This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/bvhutils.c
Germano Cavalcante b01a56ee5c Transform Snap: Optimize edge-snap using BVH tree
changes in BLI_kdopbvh:

- `BLI_bvhtree_find_nearest_to_ray` now takes is_ray_normalized and scale argument.
- `BLI_bvhtree_find_nearest_to_ray_angle` has been added (use for perspective view).

changes in BLI_bvhutils:

- `bvhtree_from_editmesh_edges_ex` was added.

changes in math_geom:

- `dist_squared_ray_to_seg_v3` was added.

other changes:

- `do_ray_start_correction` is no longer necessary to snap to verts.
- the way in which the test of depth was done before is being simulated in callbacks.
2016-06-30 17:52:03 +10:00

1321 lines
36 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Andr Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/bvhutils.c
* \ingroup bke
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BKE_DerivedMesh.h"
#include "BKE_editmesh.h"
#include "MEM_guardedalloc.h"
static ThreadRWMutex cache_rwlock = BLI_RWLOCK_INITIALIZER;
/* -------------------------------------------------------------------- */
/** \name Local Callbacks
* \{ */
/* Math stuff for ray casting on mesh faces and for nearest surface */
float bvhtree_ray_tri_intersection(
const BVHTreeRay *ray, const float UNUSED(m_dist),
const float v0[3], const float v1[3], const float v2[3])
{
float dist;
#ifdef USE_KDOPBVH_WATERTIGHT
if (isect_ray_tri_watertight_v3(ray->origin, ray->isect_precalc, v0, v1, v2, &dist, NULL))
#else
if (isect_ray_tri_epsilon_v3(ray->origin, ray->direction, v0, v1, v2, &dist, NULL, FLT_EPSILON))
#endif
{
return dist;
}
return FLT_MAX;
}
float bvhtree_sphereray_tri_intersection(
const BVHTreeRay *ray, float radius, const float m_dist,
const float v0[3], const float v1[3], const float v2[3])
{
float idist;
float p1[3];
float hit_point[3];
madd_v3_v3v3fl(p1, ray->origin, ray->direction, m_dist);
if (isect_sweeping_sphere_tri_v3(ray->origin, p1, radius, v0, v1, v2, &idist, hit_point)) {
return idist * m_dist;
}
return FLT_MAX;
}
/*
* BVH from meshes callbacks
*/
/* Callback to bvh tree nearest point. The tree must have been built using bvhtree_from_mesh_faces.
* userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */
static void mesh_faces_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata;
const MVert *vert = data->vert;
const MFace *face = data->face + index;
const float *t0, *t1, *t2, *t3;
t0 = vert[face->v1].co;
t1 = vert[face->v2].co;
t2 = vert[face->v3].co;
t3 = face->v4 ? vert[face->v4].co : NULL;
do {
float nearest_tmp[3], dist_sq;
closest_on_tri_to_point_v3(nearest_tmp, co, t0, t1, t2);
dist_sq = len_squared_v3v3(co, nearest_tmp);
if (dist_sq < nearest->dist_sq) {
nearest->index = index;
nearest->dist_sq = dist_sq;
copy_v3_v3(nearest->co, nearest_tmp);
normal_tri_v3(nearest->no, t0, t1, t2);
}
t1 = t2;
t2 = t3;
t3 = NULL;
} while (t2);
}
/* copy of function above */
static void mesh_looptri_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata;
const MVert *vert = data->vert;
const MLoopTri *lt = &data->looptri[index];
const float *vtri_co[3] = {
vert[data->loop[lt->tri[0]].v].co,
vert[data->loop[lt->tri[1]].v].co,
vert[data->loop[lt->tri[2]].v].co,
};
float nearest_tmp[3], dist_sq;
closest_on_tri_to_point_v3(nearest_tmp, co, UNPACK3(vtri_co));
dist_sq = len_squared_v3v3(co, nearest_tmp);
if (dist_sq < nearest->dist_sq) {
nearest->index = index;
nearest->dist_sq = dist_sq;
copy_v3_v3(nearest->co, nearest_tmp);
normal_tri_v3(nearest->no, UNPACK3(vtri_co));
}
}
/* copy of function above (warning, should de-duplicate with editmesh_bvh.c) */
static void editmesh_looptri_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest)
{
const BVHTreeFromEditMesh *data = userdata;
BMEditMesh *em = data->em;
const BMLoop **ltri = (const BMLoop **)em->looptris[index];
const float *t0, *t1, *t2;
t0 = ltri[0]->v->co;
t1 = ltri[1]->v->co;
t2 = ltri[2]->v->co;
{
float nearest_tmp[3], dist_sq;
closest_on_tri_to_point_v3(nearest_tmp, co, t0, t1, t2);
dist_sq = len_squared_v3v3(co, nearest_tmp);
if (dist_sq < nearest->dist_sq) {
nearest->index = index;
nearest->dist_sq = dist_sq;
copy_v3_v3(nearest->co, nearest_tmp);
normal_tri_v3(nearest->no, t0, t1, t2);
}
}
}
/* Callback to bvh tree raycast. The tree must have been built using bvhtree_from_mesh_faces.
* userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */
static void mesh_faces_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata;
const MVert *vert = data->vert;
const MFace *face = &data->face[index];
const float *t0, *t1, *t2, *t3;
t0 = vert[face->v1].co;
t1 = vert[face->v2].co;
t2 = vert[face->v3].co;
t3 = face->v4 ? vert[face->v4].co : NULL;
do {
float dist;
if (data->sphere_radius == 0.0f)
dist = bvhtree_ray_tri_intersection(ray, hit->dist, t0, t1, t2);
else
dist = bvhtree_sphereray_tri_intersection(ray, data->sphere_radius, hit->dist, t0, t1, t2);
if (dist >= 0 && dist < hit->dist) {
hit->index = index;
hit->dist = dist;
madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist);
normal_tri_v3(hit->no, t0, t1, t2);
}
t1 = t2;
t2 = t3;
t3 = NULL;
} while (t2);
}
/* copy of function above */
static void mesh_looptri_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata;
const MVert *vert = data->vert;
const MLoopTri *lt = &data->looptri[index];
const float *vtri_co[3] = {
vert[data->loop[lt->tri[0]].v].co,
vert[data->loop[lt->tri[1]].v].co,
vert[data->loop[lt->tri[2]].v].co,
};
float dist;
if (data->sphere_radius == 0.0f)
dist = bvhtree_ray_tri_intersection(ray, hit->dist, UNPACK3(vtri_co));
else
dist = bvhtree_sphereray_tri_intersection(ray, data->sphere_radius, hit->dist, UNPACK3(vtri_co));
if (dist >= 0 && dist < hit->dist) {
hit->index = index;
hit->dist = dist;
madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist);
normal_tri_v3(hit->no, UNPACK3(vtri_co));
}
}
/* copy of function above (warning, should de-duplicate with editmesh_bvh.c) */
static void editmesh_looptri_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
const BVHTreeFromEditMesh *data = (BVHTreeFromEditMesh *)userdata;
BMEditMesh *em = data->em;
const BMLoop **ltri = (const BMLoop **)em->looptris[index];
const float *t0, *t1, *t2;
t0 = ltri[0]->v->co;
t1 = ltri[1]->v->co;
t2 = ltri[2]->v->co;
{
float dist;
if (data->sphere_radius == 0.0f)
dist = bvhtree_ray_tri_intersection(ray, hit->dist, t0, t1, t2);
else
dist = bvhtree_sphereray_tri_intersection(ray, data->sphere_radius, hit->dist, t0, t1, t2);
if (dist >= 0 && dist < hit->dist) {
hit->index = index;
hit->dist = dist;
madd_v3_v3v3fl(hit->co, ray->origin, ray->direction, dist);
normal_tri_v3(hit->no, t0, t1, t2);
}
}
}
/* Callback to bvh tree nearest point. The tree must have been built using bvhtree_from_mesh_edges.
* userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */
static void mesh_edges_nearest_point(void *userdata, int index, const float co[3], BVHTreeNearest *nearest)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *) userdata;
const MVert *vert = data->vert;
const MEdge *edge = data->edge + index;
float nearest_tmp[3], dist_sq;
const float *t0, *t1;
t0 = vert[edge->v1].co;
t1 = vert[edge->v2].co;
closest_to_line_segment_v3(nearest_tmp, co, t0, t1);
dist_sq = len_squared_v3v3(nearest_tmp, co);
if (dist_sq < nearest->dist_sq) {
nearest->index = index;
nearest->dist_sq = dist_sq;
copy_v3_v3(nearest->co, nearest_tmp);
sub_v3_v3v3(nearest->no, t0, t1);
normalize_v3(nearest->no);
}
}
/* Helper, does all the point-spherecast work actually. */
static void mesh_verts_spherecast_do(
int index, const float v[3], const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
float dist;
const float *r1;
float r2[3], i1[3];
r1 = ray->origin;
add_v3_v3v3(r2, r1, ray->direction);
closest_to_line_segment_v3(i1, v, r1, r2);
/* No hit if closest point is 'behind' the origin of the ray, or too far away from it. */
if ((dot_v3v3v3(r1, i1, r2) >= 0.0f) && ((dist = len_v3v3(r1, i1)) < hit->dist)) {
hit->index = index;
hit->dist = dist;
copy_v3_v3(hit->co, i1);
}
}
static void editmesh_verts_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
const BVHTreeFromEditMesh *data = userdata;
BMVert *eve = BM_vert_at_index(data->em->bm, index);
mesh_verts_spherecast_do(index, eve->co, ray, hit);
}
/* Callback to bvh tree raycast. The tree must have been built using bvhtree_from_mesh_verts.
* userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */
static void mesh_verts_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const float *v = data->vert[index].co;
mesh_verts_spherecast_do(index, v, ray, hit);
}
/* Callback to bvh tree raycast. The tree must have been built using bvhtree_from_mesh_edges.
