);
else
calc_ocval_face(rtf[0], rtf[1], rtf[2], NULL, x >> 2, y >> 1, z, &no->ov[a]);
}
static void d2dda(Octree *oc, short b1, short b2, short c1, short c2, char *ocface, short rts[4][3], float rtf[4][3])
{
int ocx1, ocx2, ocy1, ocy2;
int x, y, dx = 0, dy = 0;
float ox1, ox2, oy1, oy2;
float lambda, lambda_o, lambda_x, lambda_y, ldx, ldy;
ocx1 = rts[b1][c1];
ocy1 = rts[b1][c2];
ocx2 = rts[b2][c1];
ocy2 = rts[b2][c2];
if (ocx1 == ocx2 && ocy1 == ocy2) {
ocface[oc->ocres * ocx1 + ocy1] = 1;
return;
}
ox1 = rtf[b1][c1];
oy1 = rtf[b1][c2];
ox2 = rtf[b2][c1];
oy2 = rtf[b2][c2];
if (ox1 != ox2) {
if (ox2 - ox1 > 0.0f) {
lambda_x = (ox1 - ocx1 - 1.0f) / (ox1 - ox2);
ldx = -1.0f / (ox1 - ox2);
dx = 1;
}
else {
lambda_x = (ox1 - ocx1) / (ox1 - ox2);
ldx = 1.0f / (ox1 - ox2);
dx = -1;
}
}
else {
lambda_x = 1.0f;
ldx = 0;
}
if (oy1 != oy2) {
if (oy2 - oy1 > 0.0f) {
lambda_y = (oy1 - ocy1 - 1.0f) / (oy1 - oy2);
ldy = -1.0f / (oy1 - oy2);
dy = 1;
}
else {
lambda_y = (oy1 - ocy1) / (oy1 - oy2);
ldy = 1.0f / (oy1 - oy2);
dy = -1;
}
}
else {
lambda_y = 1.0f;
ldy = 0;
}
x = ocx1; y = ocy1;
lambda = MIN2(lambda_x, lambda_y);
while (TRUE) {
if (x < 0 || y < 0 || x >= oc->ocres || y >= oc->ocres) {
/* pass*/
}
else {
ocface[oc->ocres * x + y] = 1;
}
lambda_o = lambda;
if (lambda_x == lambda_y) {
lambda_x += ldx;
x += dx;
lambda_y += ldy;
y += dy;
}
else {
if (lambda_x < lambda_y) {
lambda_x += ldx;
x += dx;
}
else {
lambda_y += ldy;
y += dy;
}
}
lambda = MIN2(lambda_x, lambda_y);
if (lambda == lambda_o) break;
if (lambda >= 1.0f) break;
}
ocface[oc->ocres * ocx2 + ocy2] = 1;
}
static void filltriangle(Octree *oc, short c1, short c2, char *ocface, short *ocmin, short *ocmax)
{
int a, x, y, y1, y2;
for (x = ocmin[c1]; x <= ocmax[c1]; x++) {
a = oc->ocres * x;
for (y = ocmin[c2]; y <= ocmax[c2]; y++) {
if (ocface[a + y]) {
y++;
while (ocface[a + y] && y != ocmax[c2]) y++;
for (y1 = ocmax[c2]; y1 > y; y1--) {
if (ocface[a + y1]) {
for (y2 = y; y2 <= y1; y2++) ocface[a + y2] = 1;
y1 = 0;
}
}
y = ocmax[c2];
}
}
}
}
static void RE_rayobject_octree_free(RayObject *tree)
{
Octree *oc = (Octree *)tree;
#if 0
printf("branches %d nodes %d\n", oc->branchcount, oc->nodecount);
printf("raycount %d\n", raycount);
printf("ray coherent %d\n", coherent_ray);
printf("accepted %d rejected %d\n", accepted, rejected);
#endif
if (oc->ocface)
MEM_freeN(oc->ocface);
if (oc->adrbranch) {
int a = 0;
while (oc->adrbranch[a]) {
MEM_freeN(oc->adrbranch[a]);
oc->adrbranch[a] = NULL;
a++;
}
MEM_freeN(oc->adrbranch);
oc->adrbranch = NULL;
}
oc->branchcount = 0;
if (oc->adrnode) {
int a = 0;
while (oc->adrnode[a]) {
MEM_freeN(oc->adrnode[a]);
oc->adrnode[a] = NULL;
a++;
}
MEM_freeN(oc->adrnode);
oc->adrnode = NULL;
}
oc->nodecount = 0;
MEM_freeN(oc);
}
RayObject *RE_rayobject_octree_create(int ocres, int size)
