123 lines
3.7 KiB
C++
123 lines
3.7 KiB
C++
/* SPDX-License-Identifier: Apache-2.0
|
|
* Copyright 2011-2022 Blender Foundation */
|
|
|
|
#pragma once
|
|
|
|
#include "kernel/sample/jitter.h"
|
|
#include "kernel/sample/sobol_burley.h"
|
|
#include "util/hash.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
|
|
* this single threaded on a CPU for repeatable results. */
|
|
//#define __DEBUG_CORRELATION__
|
|
|
|
ccl_device_forceinline float path_rng_1D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return (float)drand48();
|
|
#endif
|
|
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_SOBOL_BURLEY) {
|
|
return sobol_burley_sample_1D(sample, dimension, rng_hash);
|
|
}
|
|
else {
|
|
return pmj_sample_1D(kg, sample, rng_hash, dimension);
|
|
}
|
|
}
|
|
|
|
ccl_device_forceinline float2 path_rng_2D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return make_float2((float)drand48(), (float)drand48());
|
|
#endif
|
|
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_SOBOL_BURLEY) {
|
|
return sobol_burley_sample_2D(sample, dimension, rng_hash);
|
|
}
|
|
else {
|
|
return pmj_sample_2D(kg, sample, rng_hash, dimension);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* 1D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqint1(uint n)
|
|
{
|
|
n = (n << 13U) ^ n;
|
|
n = n * (n * n * 15731U + 789221U) + 1376312589U;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* 2D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqnt2d(const uint x, const uint y)
|
|
{
|
|
const uint qx = 1103515245U * ((x >> 1U) ^ (y));
|
|
const uint qy = 1103515245U * ((y >> 1U) ^ (x));
|
|
const uint n = 1103515245U * ((qx) ^ (qy >> 3U));
|
|
|
|
return n;
|
|
}
|
|
|
|
ccl_device_inline uint path_rng_hash_init(KernelGlobals kg,
|
|
const int sample,
|
|
const int x,
|
|
const int y)
|
|
{
|
|
const uint rng_hash = hash_iqnt2d(x, y) ^ kernel_data.integrator.seed;
|
|
|
|
#ifdef __DEBUG_CORRELATION__
|
|
srand48(rng_hash + sample);
|
|
#else
|
|
(void)sample;
|
|
#endif
|
|
|
|
return rng_hash;
|
|
}
|
|
|
|
/**
|
|
* Splits samples into two different classes, A and B, which can be
|
|
* compared for variance estimation.
|
|
*/
|
|
ccl_device_inline bool sample_is_class_A(int pattern, int sample)
|
|
{
|
|
#if 0
|
|
if (!(pattern == SAMPLING_PATTERN_PMJ || pattern == SAMPLING_PATTERN_SOBOL_BURLEY)) {
|
|
/* Fallback: assign samples randomly.
|
|
* This is guaranteed to work "okay" for any sampler, but isn't good.
|
|
* (Note: the seed constant is just a random number to guard against
|
|
* possible interactions with other uses of the hash. There's nothing
|
|
* special about it.)
|
|
*/
|
|
return hash_hp_seeded_uint(sample, 0xa771f873) & 1;
|
|
}
|
|
#else
|
|
(void)pattern;
|
|
#endif
|
|
|
|
/* This follows the approach from section 10.2.1 of "Progressive
|
|
* Multi-Jittered Sample Sequences" by Christensen et al., but
|
|
* implemented with efficient bit-fiddling.
|
|
*
|
|
* This approach also turns out to work equally well with Sobol-Burley
|
|
* (see https://developer.blender.org/D15746#429471).
|
|
*/
|
|
return popcount(uint(sample) & 0xaaaaaaaa) & 1;
|
|
}
|
|
CCL_NAMESPACE_END
|