* userdata must be a BVHMeshCallbackUserdata built from the same mesh as the tree. */
static void mesh_edges_spherecast(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit)
{
const BVHTreeFromMesh *data = (BVHTreeFromMesh *)userdata;
const MVert *vert = data->vert;
const MEdge *edge = &data->edge[index];
const float radius_sq = SQUARE(data->sphere_radius);
float dist;
const float *v1, *v2, *r1;
float r2[3], i1[3], i2[3];
v1 = vert[edge->v1].co;
v2 = vert[edge->v2].co;
/* In case we get a zero-length edge, handle it as a point! */
if (equals_v3v3(v1, v2)) {
mesh_verts_spherecast_do(index, v1, ray, hit);
return;
}
r1 = ray->origin;
add_v3_v3v3(r2, r1, ray->direction);
if (isect_line_line_v3(v1, v2, r1, r2, i1, i2)) {
/* No hit if intersection point is 'behind' the origin of the ray, or too far away from it. */
if ((dot_v3v3v3(r1, i2, r2) >= 0.0f) && ((dist = len_v3v3(r1, i2)) < hit->dist)) {
const float e_fac = line_point_factor_v3(i1, v1, v2);
if (e_fac < 0.0f) {
copy_v3_v3(i1, v1);
}
else if (e_fac > 1.0f) {
copy_v3_v3(i1, v2);
}
/* Ensure ray is really close enough from edge! */
if (len_squared_v3v3(i1, i2) <= radius_sq) {
hit->index = index;
hit->dist = dist;
copy_v3_v3(hit->co, i2);
}
}
}
}
/** \} */
/*
* BVH builders
*/
/* -------------------------------------------------------------------- */
/** \name Vertex Builder
* \{ */
static BVHTree *bvhtree_from_editmesh_verts_create_tree(
float epsilon, int tree_type, int axis,
BMEditMesh *em, const int verts_num,
const BLI_bitmap *verts_mask, int verts_num_active)
{
BVHTree *tree = NULL;
int i;
BM_mesh_elem_table_ensure(em->bm, BM_VERT);
if (verts_mask) {
BLI_assert(IN_RANGE_INCL(verts_num_active, 0, verts_num));
}
else {
verts_num_active = verts_num;
}
tree = BLI_bvhtree_new(verts_num_active, epsilon, tree_type, axis);
if (tree) {
BMIter iter;
BMVert *eve;
BM_ITER_MESH_INDEX (eve, &iter, em->bm, BM_VERTS_OF_MESH, i) {
if (verts_mask && !BLI_BITMAP_TEST_BOOL(verts_mask, i)) {
continue;
}
BLI_bvhtree_insert(tree, i, eve->co, 1);
}
BLI_assert(BLI_bvhtree_get_size(tree) == verts_num_active);
BLI_bvhtree_balance(tree);
}
return tree;
}
static BVHTree *bvhtree_from_mesh_verts_create_tree(
float epsilon, int tree_type, int axis,
MVert *vert, const int verts_num,
const BLI_bitmap *verts_mask, int verts_num_active)
{
BVHTree *tree = NULL;
int i;
if (vert) {
if (verts_mask) {
BLI_assert(IN_RANGE_INCL(verts_num_active, 0, verts_num));
}
else {
verts_num_active = verts_num;
}
tree = BLI_bvhtree_new(verts_num_active, epsilon, tree_type, axis);
if (tree) {
for (i = 0; i < verts_num; i++) {
if (verts_mask && !BLI_BITMAP_TEST_BOOL(verts_mask, i)) {
continue;
}
BLI_bvhtree_insert(tree, i, vert[i].co, 1);
}
BLI_assert(BLI_bvhtree_get_size(tree) == verts_num_active);
BLI_bvhtree_balance(tree);
}
}
return tree;
}
static void bvhtree_from_mesh_verts_setup_data(
BVHTreeFromMesh *data, BVHTree *tree, const bool is_cached, float epsilon,
MVert *vert, const bool vert_allocated)
{
memset(data, 0, sizeof(*data));
if (tree) {
data->tree = tree;
data->cached = is_cached;
/* a NULL nearest callback works fine
* remember the min distance to point is the same as the min distance to BV of point */
data->nearest_callback = NULL;
data->raycast_callback = mesh_verts_spherecast;
data->nearest_to_ray_callback = NULL;
data->vert = vert;
data->vert_allocated = vert_allocated;
//data->face = DM_get_tessface_array(dm, &data->face_allocated); /* XXX WHY???? */
data->sphere_radius = epsilon;
}
else {
if (vert_allocated) {
MEM_freeN(vert);
}
}
}
/* Builds a bvh tree where nodes are the vertices of the given em */
BVHTree *bvhtree_from_editmesh_verts_ex(
BVHTreeFromEditMesh *data, BMEditMesh *em,
const BLI_bitmap *verts_mask, int verts_num_active,
float epsilon, int tree_type, int axis)
{
int vert_num = em->bm->totvert;
BVHTree *tree = bvhtree_from_editmesh_verts_create_tree(
epsilon, tree_type, axis,
em, vert_num, verts_mask, verts_num_active);
if (tree) {
memset(data, 0, sizeof(*data));
data->tree = tree;
data->em = em;
data->nearest_callback = NULL;
data->raycast_callback = editmesh_verts_spherecast;
data->nearest_to_ray_callback = NULL;
}
return tree;
}
BVHTree *bvhtree_from_editmesh_verts(
BVHTreeFromEditMesh *data, BMEditMesh *em,
float epsilon, int tree_type, int axis)
{
return bvhtree_from_editmesh_verts_ex(
data, em,
NULL, -1,
