I've been going over the zbuf.c code, which is indeed very ancient, with a load of old optimizing and redundant code in use. Added more 'modern' Span support, which fills per face two arrays with the scanline information in it. That way you can zbuffer a quad in one run as well. It was also exactly that code that's copied all over in zbuf.c For now, to prevent issues for the release, the 'render a quad in 1 run' is only in use for the strand render. Tests reveil a speedup of about 33%. Will work on this recode later... which would also result in making zbuf.c threadsafe. And: bugfix #3398 When using the new 'render emitter' for particles, the orco array for particles was accidentally used by mesh too.
1885 lines
51 KiB
C
1885 lines
51 KiB
C
/* effect.c
|
|
*
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version. The Blender
|
|
* Foundation also sells licenses for use in proprietary software under
|
|
* the Blender License. See http://www.blender.org/BL/ for information
|
|
* about this.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL/BL DUAL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
#include "DNA_listBase.h"
|
|
#include "DNA_effect_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_object_force.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_material_types.h"
|
|
#include "DNA_curve_types.h"
|
|
#include "DNA_key_types.h"
|
|
#include "DNA_texture_types.h"
|
|
#include "DNA_scene_types.h"
|
|
#include "DNA_lattice_types.h"
|
|
#include "DNA_ipo_types.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
#include "BLI_arithb.h"
|
|
#include "BLI_rand.h"
|
|
|
|
#include "BKE_action.h"
|
|
#include "BKE_anim.h" /* needed for where_on_path */
|
|
#include "BKE_armature.h"
|
|
#include "BKE_bad_level_calls.h"
|
|
#include "BKE_blender.h"
|
|
#include "BKE_constraint.h"
|
|
#include "BKE_deform.h"
|
|
#include "BKE_displist.h"
|
|
#include "BKE_DerivedMesh.h"
|
|
#include "BKE_effect.h"
|
|
#include "BKE_global.h"
|
|
#include "BKE_ipo.h"
|
|
#include "BKE_key.h"
|
|
#include "BKE_lattice.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_material.h"
|
|
#include "BKE_main.h"
|
|
#include "BKE_object.h"
|
|
#include "BKE_screen.h"
|
|
#include "BKE_utildefines.h"
|
|
|
|
#include "render.h" // externtex, bad level call (ton)
|
|
#include "PIL_time.h"
|
|
|
|
/* temporal struct, used for reading return of mesh_get_mapped_verts_nors() */
|
|
typedef struct VeNoCo {
|
|
float co[3], no[3];
|
|
} VeNoCo;
|
|
|
|
Effect *add_effect(int type)
|
|
{
|
|
Effect *eff=0;
|
|
PartEff *paf;
|
|
int a;
|
|
|
|
switch(type) {
|
|
case EFF_PARTICLE:
|
|
paf= MEM_callocN(sizeof(PartEff), "neweff");
|
|
eff= (Effect *)paf;
|
|
|
|
paf->sta= 1.0;
|
|
paf->end= 100.0;
|
|
paf->lifetime= 50.0;
|
|
for(a=0; a<PAF_MAXMULT; a++) {
|
|
paf->life[a]= 50.0;
|
|
paf->child[a]= 4;
|
|
paf->mat[a]= 1;
|
|
}
|
|
|
|
paf->totpart= 1000;
|
|
paf->totkey= 8;
|
|
paf->staticstep= 5;
|
|
paf->defvec[2]= 1.0f;
|
|
paf->nabla= 0.05f;
|
|
paf->disp = 100;
|
|
paf->speedtex = 8;
|
|
paf->omat = 1;
|
|
break;
|
|
}
|
|
|
|
eff->type= eff->buttype= type;
|
|
eff->flag |= SELECT;
|
|
|
|
return eff;
|
|
}
|
|
|
|
void free_effect(Effect *eff)
|
|
{
|
|
PartEff *paf;
|
|
|
|
if(eff->type==EFF_PARTICLE) {
|
|
paf= (PartEff *)eff;
|
|
if(paf->keys) MEM_freeN(paf->keys);
|
|
}
|
|
MEM_freeN(eff);
|
|
}
|
|
|
|
|
|
void free_effects(ListBase *lb)
|
|
{
|
|
Effect *eff;
|
|
|
|
eff= lb->first;
|
|
while(eff) {
|
|
BLI_remlink(lb, eff);
|
|
free_effect(eff);
|
|
eff= lb->first;
|
|
}
|
|
}
|
|
|
|
Effect *copy_effect(Effect *eff)
|
|
{
|
|
Effect *effn;
|
|
|
|
effn= MEM_dupallocN(eff);
|
|
if(effn->type==EFF_PARTICLE) ((PartEff *)effn)->keys= 0;
|
|
|
|
return effn;
|
|
}
|
|
|
|
void copy_act_effect(Object *ob)
|
|
{
|
|
/* return a copy of the active effect */
|
|
Effect *effn, *eff;
|
|
|
|
eff= ob->effect.first;
|
|
while(eff) {
|
|
if(eff->flag & SELECT) {
|
|
|
|
effn= copy_effect(eff);
|
|
BLI_addtail(&ob->effect, effn);
|
|
|
|
eff->flag &= ~SELECT;
|
|
return;
|
|
|
|
}
|
|
eff= eff->next;
|
|
}
|
|
|
|
/* when it comes here: add new effect */
|
|
eff= add_effect(EFF_PARTICLE);
|
|
BLI_addtail(&ob->effect, eff);
|
|
|
|
}
|
|
|
|
void copy_effects(ListBase *lbn, ListBase *lb)
|
|
{
|
|
Effect *eff, *effn;
|
|
|
|
lbn->first= lbn->last= 0;
|
|
|
|
eff= lb->first;
|
|
while(eff) {
|
|
effn= copy_effect(eff);
|
|
BLI_addtail(lbn, effn);
|
|
|
|
eff= eff->next;
|
|
}
|
|
|
|
}
|
|
|
|
void deselectall_eff(Object *ob)
|
|
{
|
|
Effect *eff= ob->effect.first;
|
|
|
|
while(eff) {