{
Octree *oc = (Octree *)MEM_callocN(sizeof(Octree), "Octree");
assert(RE_rayobject_isAligned(oc) ); /* RayObject API assumes real data to be 4-byte aligned */
oc->rayobj.api = &octree_api;
oc->ocres = ocres;
oc->ro_nodes = (RayFace **)MEM_callocN(sizeof(RayFace *) * size, "octree rayobject nodes");
oc->ro_nodes_size = size;
oc->ro_nodes_used = 0;
return RE_rayobject_unalignRayAPI((RayObject *) oc);
}
static void RE_rayobject_octree_add(RayObject *tree, RayObject *node)
{
Octree *oc = (Octree *)tree;
assert(RE_rayobject_isRayFace(node) );
assert(oc->ro_nodes_used < oc->ro_nodes_size);
oc->ro_nodes[oc->ro_nodes_used++] = (RayFace *)RE_rayobject_align(node);
}
static void octree_fill_rayface(Octree *oc, RayFace *face)
{
float ocfac[3], rtf[4][3];
float co1[3], co2[3], co3[3], co4[3];
short rts[4][3];
short ocmin[3], ocmax[3];
char *ocface = oc->ocface; // front, top, size view of face, to fill in
int a, b, c, oc1, oc2, oc3, oc4, x, y, z, ocres2;
ocfac[0] = oc->ocfacx;
ocfac[1] = oc->ocfacy;
ocfac[2] = oc->ocfacz;
ocres2 = oc->ocres * oc->ocres;
copy_v3_v3(co1, face->v1);
copy_v3_v3(co2, face->v2);
copy_v3_v3(co3, face->v3);
if (face->v4)
copy_v3_v3(co4, face->v4);
for (c = 0; c < 3; c++) {
rtf[0][c] = (co1[c] - oc->min[c]) * ocfac[c];
rts[0][c] = (short)rtf[0][c];
rtf[1][c] = (co2[c] - oc->min[c]) * ocfac[c];
rts[1][c] = (short)rtf[1][c];
rtf[2][c] = (co3[c] - oc->min[c]) * ocfac[c];
rts[2][c] = (short)rtf[2][c];
if (RE_rayface_isQuad(face)) {
rtf[3][c] = (co4[c] - oc->min[c]) * ocfac[c];
rts[3][c] = (short)rtf[3][c];
}
}
for (c = 0; c < 3; c++) {
oc1 = rts[0][c];
oc2 = rts[1][c];
oc3 = rts[2][c];
if (!RE_rayface_isQuad(face)) {
ocmin[c] = min_iii(oc1, oc2, oc3);
ocmax[c] = max_iii(oc1, oc2, oc3);
}
else {
oc4 = rts[3][c];
ocmin[c] = min_iiii(oc1, oc2, oc3, oc4);
ocmax[c] = max_iiii(oc1, oc2, oc3, oc4);
}
if (ocmax[c] > oc->ocres - 1) ocmax[c] = oc->ocres - 1;
if (ocmin[c] < 0) ocmin[c] = 0;
}
if (ocmin[0] == ocmax[0] && ocmin[1] == ocmax[1] && ocmin[2] == ocmax[2]) {
ocwrite(oc, face, RE_rayface_isQuad(face), ocmin[0], ocmin[1], ocmin[2], rtf);
}
else {
d2dda(oc, 0, 1, 0, 1, ocface + ocres2, rts, rtf);
d2dda(oc, 0, 1, 0, 2, ocface, rts, rtf);
d2dda(oc, 0, 1, 1, 2, ocface + 2 * ocres2, rts, rtf);
d2dda(oc, 1, 2, 0, 1, ocface + ocres2, rts, rtf);
d2dda(oc, 1, 2, 0, 2, ocface, rts, rtf);
d2dda(oc, 1, 2, 1, 2, ocface + 2 * ocres2, rts, rtf);
if (!RE_rayface_isQuad(face)) {
d2dda(oc, 2, 0, 0, 1, ocface + ocres2, rts, rtf);
d2dda(oc, 2, 0, 0, 2, ocface, rts, rtf);
d2dda(oc, 2, 0, 1, 2, ocface + 2 * ocres2, rts, rtf);
}
else {
d2dda(oc, 2, 3, 0, 1, ocface + ocres2, rts, rtf);
d2dda(oc, 2, 3, 0, 2, ocface, rts, rtf);
d2dda(oc, 2, 3, 1, 2, ocface + 2 * ocres2, rts, rtf);
d2dda(oc, 3, 0, 0, 1, ocface + ocres2, rts, rtf);
d2dda(oc, 3, 0, 0, 2, ocface, rts, rtf);