epsilon, tree_type, axis);
}
/* Builds a bvh tree where nodes are the vertices of the given dm */
BVHTree *bvhtree_from_mesh_verts(
BVHTreeFromMesh *data, DerivedMesh *dm,
float epsilon, int tree_type, int axis)
{
BVHTree *tree;
MVert *vert;
bool vert_allocated;
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_VERTS);
BLI_rw_mutex_unlock(&cache_rwlock);
vert = DM_get_vert_array(dm, &vert_allocated);
/* Not in cache */
if (tree == NULL) {
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_VERTS);
if (tree == NULL) {
int vert_num = dm->getNumVerts(dm);
BLI_assert(vert_num != 0);
tree = bvhtree_from_mesh_verts_create_tree(
epsilon, tree_type, axis,
vert, vert_num, NULL, -1);
if (tree) {
/* Save on cache for later use */
/* printf("BVHTree built and saved on cache\n"); */
bvhcache_insert(&dm->bvhCache, tree, BVHTREE_FROM_VERTS);
}
}
BLI_rw_mutex_unlock(&cache_rwlock);
}
else {
/* printf("BVHTree is already build, using cached tree\n"); */
}
/* Setup BVHTreeFromMesh */
bvhtree_from_mesh_verts_setup_data(data, tree, true, epsilon, vert, vert_allocated);
return data->tree;
}
/**
* Builds a bvh tree where nodes are the given vertices (note: does not copy given mverts!).
* \param vert_allocated if true, vert freeing will be done when freeing data.
* \param verts_mask if not null, true elements give which vert to add to BVH tree.
* \param verts_num_active if >= 0, number of active verts to add to BVH tree (else will be computed from mask).
*/
BVHTree *bvhtree_from_mesh_verts_ex(
BVHTreeFromMesh *data, MVert *vert, const int verts_num, const bool vert_allocated,
const BLI_bitmap *verts_mask, int verts_num_active,
float epsilon, int tree_type, int axis)
{
BVHTree *tree = bvhtree_from_mesh_verts_create_tree(
epsilon, tree_type, axis, vert, verts_num, verts_mask, verts_num_active);
/* Setup BVHTreeFromMesh */
bvhtree_from_mesh_verts_setup_data(data, tree, false, epsilon, vert, vert_allocated);
return data->tree;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Edge Builder
* \{ */
static BVHTree *bvhtree_from_editmesh_edges_create_tree(
float epsilon, int tree_type, int axis,
BMEditMesh *em, const int edges_num,
const BLI_bitmap *edges_mask, int edges_num_active)
{
BVHTree *tree = NULL;
int i;
BM_mesh_elem_table_ensure(em->bm, BM_EDGE);
if (edges_mask) {
BLI_assert(IN_RANGE_INCL(edges_num_active, 0, edges_num));
}
else {
edges_num_active = edges_num;
}
tree = BLI_bvhtree_new(edges_num_active, epsilon, tree_type, axis);
if (tree) {
BMIter iter;
BMEdge *eed;
BM_ITER_MESH_INDEX (eed, &iter, em->bm, BM_EDGES_OF_MESH, i) {
if (edges_mask && !BLI_BITMAP_TEST_BOOL(edges_mask, i)) {
continue;
}
float co[2][3];
copy_v3_v3(co[0], eed->v1->co);
copy_v3_v3(co[1], eed->v2->co);
BLI_bvhtree_insert(tree, i, co[0], 2);
}
BLI_assert(BLI_bvhtree_get_size(tree) == edges_num_active);
BLI_bvhtree_balance(tree);
}
return tree;
}
/* Builds a bvh tree where nodes are the edges of the given em */
BVHTree *bvhtree_from_editmesh_edges_ex(
BVHTreeFromEditMesh *data, BMEditMesh *em,
const BLI_bitmap *edges_mask, int edges_num_active,
float epsilon, int tree_type, int axis)
{
int edge_num = em->bm->totedge;
BVHTree *tree = bvhtree_from_editmesh_edges_create_tree(
epsilon, tree_type, axis,
em, edge_num, edges_mask, edges_num_active);
if (tree) {
memset(data, 0, sizeof(*data));
data->tree = tree;
data->em = em;
data->nearest_callback = NULL; /* TODO */
data->raycast_callback = NULL; /* TODO */
/* TODO: not urgent however since users currently define own callbacks */
data->nearest_to_ray_callback = NULL;
}
return tree;
}
BVHTree *bvhtree_from_editmesh_edges(
BVHTreeFromEditMesh *data, BMEditMesh *em,
float epsilon, int tree_type, int axis)
{
return bvhtree_from_editmesh_edges_ex(
data, em,
NULL, -1,
epsilon, tree_type, axis);
}
/* Builds a bvh tree where nodes are the edges of the given dm */
BVHTree *bvhtree_from_mesh_edges(
BVHTreeFromMesh *data, DerivedMesh *dm,
float epsilon, int tree_type, int axis)
{
BVHTree *tree;
MVert *vert;
MEdge *edge;
bool vert_allocated, edge_allocated;
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_EDGES);
BLI_rw_mutex_unlock(&cache_rwlock);
vert = DM_get_vert_array(dm, &vert_allocated);
edge = DM_get_edge_array(dm, &edge_allocated);
/* Not in cache */
if (tree == NULL) {
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_EDGES);