|
|
eff->flag &= ~SELECT;
|
|
eff= eff->next;
|
|
}
|
|
}
|
|
|
|
/* ***************** PARTICLES ***************** */
|
|
|
|
static Particle *new_particle(PartEff *paf)
|
|
{
|
|
static Particle *pa;
|
|
static int cur;
|
|
|
|
/* we agree: when paf->keys==0: alloc */
|
|
if(paf->keys==NULL) {
|
|
pa= paf->keys= MEM_callocN( paf->totkey*paf->totpart*sizeof(Particle), "particlekeys" );
|
|
cur= 0;
|
|
}
|
|
else {
|
|
if(cur && cur<paf->totpart) pa+=paf->totkey;
|
|
cur++;
|
|
}
|
|
return pa;
|
|
}
|
|
|
|
PartEff *give_parteff(Object *ob)
|
|
{
|
|
PartEff *paf;
|
|
|
|
paf= ob->effect.first;
|
|
while(paf) {
|
|
if(paf->type==EFF_PARTICLE) return paf;
|
|
paf= paf->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void where_is_particle(PartEff *paf, Particle *pa, float ctime, float *vec)
|
|
{
|
|
Particle *p[4];
|
|
float dt, t[4];
|
|
int a;
|
|
|
|
if(paf->totkey==1 || ctime < pa->time) {
|
|
VECCOPY(vec, pa->co);
|
|
return;
|
|
}
|
|
|
|
/* first find the first particlekey */
|
|
a= (int)((paf->totkey-1)*(ctime-pa->time)/pa->lifetime);
|
|
if(a>=paf->totkey) a= paf->totkey-1;
|
|
else if(a<0) a= 0;
|
|
|
|
pa+= a;
|
|
|
|
if(a>0) p[0]= pa-1; else p[0]= pa;
|
|
p[1]= pa;
|
|
|
|
if(a+1<paf->totkey) p[2]= pa+1; else p[2]= pa;
|
|
if(a+2<paf->totkey) p[3]= pa+2; else p[3]= p[2];
|
|
|
|
if(p[1]==p[2] || p[2]->time == p[1]->time) dt= 0.0;
|
|
else dt= (ctime-p[1]->time)/(p[2]->time - p[1]->time);
|
|
|
|
if(paf->flag & PAF_BSPLINE) set_four_ipo(dt, t, KEY_BSPLINE);
|
|
else set_four_ipo(dt, t, KEY_CARDINAL);
|
|
|
|
vec[0]= t[0]*p[0]->co[0] + t[1]*p[1]->co[0] + t[2]*p[2]->co[0] + t[3]*p[3]->co[0];
|
|
vec[1]= t[0]*p[0]->co[1] + t[1]*p[1]->co[1] + t[2]*p[2]->co[1] + t[3]*p[3]->co[1];
|
|
vec[2]= t[0]*p[0]->co[2] + t[1]*p[1]->co[2] + t[2]*p[2]->co[2] + t[3]*p[3]->co[2];
|
|
|
|
}
|
|
|
|
static void particle_tex(MTex *mtex, PartEff *paf, float *co, float *no)
|
|
{
|
|
float tin, tr, tg, tb, ta;
|
|
float old;
|
|
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
|
|
if(paf->texmap==PAF_TEXINT) {
|
|
tin*= paf->texfac;
|
|
no[0]+= tin*paf->defvec[0];
|
|
no[1]+= tin*paf->defvec[1];
|
|
no[2]+= tin*paf->defvec[2];
|
|
}
|
|
else if(paf->texmap==PAF_TEXRGB) {
|
|
no[0]+= (tr-0.5f)*paf->texfac;
|
|
no[1]+= (tg-0.5f)*paf->texfac;
|
|
no[2]+= (tb-0.5f)*paf->texfac;
|
|
}
|
|
else { /* PAF_TEXGRAD */
|
|
|
|
old= tin;
|
|
co[0]+= paf->nabla;
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
no[0]+= (old-tin)*paf->texfac;
|
|
|
|
co[0]-= paf->nabla;
|
|
co[1]+= paf->nabla;
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
no[1]+= (old-tin)*paf->texfac;
|
|
|
|
co[1]-= paf->nabla;
|
|
co[2]+= paf->nabla;
|
|
externtex(mtex, co, &tin, &tr, &tg, &tb, &ta);
|
|
no[2]+= (old-tin)*paf->texfac;
|
|
|
|
}
|
|
}
|
|
|
|
/* -------------------------- Effectors ------------------ */
|
|
|
|
typedef struct pEffectorCache {
|
|
struct pEffectorCache *next, *prev;
|
|
struct Object *ob;
|
|
|
|
/* precalculated variables */
|
|
float oldloc[3], oldspeed[3];
|
|
float scale, time_scale;
|
|
float guide_dist;
|
|
} pEffectorCache;
|
|
|
|
|
|
/* returns ListBase handle with objects taking part in the effecting */
|
|
ListBase *pdInitEffectors(unsigned int layer)
|
|
{
|
|
static ListBase listb={NULL, NULL};
|
|
Base *base;
|
|
|
|
for(base = G.scene->base.first; base; base= base->next) {
|
|
if( (base->lay & layer) && base->object->pd) {
|
|
Object *ob= base->object;
|
|
PartDeflect *pd= ob->pd;
|
|
|
|
if(pd->forcefield == PFIELD_GUIDE) {
|
|
if(ob->type==OB_CURVE) {
|
|
Curve *cu= ob->data;
|
|
if(cu->flag & CU_PATH) {
|
|
if(cu->path==NULL || cu->path->data==NULL)
|
|
makeDispListCurveTypes(ob, 0);
|
|
if(cu->path && cu->path->data) {
|
|
pEffectorCache *ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
|
|
ec->ob= ob;
|
|
BLI_addtail(&listb, ec);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(pd->forcefield) {
|
|
pEffectorCache *ec= MEM_callocN(sizeof(pEffectorCache), "effector cache");
|
|
ec->ob= ob;
|
|
BLI_addtail(&listb, ec);
|
|
}
|
|
}
|
|
}
|
|
if(listb.first)
|
|
return &listb;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void pdEndEffectors(ListBase *lb)
|
|
{
|
|
if(lb)
|
|
BLI_freelistN(lb);
|
|
}
|
|
|
|
/* local for this c file, only for guides now */
|
|
static void precalc_effectors(Object *ob, PartEff *paf, Particle *pa, ListBase *lb)
|
|
{
|
|
pEffectorCache *ec;
|
|
|
|
for(ec= lb->first; ec; ec= ec->next) {
|
|
if(ec->ob->type==OB_CURVE) {
|
|
float vec[4], dir[3];
|
|
|
|
ec->oldspeed[0]= ec->oldspeed[1]= ec->oldspeed[2]= 0.0f;
|
