This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/device/gpu/parallel_active_index.h
Xavier Hallade a02992f131 Cycles: Add support for rendering on Intel GPUs using oneAPI
This patch adds a new Cycles device with similar functionality to the
existing GPU devices.  Kernel compilation and runtime interaction happen
via oneAPI DPC++ compiler and SYCL API.

This implementation is primarly focusing on Intel® Arc™ GPUs and other
future Intel GPUs.  The first supported drivers are 101.1660 on Windows
and 22.10.22597 on Linux.

The necessary tools for compilation are:
- A SYCL compiler such as oneAPI DPC++ compiler or
  https://github.com/intel/llvm
- Intel® oneAPI Level Zero which is used for low level device queries:
  https://github.com/oneapi-src/level-zero
- To optionally generate prebuilt graphics binaries: Intel® Graphics
  Compiler All are included in Linux precompiled libraries on svn:
  https://svn.blender.org/svnroot/bf-blender/trunk/lib The same goes for
  Windows precompiled binaries but for the graphics compiler, available
  as "Intel® Graphics Offline Compiler for OpenCL™ Code" from
  https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html,
  for which path can be set as OCLOC_INSTALL_DIR.

Being based on the open SYCL standard, this implementation could also be
extended to run on other compatible non-Intel hardware in the future.

Reviewed By: sergey, brecht

Differential Revision: https://developer.blender.org/D15254

Co-authored-by: Nikita Sirgienko <nikita.sirgienko@intel.com>
Co-authored-by: Stefan Werner <stefan.werner@intel.com>
2022-06-29 12:58:04 +02:00