if (tree == NULL) {
int i;
int numEdges = dm->getNumEdges(dm);
if (vert != NULL && edge != NULL) {
/* Create a bvh-tree of the given target */
tree = BLI_bvhtree_new(numEdges, epsilon, tree_type, axis);
if (tree != NULL) {
for (i = 0; i < numEdges; i++) {
float co[2][3];
copy_v3_v3(co[0], vert[edge[i].v1].co);
copy_v3_v3(co[1], vert[edge[i].v2].co);
BLI_bvhtree_insert(tree, i, co[0], 2);
}
BLI_bvhtree_balance(tree);
/* Save on cache for later use */
/* printf("BVHTree built and saved on cache\n"); */
bvhcache_insert(&dm->bvhCache, tree, BVHTREE_FROM_EDGES);
}
}
}
BLI_rw_mutex_unlock(&cache_rwlock);
}
else {
/* printf("BVHTree is already build, using cached tree\n"); */
}
/* Setup BVHTreeFromMesh */
memset(data, 0, sizeof(*data));
data->tree = tree;
if (data->tree) {
data->cached = true;
data->nearest_callback = mesh_edges_nearest_point;
data->raycast_callback = mesh_edges_spherecast;
data->nearest_to_ray_callback = NULL;
data->vert = vert;
data->vert_allocated = vert_allocated;
data->edge = edge;
data->edge_allocated = edge_allocated;
data->sphere_radius = epsilon;
}
else {
if (vert_allocated) {
MEM_freeN(vert);
}
if (edge_allocated) {
MEM_freeN(edge);
}
}
return data->tree;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Tessellated Face Builder
* \{ */
static BVHTree *bvhtree_from_mesh_faces_create_tree(
float epsilon, int tree_type, int axis,
MVert *vert, MFace *face, const int faces_num,
const BLI_bitmap *faces_mask, int faces_num_active)
{
BVHTree *tree = NULL;
int i;
if (faces_num) {
if (faces_mask) {
BLI_assert(IN_RANGE_INCL(faces_num_active, 0, faces_num));
}
else {
faces_num_active = faces_num;
}
/* Create a bvh-tree of the given target */
/* printf("%s: building BVH, total=%d\n", __func__, numFaces); */
tree = BLI_bvhtree_new(faces_num_active, epsilon, tree_type, axis);
if (tree) {
if (vert && face) {
for (i = 0; i < faces_num; i++) {
float co[4][3];
if (faces_mask && !BLI_BITMAP_TEST_BOOL(faces_mask, i)) {
continue;
}
copy_v3_v3(co[0], vert[face[i].v1].co);
copy_v3_v3(co[1], vert[face[i].v2].co);
copy_v3_v3(co[2], vert[face[i].v3].co);
if (face[i].v4)
copy_v3_v3(co[3], vert[face[i].v4].co);
BLI_bvhtree_insert(tree, i, co[0], face[i].v4 ? 4 : 3);
}
}
BLI_assert(BLI_bvhtree_get_size(tree) == faces_num_active);
BLI_bvhtree_balance(tree);
}
}
return tree;
}
static void bvhtree_from_mesh_faces_setup_data(
BVHTreeFromMesh *data, BVHTree *tree, const bool is_cached, float epsilon,
MVert *vert, const bool vert_allocated,
MFace *face, const bool face_allocated)
{
memset(data, 0, sizeof(*data));
if (tree) {
data->tree = tree;
data->cached = is_cached;
data->nearest_callback = mesh_faces_nearest_point;
data->raycast_callback = mesh_faces_spherecast;
data->nearest_to_ray_callback = NULL;
data->vert = vert;
data->vert_allocated = vert_allocated;
data->face = face;
data->face_allocated = face_allocated;
data->sphere_radius = epsilon;
}
else {
if (vert_allocated) {
MEM_freeN(vert);
}
if (face_allocated) {
MEM_freeN(face);
}
}
}
/* Builds a bvh tree where nodes are the tesselated faces of the given dm */
BVHTree *bvhtree_from_mesh_faces(
BVHTreeFromMesh *data, DerivedMesh *dm,
float epsilon, int tree_type, int axis)
{
BVHTree *tree;
MVert *vert = NULL;
MFace *face = NULL;
bool vert_allocated = false, face_allocated = false;
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_FACES);
BLI_rw_mutex_unlock(&cache_rwlock);
vert = DM_get_vert_array(dm, &vert_allocated);
face = DM_get_tessface_array(dm, &face_allocated);
/* Not in cache */
if (tree == NULL) {
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_FACES);
if (tree == NULL) {
int numFaces = dm->getNumTessFaces(dm);
BLI_assert(!(numFaces == 0 && dm->getNumPolys(dm) != 0));
tree = bvhtree_from_mesh_faces_create_tree(
epsilon, tree_type, axis,
vert, face, numFaces, NULL, -1);
if (tree) {
/* Save on cache for later use */
/* printf("BVHTree built and saved on cache\n"); */
bvhcache_insert(&dm->bvhCache, tree, BVHTREE_FROM_FACES);
}
}
BLI_rw_mutex_unlock(&cache_rwlock);
}
else {
/* printf("BVHTree is already build, using cached tree\n"); */
}
/* Setup BVHTreeFromMesh */
bvhtree_from_mesh_faces_setup_data(data, tree, true, epsilon, vert, vert_allocated, face, face_allocated);
return data->tree;
}
/**
* Builds a bvh tree where nodes are the given tessellated faces (note: does not copy given mfaces!).