|
|
|
/* scale corrects speed vector to curve size */
|
|
if(paf->totkey>1) ec->scale= (paf->totkey-1)/pa->lifetime;
|
|
else ec->scale= 1.0f;
|
|
|
|
/* time_scale is for random life */
|
|
if(pa->lifetime>paf->lifetime)
|
|
ec->time_scale= paf->lifetime/pa->lifetime;
|
|
else
|
|
ec->time_scale= pa->lifetime/paf->lifetime;
|
|
|
|
/* distance of first path point to particle origin */
|
|
where_on_path(ec->ob, 0.0f, vec, dir);
|
|
VECCOPY(ec->oldloc, vec); /* store local coord for differences */
|
|
Mat4MulVecfl(ec->ob->obmat, vec);
|
|
|
|
/* for static we need to move to global space */
|
|
if(paf->flag & PAF_STATIC) {
|
|
VECCOPY(dir, pa->co);
|
|
Mat4MulVecfl(ob->obmat, dir);
|
|
ec->guide_dist= VecLenf(vec, dir);
|
|
}
|
|
else
|
|
ec->guide_dist= VecLenf(vec, pa->co);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* -------- pdDoEffectors() --------
|
|
generic force/speed system, now used for particles and softbodies
|
|
lb = listbase with objects that take part in effecting
|
|
opco = global coord, as input
|
|
force = force accumulator
|
|
speed = actual current speed which can be altered
|
|
cur_time = "external" time in frames, is constant for static particles
|
|
loc_time = "local" time in frames, range <0-1> for the lifetime of particle
|
|
par_layer = layer the caller is in
|
|
flags = only used for softbody wind now
|
|
guide = old speed of particle
|
|
|
|
*/
|
|
void pdDoEffectors(ListBase *lb, float *opco, float *force, float *speed, float cur_time, float loc_time, unsigned int flags)
|
|
{
|
|
/*
|
|
Modifies the force on a particle according to its
|
|
relation with the effector object
|
|
Different kind of effectors include:
|
|
Forcefields: Gravity-like attractor
|
|
(force power is related to the inverse of distance to the power of a falloff value)
|
|
Vortex fields: swirling effectors
|
|
(particles rotate around Z-axis of the object. otherwise, same relation as)
|
|
(Forcefields, but this is not done through a force/acceleration)
|
|
Guide: particles on a path
|
|
(particles are guided along a curve bezier or old nurbs)
|
|
(is independent of other effectors)
|
|
*/
|
|
Object *ob;
|
|
pEffectorCache *ec;
|
|
PartDeflect *pd;
|
|
float vect_to_vert[3];
|
|
float f_force, force_vec[3];
|
|
float *obloc;
|
|
float distance, force_val, ffall_val;
|
|
float guidecollect[3], guidedist= 0.0f;
|
|
short cur_frame;
|
|
|
|
guidecollect[0]= guidecollect[1]= guidecollect[2]=0.0f;
|
|
|
|
/* Cycle through collected objects, get total of (1/(gravity_strength * dist^gravity_power)) */
|
|
/* Check for min distance here? (yes would be cool to add that, ton) */
|
|
|
|
for(ec = lb->first; ec; ec= ec->next) {
|
|
/* object effectors were fully checked to be OK to evaluate! */
|
|
ob= ec->ob;
|
|
pd= ob->pd;
|
|
|
|
/* Get IPO force strength and fall off values here */
|
|
if (has_ipo_code(ob->ipo, OB_PD_FSTR))
|
|
force_val = IPO_GetFloatValue(ob->ipo, OB_PD_FSTR, cur_time);
|
|
else
|
|
force_val = pd->f_strength;
|
|
|
|
if (has_ipo_code(ob->ipo, OB_PD_FFALL))
|
|
ffall_val = IPO_GetFloatValue(ob->ipo, OB_PD_FFALL, cur_time);
|
|
else
|
|
ffall_val = pd->f_power;
|
|
|
|
/* Need to set r.cfra for paths (investigate, ton) (uses ob->ctime now, ton) */
|
|
if(ob->ctime!=cur_time) {
|
|
cur_frame = G.scene->r.cfra;
|
|
G.scene->r.cfra = (short)cur_time;
|
|
where_is_object_time(ob, cur_time);
|
|
G.scene->r.cfra = cur_frame;
|
|
}
|
|
|
|
/* use center of object for distance calculus */
|
|
obloc= ob->obmat[3];
|
|
VECSUB(vect_to_vert, obloc, opco);
|
|
distance = VecLength(vect_to_vert);
|
|
|
|
if((pd->flag & PFIELD_USEMAX) && distance>pd->maxdist && pd->forcefield != PFIELD_GUIDE)
|
|
; /* don't do anything */
|
|
else if(pd->forcefield == PFIELD_WIND) {
|
|
VECCOPY(force_vec, ob->obmat[2]);
|
|
|
|
/* wind works harder perpendicular to normal, would be nice for softbody later (ton) */
|
|
|
|
/* Limit minimum distance to vertex so that */
|
|
/* the force is not too big */
|
|
if (distance < 0.001) distance = 0.001f;
|
|
f_force = (force_val)*(1/(1000 * (float)pow((double)distance, (double)ffall_val)));
|
|
/* this option for softbody only */
|
|
if(flags && PE_WIND_AS_SPEED){
|
|
speed[0] -= (force_vec[0] * f_force );
|
|
speed[1] -= (force_vec[1] * f_force );
|
|
speed[2] -= (force_vec[2] * f_force );
|
|
}
|
|
else{
|
|
force[0] += force_vec[0]*f_force;
|
|
force[1] += force_vec[1]*f_force;
|
|
force[2] += force_vec[2]*f_force;
|
|
}
|
|
}
|
|
else if(pd->forcefield == PFIELD_FORCE) {
|
|
|
|
/* only use center of object */
|
|
obloc= ob->obmat[3];