d2dda(oc, 3, 0, 1, 2, ocface + 2 * ocres2, rts, rtf);
}
/* nothing todo with triangle..., just fills :) */
filltriangle(oc, 0, 1, ocface + ocres2, ocmin, ocmax);
filltriangle(oc, 0, 2, ocface, ocmin, ocmax);
filltriangle(oc, 1, 2, ocface + 2 * ocres2, ocmin, ocmax);
/* init static vars here */
face_in_node(face, 0, 0, 0, rtf);
for (x = ocmin[0]; x <= ocmax[0]; x++) {
a = oc->ocres * x;
for (y = ocmin[1]; y <= ocmax[1]; y++) {
if (ocface[a + y + ocres2]) {
b = oc->ocres * y + 2 * ocres2;
for (z = ocmin[2]; z <= ocmax[2]; z++) {
if (ocface[b + z] && ocface[a + z]) {
if (face_in_node(NULL, x, y, z, rtf))
ocwrite(oc, face, RE_rayface_isQuad(face), x, y, z, rtf);
}
}
}
}
}
/* same loops to clear octree, doubt it can be done smarter */
for (x = ocmin[0]; x <= ocmax[0]; x++) {
a = oc->ocres * x;
for (y = ocmin[1]; y <= ocmax[1]; y++) {
/* x-y */
ocface[a + y + ocres2] = 0;
b = oc->ocres * y + 2 * ocres2;
for (z = ocmin[2]; z <= ocmax[2]; z++) {
/* y-z */
ocface[b + z] = 0;
/* x-z */
ocface[a + z] = 0;
}
}
}
}
}
static void RE_rayobject_octree_done(RayObject *tree)
{
Octree *oc = (Octree *)tree;
int c;
float t00, t01, t02;
int ocres2 = oc->ocres * oc->ocres;
INIT_MINMAX(oc->min, oc->max);
/* Calculate Bounding Box */
for (c = 0; c < oc->ro_nodes_used; c++)
RE_rayobject_merge_bb(RE_rayobject_unalignRayFace(oc->ro_nodes[c]), oc->min, oc->max);
/* Alloc memory */
oc->adrbranch = (Branch **)MEM_callocN(sizeof(void *) * BRANCH_ARRAY, "octree branches");
oc->adrnode = (Node **)MEM_callocN(sizeof(void *) * NODE_ARRAY, "octree nodes");
oc->adrbranch[0] = (Branch *)MEM_callocN(4096 * sizeof(Branch), "makeoctree");
/* the lookup table, per face, for which nodes to fill in */
oc->ocface = (char *)MEM_callocN(3 * ocres2 + 8, "ocface");
memset(oc->ocface, 0, 3 * ocres2);
for (c = 0; c < 3; c++) { /* octree enlarge, still needed? */
oc->min[c] -= 0.01f;
oc->max[c] += 0.01f;
}
t00 = oc->max[0] - oc->min[0];
t01 = oc->max[1] - oc->min[1];
t02 = oc->max[2] - oc->min[2];
/* this minus 0.1 is old safety... seems to be needed? */
oc->ocfacx = (oc->ocres - 0.1f) / t00;
oc->ocfacy = (oc->ocres - 0.1f) / t01;
oc->ocfacz = (oc->ocres - 0.1f) / t02;
oc->ocsize = sqrt(t00 * t00 + t01 * t01 + t02 * t02); /* global, max size octree */
for (c = 0; c < oc->ro_nodes_used; c++) {
octree_fill_rayface(oc, oc->ro_nodes[c]);
}
MEM_freeN(oc->ocface);
oc->ocface = NULL;
MEM_freeN(oc->ro_nodes);
oc->ro_nodes = NULL;
printf("%f %f - %f\n", oc->min[0], oc->max[0], oc->ocfacx);
printf("%f %f - %f\n", oc->min[1], oc->max[1], oc->ocfacy);
printf("%f %f - %f\n", oc->min[2], oc->max[2], oc->ocfacz);
}
static void RE_rayobject_octree_bb(RayObject *tree, float *min, float *max)
{
Octree *oc = (Octree *)tree;
DO_MINMAX(oc->min, min, max);
DO_MINMAX(oc->max, min, max);
}
/* check all faces in this node */