* \param vert_allocated if true, vert freeing will be done when freeing data.
* \param face_allocated if true, face freeing will be done when freeing data.
* \param faces_mask: if not null, true elements give which faces to add to BVH tree.
* \param numFaces_active if >= 0, number of active faces to add to BVH tree (else will be computed from mask).
*/
BVHTree *bvhtree_from_mesh_faces_ex(
BVHTreeFromMesh *data, MVert *vert, const bool vert_allocated,
MFace *face, const int numFaces, const bool face_allocated,
const BLI_bitmap *faces_mask, int faces_num_active,
float epsilon, int tree_type, int axis)
{
BVHTree *tree = bvhtree_from_mesh_faces_create_tree(
epsilon, tree_type, axis,
vert, face, numFaces,
faces_mask, faces_num_active);
/* Setup BVHTreeFromMesh */
bvhtree_from_mesh_faces_setup_data(data, tree, false, epsilon, vert, vert_allocated, face, face_allocated);
return data->tree;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name LoopTri Face Builder
* \{ */
static BVHTree *bvhtree_from_editmesh_looptri_create_tree(
float epsilon, int tree_type, int axis,
BMEditMesh *em, const int looptri_num,
const BLI_bitmap *looptri_mask, int looptri_num_active)
{
BVHTree *tree = NULL;
int i;
if (looptri_num) {
if (looptri_mask) {
BLI_assert(IN_RANGE_INCL(looptri_num_active, 0, looptri_num));
}
else {
looptri_num_active = looptri_num;
}
/* Create a bvh-tree of the given target */
/* printf("%s: building BVH, total=%d\n", __func__, numFaces); */
tree = BLI_bvhtree_new(looptri_num_active, epsilon, tree_type, axis);
if (tree) {
if (em) {
const struct BMLoop *(*looptris)[3] = (void *)em->looptris;
/* Insert BMesh-tessellation triangles into the bvh tree, unless they are hidden
* and/or selected. Even if the faces themselves are not selected for the snapped
* transform, having a vertex selected means the face (and thus it's tessellated
* triangles) will be moving and will not be a good snap targets. */
for (i = 0; i < looptri_num; i++) {
const BMLoop **ltri = looptris[i];
bool insert = looptri_mask ? BLI_BITMAP_TEST_BOOL(looptri_mask, i) : true;
if (insert) {
/* No reason found to block hit-testing the triangle for snap, so insert it now.*/
float co[3][3];
copy_v3_v3(co[0], ltri[0]->v->co);
copy_v3_v3(co[1], ltri[1]->v->co);
copy_v3_v3(co[2], ltri[2]->v->co);
BLI_bvhtree_insert(tree, i, co[0], 3);
}
}
}
BLI_assert(BLI_bvhtree_get_size(tree) == looptri_num_active);
BLI_bvhtree_balance(tree);
}
}
return tree;
}
static BVHTree *bvhtree_from_mesh_looptri_create_tree(
float epsilon, int tree_type, int axis,
const MVert *vert, const MLoop *mloop, const MLoopTri *looptri, const int looptri_num,
const BLI_bitmap *looptri_mask, int looptri_num_active)
{
BVHTree *tree = NULL;
int i;
if (looptri_num) {
if (looptri_mask) {
BLI_assert(IN_RANGE_INCL(looptri_num_active, 0, looptri_num));
}
else {
looptri_num_active = looptri_num;
}
/* Create a bvh-tree of the given target */
/* printf("%s: building BVH, total=%d\n", __func__, numFaces); */
tree = BLI_bvhtree_new(looptri_num_active, epsilon, tree_type, axis);
if (tree) {
if (vert && looptri) {
for (i = 0; i < looptri_num; i++) {
float co[3][3];
if (looptri_mask && !BLI_BITMAP_TEST_BOOL(looptri_mask, i)) {
continue;
}
copy_v3_v3(co[0], vert[mloop[looptri[i].tri[0]].v].co);
copy_v3_v3(co[1], vert[mloop[looptri[i].tri[1]].v].co);
copy_v3_v3(co[2], vert[mloop[looptri[i].tri[2]].v].co);
BLI_bvhtree_insert(tree, i, co[0], 3);
}
}
BLI_assert(BLI_bvhtree_get_size(tree) == looptri_num_active);
BLI_bvhtree_balance(tree);
}
}
return tree;
}
static void bvhtree_from_mesh_looptri_setup_data(
BVHTreeFromMesh *data, BVHTree *tree, const bool is_cached, float epsilon,
const MVert *vert, const bool vert_allocated,