206 lines
8.1 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2021-2022 Blender Foundation */
#pragma once
CCL_NAMESPACE_BEGIN
/* Given an array of states, build an array of indices for which the states
* are active.
*
* Shared memory requirement is `sizeof(int) * (number_of_warps + 1)`. */
#include "util/atomic.h"
#ifdef __HIP__
# define GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE 1024
#else
# define GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE 512
#endif
/* TODO: abstract more device differences, define ccl_gpu_local_syncthreads,
* ccl_gpu_thread_warp, ccl_gpu_warp_index, ccl_gpu_num_warps for all devices
* and keep device specific code in compat.h */
#ifdef __KERNEL_ONEAPI__
# ifdef WITH_ONEAPI_SYCL_HOST_ENABLED
template<typename IsActiveOp>
void cpu_serial_active_index_array_impl(const uint num_states,
ccl_global int *ccl_restrict indices,
ccl_global int *ccl_restrict num_indices,
IsActiveOp is_active_op)
{
int write_index = 0;
for (int state_index = 0; state_index < num_states; state_index++) {
if (is_active_op(state_index))
indices[write_index++] = state_index;
}
*num_indices = write_index;
return;
}
# endif /* WITH_ONEAPI_SYCL_HOST_ENABLED */
template<typename IsActiveOp>
void gpu_parallel_active_index_array_impl(const uint num_states,
ccl_global int *ccl_restrict indices,
ccl_global int *ccl_restrict num_indices,
IsActiveOp is_active_op)
{
const sycl::nd_item<1> &item_id = sycl::ext::oneapi::experimental::this_nd_item<1>();
const uint blocksize = item_id.get_local_range(0);
sycl::multi_ptr<int[GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE + 1],
sycl::access::address_space::local_space>
ptr = sycl::ext::oneapi::group_local_memory<
int[GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE + 1]>(item_id.get_group());
int *warp_offset = *ptr;
/* NOTE(@nsirgien): Here we calculate the same value as below but
* faster for DPC++ : seems CUDA converting "%", "/", "*" based calculations below into
* something faster already but DPC++ doesn't, so it's better to use
* direct request of needed parameters - switching from this computation to computation below
* will cause 2.5x performance slowdown. */
const uint thread_index = item_id.get_local_id(0);
const uint thread_warp = item_id.get_sub_group().get_local_id();
const uint warp_index = item_id.get_sub_group().get_group_id();
const uint num_warps = item_id.get_sub_group().get_group_range()[0];
const uint state_index = item_id.get_global_id(0);
/* Test if state corresponding to this thread is active. */
const uint is_active = (state_index < num_states) ? is_active_op(state_index) : 0;
#else /* !__KERNEL__ONEAPI__ */
# ifndef __KERNEL_METAL__
template<uint blocksize, typename IsActiveOp>
__device__
# endif
void
gpu_parallel_active_index_array_impl(const uint num_states,
ccl_global int *indices,
ccl_global int *num_indices,
# ifdef __KERNEL_METAL__
const uint is_active,
const uint blocksize,
const int thread_index,
const uint state_index,
const int ccl_gpu_warp_size,
const int thread_warp,
const int warp_index,
const int num_warps,
threadgroup int *warp_offset)
{
# else
IsActiveOp is_active_op)
{
extern ccl_gpu_shared int warp_offset[];
const uint thread_index = ccl_gpu_thread_idx_x;
const uint thread_warp = thread_index % ccl_gpu_warp_size;
const uint warp_index = thread_index / ccl_gpu_warp_size;
const uint num_warps = blocksize / ccl_gpu_warp_size;
const uint state_index = ccl_gpu_block_idx_x * blocksize + thread_index;
/* Test if state corresponding to this thread is active. */
const uint is_active = (state_index < num_states) ? is_active_op(state_index) : 0;
# endif
#endif /* !__KERNEL_ONEAPI__ */
/* For each thread within a warp compute how many other active states precede it. */
#ifdef __KERNEL_ONEAPI__
const uint thread_offset = sycl::exclusive_scan_over_group(
item_id.get_sub_group(), is_active, std::plus<>());
#else
const uint thread_offset = popcount(ccl_gpu_ballot(is_active) &
ccl_gpu_thread_mask(thread_warp));
#endif
/* Last thread in warp stores number of active states for each warp. */
#ifdef __KERNEL_ONEAPI__
if (thread_warp == item_id.get_sub_group().get_local_range()[0] - 1) {
#else
if (thread_warp == ccl_gpu_warp_size - 1) {
#endif
warp_offset[warp_index] = thread_offset + is_active;
}
#ifdef __KERNEL_ONEAPI__
/* NOTE(@nsirgien): For us here only local memory writing (warp_offset) is important,
* so faster local barriers can be used. */
ccl_gpu_local_syncthreads();
#else
ccl_gpu_syncthreads();
#endif
/* Last thread in block converts per-warp sizes to offsets, increments global size of
* index array and gets offset to write to. */
if (thread_index == blocksize - 1) {
/* TODO: parallelize this. */
int offset = 0;
for (int i = 0; i < num_warps; i++) {
int num_active = warp_offset[i];
warp_offset[i] = offset;
offset += num_active;
}
const uint block_num_active = warp_offset[warp_index] + thread_offset + is_active;
warp_offset[num_warps] = atomic_fetch_and_add_uint32(num_indices, block_num_active);
}
#ifdef __KERNEL_ONEAPI__
/* NOTE(@nsirgien): For us here only important local memory writing (warp_offset),
* so faster local barriers can be used. */
ccl_gpu_local_syncthreads();
#else
ccl_gpu_syncthreads();
#endif
/* Write to index array. */
if (is_active) {
const uint block_offset = warp_offset[num_warps];
indices[block_offset + warp_offset[warp_index] + thread_offset] = state_index;
}
}
#ifdef __KERNEL_METAL__
# define gpu_parallel_active_index_array(dummy, num_states, indices, num_indices, is_active_op) \
const uint is_active = (ccl_gpu_global_id_x() < num_states) ? \
is_active_op(ccl_gpu_global_id_x()) : \
0; \
gpu_parallel_active_index_array_impl(num_states, \
indices, \
num_indices, \
is_active, \
metal_local_size, \
metal_local_id, \
metal_global_id, \
simdgroup_size, \
simd_lane_index, \
simd_group_index, \
num_simd_groups, \
simdgroup_offset)
#elif defined(__KERNEL_ONEAPI__)
# ifdef WITH_ONEAPI_SYCL_HOST_ENABLED
# define gpu_parallel_active_index_array( \
blocksize, num_states, indices, num_indices, is_active_op) \
if (ccl_gpu_global_size_x() == 1) \
cpu_serial_active_index_array_impl(num_states, indices, num_indices, is_active_op); \
else \
gpu_parallel_active_index_array_impl(num_states, indices, num_indices, is_active_op);
# else
# define gpu_parallel_active_index_array( \
blocksize, num_states, indices, num_indices, is_active_op) \
gpu_parallel_active_index_array_impl(num_states, indices, num_indices, is_active_op)
# endif
#else
# define gpu_parallel_active_index_array( \
blocksize, num_states, indices, num_indices, is_active_op) \
gpu_parallel_active_index_array_impl<blocksize>(num_states, indices, num_indices, is_active_op)
#endif
CCL_NAMESPACE_END