static int testnode(Octree *UNUSED(oc), Isect *is, Node *no, OcVal ocval)
{
short nr = 0;
/* return on any first hit */
if (is->mode == RE_RAY_SHADOW) {
for (; no; no = no->next) {
for (nr = 0; nr < 8; nr++) {
RayFace *face = no->v[nr];
OcVal *ov = no->ov + nr;
if (!face) break;
if ( (ov->ocx & ocval.ocx) && (ov->ocy & ocval.ocy) && (ov->ocz & ocval.ocz) ) {
if (RE_rayobject_intersect(RE_rayobject_unalignRayFace(face), is) )
return 1;
}
}
}
}
else {
/* else mirror or glass or shadowtra, return closest face */
int found = 0;
for (; no; no = no->next) {
for (nr = 0; nr < 8; nr++) {
RayFace *face = no->v[nr];
OcVal *ov = no->ov + nr;
if (!face) break;
if ( (ov->ocx & ocval.ocx) && (ov->ocy & ocval.ocy) && (ov->ocz & ocval.ocz) ) {
if (RE_rayobject_intersect(RE_rayobject_unalignRayFace(face), is) ) {
found = 1;
}
}
}
}
return found;
}
return 0;
}
/* find the Node for the octree coord x y z */
static Node *ocread(Octree *oc, int x, int y, int z)
{
Branch *br;
int oc1;
x <<= 2;
y <<= 1;
br = oc->adrbranch[0];
if (oc->ocres == 512) {
oc1 = ((x & 1024) + (y & 512) + (z & 256)) >> 8;
br = br->b[oc1];
if (br == NULL) {
return NULL;
}
}
if (oc->ocres >= 256) {
oc1 = ((x & 512) + (y & 256) + (z & 128)) >> 7;
br = br->b[oc1];
if (br == NULL) {
return NULL;
}
}
if (oc->ocres >= 128) {
oc1 = ((x & 256) + (y & 128) + (z & 64)) >> 6;
br = br->b[oc1];
if (br == NULL) {
return NULL;
}
}
oc1 = ((x & 128) + (y & 64) + (z & 32)) >> 5;
br = br->b[oc1];
if (br) {
oc1 = ((x & 64) + (y & 32) + (z & 16)) >> 4;
br = br->b[oc1];
if (br) {
oc1 = ((x & 32) + (y & 16) + (z & 8)) >> 3;
br = br->b[oc1];
if (br) {
oc1 = ((x & 16) + (y & 8) + (z & 4)) >> 2;
br = br->b[oc1];
if (br) {
oc1 = ((x & 8) + (y & 4) + (z & 2)) >> 1;
br = br->b[oc1];
if (br) {
oc1 = ((x & 4) + (y & 2) + (z & 1));
return (Node *)br->b[oc1];
}
}
}
}
}
return NULL;
}
static int cliptest(float p, float q, float *u1, float *u2)
{
float r;
if (p < 0.0f) {
if (q < p) return 0;
else if (q < 0.0f) {
r = q / p;
if (r > *u2) return 0;
else if (r > *u1) *u1 = r;
}
}
else {
if (p > 0.0f) {
if (q < 0.0f) return 0;
else if (q < p) {
r = q / p;
if (r < *u1) return 0;
else if (r < *u2) *u2 = r;
}
}
else if (q < 0.0f) return 0;
}
return 1;
}
/* extensive coherence checks/storage cancels out the benefit of it, and gives errors... we
* need better methods, sample code commented out below (ton) */
#if 0
in top : static int coh_nodes[16 * 16 * 16][6];
in makeoctree : memset(coh_nodes, 0, sizeof(coh_nodes));
static void add_coherence_test(int ocx1, int ocx2, int ocy1, int ocy2, int ocz1, int ocz2)
{
short *sp;
sp = coh_nodes[(ocx2 & 15) + 16 * (ocy2 & 15) + 256 * (ocz2 & 15)];
sp[0] = ocx1; sp[1] = ocy1; sp[2] = ocz1;
sp[3] = ocx2; sp[4] = ocy2; sp[5] = ocz2;
}
static int do_coherence_test(int ocx1, int ocx2, int ocy1, int ocy2, int ocz1, int ocz2)
{