const MLoop *mloop, const bool loop_allocated,
const MLoopTri *looptri, const bool looptri_allocated)
{
memset(data, 0, sizeof(*data));
if (tree) {
data->tree = tree;
data->cached = is_cached;
data->nearest_callback = mesh_looptri_nearest_point;
data->raycast_callback = mesh_looptri_spherecast;
data->nearest_to_ray_callback = NULL;
data->vert = vert;
data->vert_allocated = vert_allocated;
data->loop = mloop;
data->loop_allocated = loop_allocated;
data->looptri = looptri;
data->looptri_allocated = looptri_allocated;
data->sphere_radius = epsilon;
}
else {
if (vert_allocated) {
MEM_freeN((void *)vert);
}
if (loop_allocated) {
MEM_freeN((void *)mloop);
}
if (looptri_allocated) {
MEM_freeN((void *)looptri);
}
}
}
/**
* Builds a bvh tree where nodes are the looptri faces of the given bm
*/
BVHTree *bvhtree_from_editmesh_looptri_ex(
BVHTreeFromEditMesh *data, BMEditMesh *em,
const BLI_bitmap *looptri_mask, int looptri_num_active,
float epsilon, int tree_type, int axis, BVHCache **bvhCache)
{
/* BMESH specific check that we have tessfaces,
* we _could_ tessellate here but rather not - campbell */
BVHTree *tree;
if (bvhCache) {
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ);
tree = bvhcache_find(*bvhCache, BVHTREE_FROM_EM_LOOPTRI);
BLI_rw_mutex_unlock(&cache_rwlock);
if (tree == NULL) {
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE);
tree = bvhcache_find(*bvhCache, BVHTREE_FROM_EM_LOOPTRI);
if (tree == NULL) {
tree = bvhtree_from_editmesh_looptri_create_tree(
epsilon, tree_type, axis,
em, em->tottri, looptri_mask, looptri_num_active);
if (tree) {
/* Save on cache for later use */
/* printf("BVHTree built and saved on cache\n"); */
bvhcache_insert(bvhCache, tree, BVHTREE_FROM_EM_LOOPTRI);
}
}
BLI_rw_mutex_unlock(&cache_rwlock);
}
}
else {
tree = bvhtree_from_editmesh_looptri_create_tree(
epsilon, tree_type, axis,
em, em->tottri, looptri_mask, looptri_num_active);
}
if (tree) {
data->tree = tree;
data->nearest_callback = editmesh_looptri_nearest_point;
data->raycast_callback = editmesh_looptri_spherecast;
data->nearest_to_ray_callback = NULL;
data->sphere_radius = 0.0f;
data->em = em;
data->cached = bvhCache != NULL;
}
return tree;
}
BVHTree *bvhtree_from_editmesh_looptri(
BVHTreeFromEditMesh *data, BMEditMesh *em,
float epsilon, int tree_type, int axis, BVHCache **bvhCache)
{
return bvhtree_from_editmesh_looptri_ex(
data, em, NULL, -1,
epsilon, tree_type, axis, bvhCache);
}
/**
* Builds a bvh tree where nodes are the looptri faces of the given dm
*
* \note for editmesh this is currently a duplicate of bvhtree_from_mesh_faces
*/
BVHTree *bvhtree_from_mesh_looptri(
BVHTreeFromMesh *data, DerivedMesh *dm,
float epsilon, int tree_type, int axis)
{
BVHTree *tree;
MVert *mvert = NULL;
MLoop *mloop = NULL;
const MLoopTri *looptri = NULL;
bool vert_allocated = false;
bool loop_allocated = false;
bool looptri_allocated = false;
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_READ);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_LOOPTRI);
BLI_rw_mutex_unlock(&cache_rwlock);
MPoly *mpoly;
bool poly_allocated = false;
mvert = DM_get_vert_array(dm, &vert_allocated);
mpoly = DM_get_poly_array(dm, &poly_allocated);
mloop = DM_get_loop_array(dm, &loop_allocated);
looptri = DM_get_looptri_array(
dm,
mvert,
mpoly, dm->getNumPolys(dm),
mloop, dm->getNumLoops(dm),
&looptri_allocated);
if (poly_allocated) {
MEM_freeN(mpoly);
}
/* Not in cache */
if (tree == NULL) {
BLI_rw_mutex_lock(&cache_rwlock, THREAD_LOCK_WRITE);
tree = bvhcache_find(dm->bvhCache, BVHTREE_FROM_LOOPTRI);
if (tree == NULL) {
int looptri_num = dm->getNumLoopTri(dm);
/* this assert checks we have looptris,
* if not caller should use DM_ensure_looptri() */