|
|
|
|
/* Now calculate the gravitational force */
|
|
VECSUB(vect_to_vert, obloc, opco);
|
|
distance = VecLength(vect_to_vert);
|
|
|
|
/* Limit minimum distance to vertex so that */
|
|
/* the force is not too big */
|
|
if (distance < 0.001) distance = 0.001f;
|
|
f_force = (force_val)*(1.0/(1000.0 * (float)pow((double)distance, (double)ffall_val)));
|
|
force[0] += (vect_to_vert[0] * f_force );
|
|
force[1] += (vect_to_vert[1] * f_force );
|
|
force[2] += (vect_to_vert[2] * f_force );
|
|
}
|
|
else if(pd->forcefield == PFIELD_VORTEX) {
|
|
float vortexvec[3];
|
|
|
|
/* only use center of object */
|
|
obloc= ob->obmat[3];
|
|
|
|
/* Now calculate the vortex force */
|
|
VECSUB(vect_to_vert, obloc, opco);
|
|
distance = VecLength(vect_to_vert);
|
|
|
|
Crossf(force_vec, ob->obmat[2], vect_to_vert);
|
|
Normalise(force_vec);
|
|
|
|
/* Limit minimum distance to vertex so that */
|
|
/* the force is not too big */
|
|
if (distance < 0.001) distance = 0.001f;
|
|
f_force = (force_val)*(1.0/(100.0 * (float)pow((double)distance, (double)ffall_val)));
|
|
vortexvec[0]= -(force_vec[0] * f_force );
|
|
vortexvec[1]= -(force_vec[1] * f_force );
|
|
vortexvec[2]= -(force_vec[2] * f_force );
|
|
|
|
/* this option for softbody only */
|
|
if(flags &&PE_WIND_AS_SPEED) {
|
|
speed[0]+= vortexvec[0];
|
|
speed[1]+= vortexvec[1];
|
|
speed[2]+= vortexvec[2];
|
|
}
|
|
else {
|
|
/* since vortex alters the speed, we have to correct for the previous vortex result */
|
|
speed[0]+= vortexvec[0] - ec->oldspeed[0];
|
|
speed[1]+= vortexvec[1] - ec->oldspeed[1];
|
|
speed[2]+= vortexvec[2] - ec->oldspeed[2];
|
|
|
|
VECCOPY(ec->oldspeed, vortexvec);
|
|
}
|
|
}
|
|
else if(pd->forcefield == PFIELD_GUIDE) {
|
|
float guidevec[4], guidedir[3];
|
|
float mindist= force_val; /* force_val is actually mindist in the UI */
|
|
|
|
distance= ec->guide_dist;
|
|
|
|
/* WARNING: bails out with continue here */
|
|
if((pd->flag & PFIELD_USEMAX) && distance>pd->maxdist) continue;
|
|
|
|
/* calculate contribution factor for this guide */
|
|
if(distance<=mindist) f_force= 1.0f;
|
|
else if(pd->flag & PFIELD_USEMAX) {
|
|
if(distance>pd->maxdist || mindist>=pd->maxdist) f_force= 0.0f;
|
|
else {
|
|
f_force= 1.0f - (distance-mindist)/(pd->maxdist - mindist);
|
|
if(ffall_val!=0.0f)
|
|
f_force = (float)pow(f_force, ffall_val+1.0);
|
|
}
|
|
}
|
|
else {
|
|
f_force= 1.0f/(1.0f + distance-mindist);
|
|
if(ffall_val!=0.0f)
|
|
f_force = (float)pow(f_force, ffall_val+1.0);
|
|
}
|
|
|
|
/* now derive path point from loc_time */
|
|
if(pd->flag & PFIELD_GUIDE_PATH_ADD)
|
|
where_on_path(ob, f_force*loc_time*ec->time_scale, guidevec, guidedir);
|
|
else
|
|
where_on_path(ob, loc_time*ec->time_scale, guidevec, guidedir);
|
|
|
|
VECSUB(guidedir, guidevec, ec->oldloc);
|
|
VECCOPY(ec->oldloc, guidevec);
|
|
|
|
Mat4Mul3Vecfl(ob->obmat, guidedir);
|
|
VecMulf(guidedir, ec->scale); /* correction for lifetime and speed */
|
|
|
|
/* we subtract the speed we gave it previous step */
|
|
VECCOPY(guidevec, guidedir);
|
|
VECSUB(guidedir, guidedir, ec->oldspeed);
|
|
VECCOPY(ec->oldspeed, guidevec);
|
|
|
|
/* if it fully contributes, we stop */
|
|
if(f_force==1.0) {
|
|
VECCOPY(guidecollect, guidedir);
|
|
guidedist= 1.0f;
|
|
break;
|
|
}
|
|
else if(guidedist<1.0f) {
|
|
VecMulf(guidedir, f_force);
|
|
VECADD(guidecollect, guidecollect, guidedir);
|
|
guidedist += f_force;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* all guides are accumulated here */
|
|
if(guidedist!=0.0f) {
|
|
if(guidedist!=1.0f) VecMulf(guidecollect, 1.0f/guidedist);
|
|
VECADD(speed, speed, guidecollect);
|
|
}
|
|
}
|
|
|
|
static void cache_object_vertices(Object *ob)
|
|
{
|
|
Mesh *me;
|
|
MVert *mvert;
|
|
float *fp;
|
|
int a;
|
|
|
|
me= ob->data;
|
|
if(me->totvert==0) return;
|
|
|
|
fp= ob->sumohandle= MEM_mallocN(3*sizeof(float)*me->totvert, "cache particles");
|
|
mvert= me->mvert;
|
|
a= me->totvert;
|
|
while(a--) {
|
|
VECCOPY(fp, mvert->co);
|
|
Mat4MulVecfl(ob->obmat, fp);
|
|
mvert++;
|
|
fp+= 3;
|
|
}
|
|
}
|
|
|
|
static int pdDoDeflection(RNG *rng, float opco[3], float npco[3], float opno[3],
|
|
float npno[3], float life, float force[3], int def_depth,
|
|
float cur_time, unsigned int par_layer, int *last_object,
|
|
int *last_face, int *same_face)
|
|
{
|
|
/* Particle deflection code */
|
|
/* The code is in two sections: the first part checks whether a particle has */
|
|
/* intersected a face of a deflector mesh, given its old and new co-ords, opco and npco */
|
|
/* and which face it hit first */