short *sp;
sp = coh_nodes[(ocx2 & 15) + 16 * (ocy2 & 15) + 256 * (ocz2 & 15)];
if (sp[0] == ocx1 && sp[1] == ocy1 && sp[2] == ocz1 &&
sp[3] == ocx2 && sp[4] == ocy2 && sp[5] == ocz2) return 1;
return 0;
}
#endif
/* return 1: found valid intersection */
/* starts with is->orig.face */
static int RE_rayobject_octree_intersect(RayObject *tree, Isect *is)
{
Octree *oc = (Octree *)tree;
Node *no;
OcVal ocval;
float vec1[3], vec2[3], start[3], end[3];
float u1, u2, ox1, ox2, oy1, oy2, oz1, oz2;
float lambda_o, lambda_x, ldx, lambda_y, ldy, lambda_z, ldz, dda_lambda;
float o_lambda = 0;
int dx, dy, dz;
int xo, yo, zo, c1 = 0;
int ocx1, ocx2, ocy1, ocy2, ocz1, ocz2;
/* clip with octree */
if (oc->branchcount == 0) return 0;
/* do this before intersect calls */
#if 0
is->facecontr = NULL; /* to check shared edge */
is->obcontr = 0;
is->faceisect = is->isect = 0; /* shared edge, quad half flag */
is->userdata = oc->userdata;
#endif
copy_v3_v3(start, is->start);
madd_v3_v3v3fl(end, is->start, is->dir, is->dist);
ldx = is->dir[0] * is->dist;
o_lambda = is->dist;
u1 = 0.0f;
u2 = 1.0f;
/* clip with octree cube */
if (cliptest(-ldx, start[0] - oc->min[0], &u1, &u2)) {
if (cliptest(ldx, oc->max[0] - start[0], &u1, &u2)) {
ldy = is->dir[1] * is->dist;
if (cliptest(-ldy, start[1] - oc->min[1], &u1, &u2)) {
if (cliptest(ldy, oc->max[1] - start[1], &u1, &u2)) {
ldz = is->dir[2] * is->dist;
if (cliptest(-ldz, start[2] - oc->min[2], &u1, &u2)) {
if (cliptest(ldz, oc->max[2] - start[2], &u1, &u2)) {
c1 = 1;
if (u2 < 1.0f) {
end[0] = start[0] + u2 * ldx;
end[1] = start[1] + u2 * ldy;
end[2] = start[2] + u2 * ldz;
}
if (u1 > 0.0f) {
start[0] += u1 * ldx;
start[1] += u1 * ldy;
start[2] += u1 * ldz;
}
}
}
}
}
}
}
if (c1 == 0) return 0;
/* reset static variables in ocread */
//ocread(oc, oc->ocres, 0, 0);
/* setup 3dda to traverse octree */
ox1 = (start[0] - oc->min[0]) * oc->ocfacx;
oy1 = (start[1] - oc->min[1]) * oc->ocfacy;
oz1 = (start[2] - oc->min[2]) * oc->ocfacz;
ox2 = (end[0] - oc->min[0]) * oc->ocfacx;
oy2 = (end[1] - oc->min[1]) * oc->ocfacy;
oz2 = (end[2] - oc->min[2]) * oc->ocfacz;
ocx1 = (int)ox1;
ocy1 = (int)oy1;
ocz1 = (int)oz1;
ocx2 = (int)ox2;
ocy2 = (int)oy2;
ocz2 = (int)oz2;
if (ocx1 == ocx2 && ocy1 == ocy2 && ocz1 == ocz2) {
no = ocread(oc, ocx1, ocy1, ocz1);
if (no) {
/* exact intersection with node */
vec1[0] = ox1; vec1[1] = oy1; vec1[2] = oz1;
vec2[0] = ox2; vec2[1] = oy2; vec2[2] = oz2;
calc_ocval_ray(&ocval, (float)ocx1, (float)ocy1, (float)ocz1, vec1, vec2);
if (testnode(oc, is, no, ocval) ) return 1;
}
}
else {
int found = 0;
//static int coh_ocx1, coh_ocx2, coh_ocy1, coh_ocy2, coh_ocz1, coh_ocz2;
float dox, doy, doz;
int eqval;
/* calc lambda en ld */
dox = ox1 - ox2;
doy = oy1 - oy2;
doz = oz1 - oz2;
if (dox < -FLT_EPSILON) {
ldx = -1.0f / dox;