BLI_assert(!(looptri_num == 0 && dm->getNumPolys(dm) != 0));
tree = bvhtree_from_mesh_looptri_create_tree(
epsilon, tree_type, axis,
mvert, mloop, looptri, looptri_num, NULL, -1);
if (tree) {
/* Save on cache for later use */
/* printf("BVHTree built and saved on cache\n"); */
bvhcache_insert(&dm->bvhCache, tree, BVHTREE_FROM_LOOPTRI);
}
}
BLI_rw_mutex_unlock(&cache_rwlock);
}
else {
/* printf("BVHTree is already build, using cached tree\n"); */
}
/* Setup BVHTreeFromMesh */
bvhtree_from_mesh_looptri_setup_data(
data, tree, true, epsilon,
mvert, vert_allocated,
mloop, loop_allocated,
looptri, looptri_allocated);
return data->tree;
}
BVHTree *bvhtree_from_mesh_looptri_ex(
BVHTreeFromMesh *data,
const struct MVert *vert, const bool vert_allocated,
const struct MLoop *mloop, const bool loop_allocated,
const struct MLoopTri *looptri, const int looptri_num, const bool looptri_allocated,
const BLI_bitmap *looptri_mask, int looptri_num_active,
float epsilon, int tree_type, int axis)
{
BVHTree *tree = bvhtree_from_mesh_looptri_create_tree(
epsilon, tree_type, axis,
vert, mloop, looptri, looptri_num,
looptri_mask, looptri_num_active);
/* Setup BVHTreeFromMesh */
bvhtree_from_mesh_looptri_setup_data(
data, tree, false, epsilon,
vert, vert_allocated,
mloop, loop_allocated,
looptri, looptri_allocated);
return data->tree;
}
/** \} */
/* Frees data allocated by a call to bvhtree_from_editmesh_*. */
void free_bvhtree_from_editmesh(struct BVHTreeFromEditMesh *data)
{
if (data->tree) {
if (!data->cached) {
BLI_bvhtree_free(data->tree);
}
memset(data, 0, sizeof(*data));
}
}
/* Frees data allocated by a call to bvhtree_from_mesh_*. */
void free_bvhtree_from_mesh(struct BVHTreeFromMesh *data)
{
if (data->tree) {
if (!data->cached) {
BLI_bvhtree_free(data->tree);
}
if (data->vert_allocated) {
MEM_freeN((void *)data->vert);
}
if (data->edge_allocated) {
MEM_freeN((void *)data->edge);
}
if (data->face_allocated) {
MEM_freeN((void *)data->face);
}
if (data->loop_allocated) {
MEM_freeN((void *)data->loop);
}
if (data->looptri_allocated) {
MEM_freeN((void *)data->looptri);
}
memset(data, 0, sizeof(*data));
}
}
/* -------------------------------------------------------------------- */
/** \name BVHCache
* \{ */
typedef struct BVHCacheItem {
int type;
BVHTree *tree;
} BVHCacheItem;
/**
* Queries a bvhcache for the cache bvhtree of the request type
*/
BVHTree *bvhcache_find(BVHCache *cache, int type)
{
while (cache) {
const BVHCacheItem *item = cache->link;
if (item->type == type) {
return item->tree;
}
cache = cache->next;
}
return NULL;
}
bool bvhcache_has_tree(const BVHCache *cache, const BVHTree *tree)
{
while (cache) {
const BVHCacheItem *item = cache->link;
if (item->tree == tree) {
return true;
}
cache = cache->next;
}
return false;
}
/**
* Inserts a BVHTree of the given type under the cache
* After that the caller no longer needs to worry when to free the BVHTree
* as that will be done when the cache is freed.
*
* A call to this assumes that there was no previous cached tree of the given type
*/
void bvhcache_insert(BVHCache **cache_p, BVHTree *tree, int type)
{
BVHCacheItem *item = NULL;
assert(tree != NULL);
assert(bvhcache_find(*cache_p, type) == NULL);
item = MEM_mallocN(sizeof(BVHCacheItem), "BVHCacheItem");
assert(item != NULL);
item->type = type;
item->tree = tree;
BLI_linklist_prepend(cache_p, item);
}
/**
* inits and frees a bvhcache
*/
void bvhcache_init(BVHCache **cache_p)
{
*cache_p = NULL;
}
static void bvhcacheitem_free(void *_item)
{
BVHCacheItem *item = (BVHCacheItem *)_item;
BLI_bvhtree_free(item->tree);
MEM_freeN(item);
}
void bvhcache_free(BVHCache **cache_p)
{
BLI_linklist_free(*cache_p, (LinkNodeFreeFP)bvhcacheitem_free);
*cache_p = NULL;
}
/** \} */