|
|
/* The second part calculates the new co-ordinates given that collision and updates */
|
|
/* the new co-ordinates accordingly */
|
|
Base *base;
|
|
Object *ob, *deflection_object = NULL;
|
|
Mesh *def_mesh;
|
|
MFace *mface, *deflection_face = NULL;
|
|
float *v1, *v2, *v3, *v4, *vcache=NULL;
|
|
float nv1[3], nv2[3], nv3[3], nv4[3], edge1[3], edge2[3];
|
|
float dv1[3], dv2[3], dv3[3];
|
|
float vect_to_int[3], refl_vel[3];
|
|
float d_intersect_co[3], d_intersect_vect[3], d_nvect[3], d_i_co_above[3];
|
|
float forcec[3];
|
|
float k_point3, dist_to_plane;
|
|
float first_dist, ref_plane_mag;
|
|
float dk_plane=0, dk_point1=0;
|
|
float icalctop, icalcbot, n_mag;
|
|
float mag_iv, x_m,y_m,z_m;
|
|
float damping, perm_thresh;
|
|
float perm_val, rdamp_val;
|
|
int a, deflected=0, deflected_now=0;
|
|
float t,t2, min_t;
|
|
float mat[3][3], obloc[3];
|
|
short cur_frame;
|
|
float time_before, time_after;
|
|
float force_mag_norm;
|
|
int d_object=0, d_face=0, ds_object=0, ds_face=0;
|
|
|
|
first_dist = 200000;
|
|
min_t = 200000;
|
|
|
|
/* The first part of the code, finding the first intersected face*/
|
|
base= G.scene->base.first;
|
|
while (base) {
|
|
/*Only proceed for mesh object in same layer */
|
|
if(base->object->type==OB_MESH && (base->lay & par_layer)) {
|
|
ob= base->object;
|
|
/* only with deflecting set */
|
|
if(ob->pd && ob->pd->deflect) {
|
|
def_mesh= ob->data;
|
|
|
|
d_object = d_object + 1;
|
|
|
|
d_face = d_face + 1;
|
|
mface= def_mesh->mface;
|
|
a = def_mesh->totface;
|
|
|
|
|
|
if(ob->parent==NULL && ob->ipo==NULL) { // static
|
|
if(ob->sumohandle==NULL) cache_object_vertices(ob);
|
|
vcache= ob->sumohandle;
|
|
}
|
|
else {
|
|
/*Find out where the object is at this time*/
|
|
cur_frame = G.scene->r.cfra;
|
|
G.scene->r.cfra = (short)cur_time;
|
|
where_is_object_time(ob, cur_time);
|
|
G.scene->r.cfra = cur_frame;
|
|
|
|
/*Pass the values from ob->obmat to mat*/
|
|
/*and the location values to obloc */
|
|
Mat3CpyMat4(mat,ob->obmat);
|
|
obloc[0] = ob->obmat[3][0];
|
|
obloc[1] = ob->obmat[3][1];
|
|
obloc[2] = ob->obmat[3][2];
|
|
vcache= NULL;
|
|
|
|
}
|
|
|
|
while (a--) {
|
|
|
|
if(vcache) {
|
|
v1= vcache+ 3*(mface->v1);
|
|
VECCOPY(nv1, v1);
|
|
v1= vcache+ 3*(mface->v2);
|
|
VECCOPY(nv2, v1);
|
|
v1= vcache+ 3*(mface->v3);
|
|
VECCOPY(nv3, v1);
|
|
v1= vcache+ 3*(mface->v4);
|
|
VECCOPY(nv4, v1);
|
|
}
|
|
else {
|
|
/* Calculate the global co-ordinates of the vertices*/
|
|
v1= (def_mesh->mvert+(mface->v1))->co;
|
|
v2= (def_mesh->mvert+(mface->v2))->co;
|
|
v3= (def_mesh->mvert+(mface->v3))->co;
|
|
v4= (def_mesh->mvert+(mface->v4))->co;
|
|
|
|
VECCOPY(nv1, v1);
|
|
VECCOPY(nv2, v2);
|
|
VECCOPY(nv3, v3);
|
|
VECCOPY(nv4, v4);
|
|
|
|
/*Apply the objects deformation matrix*/
|
|
Mat3MulVecfl(mat, nv1);
|
|
Mat3MulVecfl(mat, nv2);
|
|
Mat3MulVecfl(mat, nv3);
|
|
Mat3MulVecfl(mat, nv4);
|
|
|
|
VECADD(nv1, nv1, obloc);
|
|
VECADD(nv2, nv2, obloc);
|
|
VECADD(nv3, nv3, obloc);
|
|
VECADD(nv4, nv4, obloc);
|
|
}
|
|
|
|
deflected_now = 0;
|
|
|
|
|
|
|
|
// t= 0.5; // this is labda of line, can use it optimize quad intersection
|
|
// sorry but no .. see below (BM)
|
|
if( LineIntersectsTriangle(opco, npco, nv1, nv2, nv3, &t) ) {
|
|
if (t < min_t) {
|
|
deflected = 1;
|
|
deflected_now = 1;
|
|
}
|
|
}
|
|
// else if (mface->v4 && (t>=0.0 && t<=1.0)) {
|
|
// no, you can't skip testing the other triangle
|
|
// it might give a smaller t on (close to) the edge .. this is numerics not esoteric maths :)
|
|
// note: the 2 triangles don't need to share a plane ! (BM)
|
|
if (mface->v4) {
|
|
if( LineIntersectsTriangle(opco, npco, nv1, nv3, nv4, &t2) ) {
|
|
if (t2 < min_t) {
|
|
deflected = 1;
|
|
deflected_now = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((deflected_now > 0) && ((t < min_t) ||(t2 < min_t))) {
|
|
min_t = t;
|
|
ds_object = d_object;
|
|
ds_face = d_face;
|
|
deflection_object = ob;
|
|
deflection_face = mface;
|
|
if (deflected_now==1) {
|
|
min_t = t;
|
|
VECCOPY(dv1, nv1);
|
|
VECCOPY(dv2, nv2);
|
|
VECCOPY(dv3, nv3);
|
|
}
|
|
else {
|
|
min_t = t2;
|
|
VECCOPY(dv1, nv1);
|
|
VECCOPY(dv2, nv3);
|
|
VECCOPY(dv3, nv4);
|
|
}
|
|
}
|
|
mface++;
|
|
}
|
|
}
|
|
}
|
|
base = base->next;
|
|
}
|
|
|
|
|
|
/* Here's the point to do the permeability calculation */
|
|
/* Set deflected to 0 if a random number is below the value */
|
|
/* Get the permeability IPO here*/
|
|
if (deflected) {
|
|
|
|
if (has_ipo_code(deflection_object->ipo, OB_PD_PERM))
|
|
perm_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_PERM, cur_time);