lambda_x = (ocx1 - ox1 + 1.0f) * ldx;
dx = 1;
}
else if (dox > FLT_EPSILON) {
ldx = 1.0f / dox;
lambda_x = (ox1 - ocx1) * ldx;
dx = -1;
}
else {
lambda_x = 1.0f;
ldx = 0;
dx = 0;
}
if (doy < -FLT_EPSILON) {
ldy = -1.0f / doy;
lambda_y = (ocy1 - oy1 + 1.0f) * ldy;
dy = 1;
}
else if (doy > FLT_EPSILON) {
ldy = 1.0f / doy;
lambda_y = (oy1 - ocy1) * ldy;
dy = -1;
}
else {
lambda_y = 1.0f;
ldy = 0;
dy = 0;
}
if (doz < -FLT_EPSILON) {
ldz = -1.0f / doz;
lambda_z = (ocz1 - oz1 + 1.0f) * ldz;
dz = 1;
}
else if (doz > FLT_EPSILON) {
ldz = 1.0f / doz;
lambda_z = (oz1 - ocz1) * ldz;
dz = -1;
}
else {
lambda_z = 1.0f;
ldz = 0;
dz = 0;
}
xo = ocx1; yo = ocy1; zo = ocz1;
dda_lambda = min_fff(lambda_x, lambda_y, lambda_z);
vec2[0] = ox1;
vec2[1] = oy1;
vec2[2] = oz1;
/* this loop has been constructed to make sure the first and last node of ray
* are always included, even when dda_lambda==1.0f or larger */
while (TRUE) {
no = ocread(oc, xo, yo, zo);
if (no) {
/* calculate ray intersection with octree node */
copy_v3_v3(vec1, vec2);
// dox, y, z is negative
vec2[0] = ox1 - dda_lambda * dox;
vec2[1] = oy1 - dda_lambda * doy;
vec2[2] = oz1 - dda_lambda * doz;
calc_ocval_ray(&ocval, (float)xo, (float)yo, (float)zo, vec1, vec2);
//is->dist = (u1 + dda_lambda * (u2 - u1)) * o_lambda;
if (testnode(oc, is, no, ocval) )
found = 1;
if (is->dist < (u1 + dda_lambda * (u2 - u1)) * o_lambda)
return found;
}
lambda_o = dda_lambda;
/* traversing octree nodes need careful detection of smallest values, with proper
* exceptions for equal lambdas */
eqval = (lambda_x == lambda_y);
if (lambda_y == lambda_z) eqval += 2;
if (lambda_x == lambda_z) eqval += 4;
if (eqval) { // only 4 cases exist!
if (eqval == 7) { // x=y=z
xo += dx; lambda_x += ldx;
yo += dy; lambda_y += ldy;
zo += dz; lambda_z += ldz;
}
else if (eqval == 1) { // x=y
if (lambda_y < lambda_z) {
xo += dx; lambda_x += ldx;
yo += dy; lambda_y += ldy;
}
else {
zo += dz; lambda_z += ldz;
}
}
else if (eqval == 2) { // y=z
if (lambda_x < lambda_y) {
xo += dx; lambda_x += ldx;
}
else {
yo += dy; lambda_y += ldy;
zo += dz; lambda_z += ldz;
}
}
else { // x=z
if (lambda_y < lambda_x) {
yo += dy; lambda_y += ldy;
}
else {
xo += dx; lambda_x += ldx;
zo += dz; lambda_z += ldz;
}
}
}
else { // all three different, just three cases exist
eqval = (lambda_x < lambda_y);
if (lambda_y < lambda_z) eqval += 2;
if (lambda_x < lambda_z) eqval += 4;
if (eqval == 7 || eqval == 5) { // x smallest
xo += dx; lambda_x += ldx;
}
else if (eqval == 2 || eqval == 6) { // y smallest
yo += dy; lambda_y += ldy;
}
else { // z smallest
zo += dz; lambda_z += ldz;
}
}
dda_lambda = min_fff(lambda_x, lambda_y, lambda_z);
if (dda_lambda == lambda_o) break;
/* to make sure the last node is always checked */
if (lambda_o >= 1.0f) break;
}
}
/* reached end, no intersections found */
return 0;
}