|
|
else
|
|
perm_val = deflection_object->pd->pdef_perm;
|
|
|
|
perm_thresh = rng_getFloat(rng) - perm_val;
|
|
if (perm_thresh < 0 ) {
|
|
deflected = 0;
|
|
}
|
|
}
|
|
|
|
/* Now for the second part of the deflection code - work out the new speed */
|
|
/* and position of the particle if a collision occurred */
|
|
if (deflected) {
|
|
VECSUB(edge1, dv1, dv2);
|
|
VECSUB(edge2, dv3, dv2);
|
|
Crossf(d_nvect, edge2, edge1);
|
|
n_mag = Normalise(d_nvect);
|
|
dk_plane = INPR(d_nvect, nv1);
|
|
dk_point1 = INPR(d_nvect,opco);
|
|
|
|
VECSUB(d_intersect_vect, npco, opco);
|
|
|
|
d_intersect_co[0] = opco[0] + (min_t * (npco[0] - opco[0]));
|
|
d_intersect_co[1] = opco[1] + (min_t * (npco[1] - opco[1]));
|
|
d_intersect_co[2] = opco[2] + (min_t * (npco[2] - opco[2]));
|
|
|
|
d_i_co_above[0] = (d_intersect_co[0] + (0.001f * d_nvect[0]));
|
|
d_i_co_above[1] = (d_intersect_co[1] + (0.001f * d_nvect[1]));
|
|
d_i_co_above[2] = (d_intersect_co[2] + (0.001f * d_nvect[2]));
|
|
mag_iv = Normalise(d_intersect_vect);
|
|
VECCOPY(npco, d_intersect_co);
|
|
|
|
VECSUB(vect_to_int, opco, d_intersect_co);
|
|
first_dist = Normalise(vect_to_int);
|
|
|
|
/* Work out the lengths of time before and after collision*/
|
|
time_before = (life*(first_dist / (mag_iv)));
|
|
time_after = (life*((mag_iv - first_dist) / (mag_iv)));
|
|
|
|
/* We have to recalculate what the speed would have been at the */
|
|
/* point of collision, not the key frame time */
|
|
npno[0]= opno[0] + time_before*force[0];
|
|
npno[1]= opno[1] + time_before*force[1];
|
|
npno[2]= opno[2] + time_before*force[2];
|
|
|
|
|
|
/* Reflect the speed vector in the face */
|
|
x_m = (2 * npno[0] * d_nvect[0]);
|
|
y_m = (2 * npno[1] * d_nvect[1]);
|
|
z_m = (2 * npno[2] * d_nvect[2]);
|
|
refl_vel[0] = npno[0] - (d_nvect[0] * (x_m + y_m + z_m));
|
|
refl_vel[1] = npno[1] - (d_nvect[1] * (x_m + y_m + z_m));
|
|
refl_vel[2] = npno[2] - (d_nvect[2] * (x_m + y_m + z_m));
|
|
|
|
/*A random variation in the damping factor........ */
|
|
/*Get the IPO values for damping here*/
|
|
|
|
if (has_ipo_code(deflection_object->ipo, OB_PD_SDAMP))
|
|
damping = IPO_GetFloatValue(deflection_object->ipo, OB_PD_SDAMP, cur_time);
|
|
else
|
|
damping = deflection_object->pd->pdef_damp;
|
|
|
|
if (has_ipo_code(deflection_object->ipo, OB_PD_RDAMP))
|
|
rdamp_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_RDAMP, cur_time);
|
|
else
|
|
rdamp_val = deflection_object->pd->pdef_rdamp;
|
|
|
|
damping = damping + ((1.0f - damping) * rng_getFloat(rng) *rdamp_val);
|
|
damping = damping * damping;
|
|
ref_plane_mag = INPR(refl_vel,d_nvect);
|
|
|
|
if (damping > 0.999) damping = 0.999f;
|
|
|
|
/* Now add in the damping force - only damp in the direction of */
|
|
/* the faces normal vector */
|
|
npno[0] = (refl_vel[0] - (d_nvect[0] * ref_plane_mag * damping));
|
|
npno[1] = (refl_vel[1] - (d_nvect[1] * ref_plane_mag * damping));
|
|
npno[2] = (refl_vel[2] - (d_nvect[2] * ref_plane_mag * damping));
|
|
|
|
/* Now reset opno */
|
|
VECCOPY(opno,npno);
|
|
VECCOPY(forcec, force);
|
|
|
|
/* If the particle has bounced more than four times on the same */
|
|
/* face within this cycle (depth > 4, same face > 4 ) */
|
|
/* Then set the force to be only that component of the force */
|
|
/* in the same direction as the face normal */
|
|
/* i.e. subtract the component of the force in the direction */
|
|
/* of the face normal from the actual force */
|
|
if ((ds_object == *last_object) && (ds_face == *last_face)) {
|
|
/* Increment same_face */
|
|
*same_face = *same_face + 1;
|
|
if ((*same_face > 3) && (def_depth > 3)) {
|
|
force_mag_norm = INPR(forcec, d_nvect);
|
|
forcec[0] = forcec[0] - (d_nvect[0] * force_mag_norm);
|
|
forcec[1] = forcec[1] - (d_nvect[1] * force_mag_norm);
|
|
forcec[2] = forcec[2] - (d_nvect[2] * force_mag_norm);
|
|
}
|
|
}
|
|
else *same_face = 1;
|
|
|
|
*last_object = ds_object;
|
|
*last_face = ds_face;
|
|
|
|
/* We have the particles speed at the point of collision */
|
|
/* Now we want the particles speed at the current key frame */
|
|
|
|
npno[0]= npno[0] + time_after*forcec[0];
|
|
npno[1]= npno[1] + time_after*forcec[1];
|
|
npno[2]= npno[2] + time_after*forcec[2];
|
|
|
|
/* Now we have to recalculate pa->co for the remainder*/
|
|
/* of the time since the intersect*/
|
|
npco[0]= npco[0] + time_after*npno[0];
|
|
npco[1]= npco[1] + time_after*npno[1];
|
|
npco[2]= npco[2] + time_after*npno[2];
|
|
|
|
/* And set the old co-ordinates back to the point just above the intersection */
|
|
VECCOPY(opco, d_i_co_above);
|
|
|
|
/* Finally update the time */
|
|
life = time_after;
|
|
cur_time += time_before;
|
|
|
|
/* The particle may have fallen through the face again by now!!*/
|
|
/* So check if the particle has changed sides of the plane compared*/
|
|
/* the co-ordinates at the last keyframe*/
|
|
/* But only do this as a last resort, if we've got to the end of the */
|
|
/* number of collisions allowed */
|
|
if (def_depth==9) {
|
|
k_point3 = INPR(d_nvect,npco);
|
|
if (((dk_plane > k_point3) && (dk_plane < dk_point1))||((dk_plane < k_point3) && (dk_plane > dk_point1))) {
|
|
|
|
/* Yup, the pesky particle may have fallen through a hole!!! */
|
|
/* So we'll cheat a bit and move the particle along the normal vector */
|
|
/* until it's just the other side of the plane */
|
|
icalctop = (dk_plane - d_nvect[0]*npco[0] - d_nvect[1]*npco[1] - d_nvect[2]*npco[2]);
|
|
icalcbot = (d_nvect[0]*d_nvect[0] + d_nvect[1]*d_nvect[1] + d_nvect[2]*d_nvect[2]);
|
|
dist_to_plane = icalctop / icalcbot;
|
|
|
|
/* Now just increase the distance a little to place */
|
|
/* the point the other side of the plane */
|
|
dist_to_plane *= 1.1f;
|
|
npco[0]= npco[0] + (dist_to_plane * d_nvect[0]);
|
|
npco[1]= npco[1] + (dist_to_plane * d_nvect[1]);
|
|
npco[2]= npco[2] + (dist_to_plane * d_nvect[2]);
|
|
|
|
}
|
|
}
|
|
}
|
|
return deflected;
|
|
}
|
|
|
|
/*
|
|
rng= random number generator
|
|
ob = object that spawns the particles
|
|
depth = for fireworks
|
|
nr = index nr of current particle
|
|
paf = the particle system
|
|
part = current particle
|
|
force = force vector
|
|
deform = flag to indicate lattice deform
|
|
*/
|
|
static void make_particle_keys(RNG *rng, Object *ob, int depth, int nr, PartEff *paf, Particle *part, float *force, int deform, MTex *mtex, ListBase *effectorbase)
|
|
{
|
|
Particle *pa, *opa = NULL;
|
|
float damp, deltalife, life;
|
|
float cur_time;
|
|
float opco[3], opno[3], npco[3], npno[3], new_force[3], new_speed[3];
|
|
int b, rt1, rt2, deflected, deflection, finish_defs, def_count;
|
|
int last_ob, last_fc, same_fc;
|
|
|
|
damp= 1.0f-paf->damp;
|
|
pa= part;
|
|
|
|
/* start speed: random */
|
|
if(paf->randfac!=0.0) {
|
|
pa->no[0]+= paf->randfac*(rng_getFloat(rng) - 0.5f);
|
|
pa->no[1]+= paf->randfac*(rng_getFloat(rng) - 0.5f);
|
|
pa->no[2]+= paf->randfac*(rng_getFloat(rng) - 0.5f);
|
|
}
|
|
|
|
/* start speed: texture */
|
|
if(mtex && paf->texfac!=0.0) {
|
|
particle_tex(mtex, paf, pa->co, pa->no);
|
|
}
|
|
|
|
/* effectors here? */
|
|
if(effectorbase)
|
|
precalc_effectors(ob, paf, pa, effectorbase);
|
|
|
|
if(paf->totkey>1) deltalife= pa->lifetime/(paf->totkey-1);
|
|
else deltalife= pa->lifetime;
|
|
|
|
/* longer lifetime results in longer distance covered */
|
|
VecMulf(pa->no, deltalife);
|
|
|
|
opa= pa;
|
|
pa++;
|
|
|
|
for(b=1; b<paf->totkey; b++) {
|
|
|
|
/* new time */
|
|
pa->time= opa->time+deltalife;
|
|
cur_time = pa->time;
|
|
|
|
/* set initial variables */
|
|
VECCOPY(opco, opa->co);
|
|
VECCOPY(new_force, force);
|
|
VECCOPY(new_speed, opa->no);
|
|
VecMulf(new_speed, 1.0f/deltalife);
|
|
//new_speed[0] = new_speed[1] = new_speed[2] = 0.0f;
|
|
|
|
/* handle differences between static (local coords, fixed frame) and dynamic */
|
|
if(effectorbase) {
|
|
float loc_time= ((float)b)/(float)(paf->totkey-1);
|
|
|
|
if(paf->flag & PAF_STATIC) {
|
|
float opco1[3], new_force1[3];
|
|
|
|
/* move co and force to global coords */
|
|
VECCOPY(opco1, opco);
|
|
Mat4MulVecfl(ob->obmat, opco1);
|
|
VECCOPY(new_force1, new_force);
|
|
Mat4Mul3Vecfl(ob->obmat, new_force1);
|
|
Mat4Mul3Vecfl(ob->obmat, new_speed);
|
|
|
|
cur_time = G.scene->r.cfra;
|
|
|
|
/* force fields */
|
|
pdDoEffectors(effectorbase, opco1, new_force1, new_speed, cur_time, loc_time, 0);
|
|
|
|
/* move co, force and newspeed back to local */
|
|
VECCOPY(opco, opco1);
|
|
Mat4MulVecfl(ob->imat, opco);
|
|
VECCOPY(new_force, new_force1);
|
|
Mat4Mul3Vecfl(ob->imat, new_force);
|
|
Mat4Mul3Vecfl(ob->imat, new_speed);
|
|
}
|
|
else {
|
|
/* force fields */
|
|
pdDoEffectors(effectorbase, opco, new_force, new_speed, cur_time, loc_time, 0);
|
|
}
|
|
}
|
|
|
|
/* new speed */
|
|
pa->no[0]= deltalife * (new_speed[0] + new_force[0]);
|
|
pa->no[1]= deltalife * (new_speed[1] + new_force[1]);
|
|
pa->no[2]= deltalife * (new_speed[2] + new_force[2]);
|
|
|
|
/* new location */
|
|
pa->co[0]= opa->co[0] + pa->no[0];
|
|
pa->co[1]= opa->co[1] + pa->no[1];
|
|
pa->co[2]= opa->co[2] + pa->no[2];
|
|
|
|
/* Particle deflection code */
|
|
if((paf->flag & PAF_STATIC)==0) {
|
|
deflection = 0;
|
|
finish_defs = 1;
|
|
def_count = 0;
|
|
|
|
VECCOPY(opno, opa->no);
|
|
VECCOPY(npco, pa->co);
|
|
VECCOPY(npno, pa->no);
|
|
|
|
life = deltalife;
|
|
cur_time -= deltalife;
|
|
|
|
last_ob = -1;
|
|
last_fc = -1;
|
|
same_fc = 0;
|
|
|
|
/* First call the particle deflection check for the particle moving */
|
|
/* between the old co-ordinates and the new co-ordinates */
|
|
/* If a deflection occurs, call the code again, this time between the */
|
|
/* intersection point and the updated new co-ordinates */
|
|
/* Bail out if we've done the calculation 10 times - this seems ok */
|
|
/* for most scenes I've tested */
|
|
while (finish_defs) {
|
|
deflected = pdDoDeflection(rng, opco, npco, opno, npno, life, new_force,
|
|
def_count, cur_time, ob->lay,
|
|
&last_ob, &last_fc, &same_fc);
|
|
if (deflected) {
|
|
def_count = def_count + 1;
|
|
deflection = 1;
|
|
if (def_count==10) finish_defs = 0;
|
|
}
|
|
else {
|
|
finish_defs = 0;
|
|
}
|
|
}
|
|
|
|
/* Only update the particle positions and speed if we had a deflection */
|
|
if (deflection) {
|
|
pa->co[0] = npco[0];
|
|
pa->co[1] = npco[1];
|
|
pa->co[2] = npco[2];
|
|
pa->no[0] = npno[0];
|
|
pa->no[1] = npno[1];
|
|
pa->no[2] = npno[2];
|
|
}
|
|
}
|
|
|
|
/* speed: texture */
|
|
if(mtex && paf->texfac!=0.0) {
|
|
particle_tex(mtex, paf, pa->co, pa->no);
|
|
}
|
|
if(damp!=1.0) {
|
|
pa->no[0]*= damp;
|
|
pa->no[1]*= damp;
|
|
pa->no[2]*= damp;
|
|
}
|
|
|
|
opa= pa;
|
|
pa++;
|
|
/* opa is used later on too! */
|
|
}
|
|
|
|
if(deform) {
|
|
/* deform all keys */
|
|
pa= part;
|
|
b= paf->totkey;
|
|
while(b--) {
|
|
calc_latt_deform(pa->co, 1.0f);
|
|
pa++;
|
|
}
|
|
}
|
|
|
|
/* the big multiplication */
|
|
if(depth<PAF_MAXMULT && paf->mult[depth]!=0.0) {
|
|
|
|
/* new 'child' emerges from an average 'mult' part from
|
|
the particles */
|
|
damp = (float)nr;
|
|
rt1= (int)(damp*paf->mult[depth]);
|
|
rt2= (int)((damp+1.0)*paf->mult[depth]);
|
|
if(rt1!=rt2) {
|
|
|
|
for(b=0; b<paf->child[depth]; b++) {
|
|
pa= new_particle(paf);
|
|
*pa= *opa;
|
|
pa->lifetime= paf->life[depth];
|
|
if(paf->randlife!=0.0) {
|
|
pa->lifetime*= 1.0f + paf->randlife*(rng_getFloat(rng) - 0.5f);
|
|
}
|
|
pa->mat_nr= paf->mat[depth];
|
|
|
|
make_particle_keys(rng, ob, depth+1, b, paf, pa, force, deform, mtex, effectorbase);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_mv_jit(float *jit, int num, int seed2)
|
|
{
|
|
RNG *rng;
|
|
float *jit2, x, rad1, rad2, rad3;
|
|
int i, num2;
|
|
|
|
if(num==0) return;
|
|
|
|
rad1= (float)(1.0/sqrt((float)num));
|
|
rad2= (float)(1.0/((float)num));
|
|
rad3= (float)sqrt((float)num)/((float)num);
|
|
|
|
rng = rng_new(31415926 + num + seed2);
|
|
x= 0;
|
|
num2 = 2 * num;
|
|
for(i=0; i<num2; i+=2) {
|
|
|
|
jit[i]= x + rad1*(0.5f - rng_getFloat(rng));
|
|
jit[i+1]= i/(2.0f*num) + rad1*(0.5f - rng_getFloat(rng));
|
|
|
|
jit[i]-= (float)floor(jit[i]);
|
|
jit[i+1]-= (float)floor(jit[i+1]);
|
|
|
|
x+= rad3;
|
|
x -= (float)floor(x);
|
|
}
|
|
|
|
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
|
|
|
|
for (i=0 ; i<4 ; i++) {
|
|
RE_jitterate1(jit, jit2, num, rad1);
|
|
RE_jitterate1(jit, jit2, num, rad1);
|
|
RE_jitterate2(jit, jit2, num, rad2);
|
|
}
|
|
MEM_freeN(jit2);
|
|
rng_free(rng);
|
|
}
|
|
|
|
#define JIT_RAND 32
|
|
|
|
/* for a position within a face, tot is total amount of faces */
|
|
static void give_mesh_particle_coord(PartEff *paf, VeNoCo *noco, MFace *mface, int partnr, int subnr, float *co, float *no)
|
|
{
|
|
static float *jit= NULL;
|
|
static float *trands= NULL;
|
|
static int jitlevel= 1;
|
|
float *v1, *v2, *v3, *v4;
|
|
float u, v;
|
|
float *n1, *n2, *n3, *n4;
|
|
|
|
/* free signal */
|
|
if(paf==NULL) {
|
|
if(jit) MEM_freeN(jit);
|
|
jit= NULL;
|
|
if(trands) MEM_freeN(trands);
|
|
trands= NULL;
|
|
return;
|
|
}
|
|
|
|
/* first time initialize jitter or trand, partnr then is total amount of particles, subnr total amount of faces */
|
|
if(trands==NULL && jit==NULL) {
|
|
RNG *rng = rng_new(31415926 + paf->seed);
|
|
int i, tot;
|
|
|
|
if(paf->flag & PAF_TRAND)
|
|
tot= partnr;
|
|
else
|
|
tot= JIT_RAND; /* arbitrary... allows JIT_RAND times more particles in a face for jittered distro */
|
|
|
|
trands= MEM_callocN(2+2*tot*sizeof(float), "trands");
|
|
for(i=0; i<tot; i++) {
|
|
trands[2*i]= rng_getFloat(rng);
|
|
trands[2*i+1]= rng_getFloat(rng);
|
|
}
|
|
rng_free(rng);
|
|
|
|
if((paf->flag & PAF_TRAND)==0) {
|
|
jitlevel= paf->userjit;
|
|
|
|
if(jitlevel == 0) {
|
|
jitlevel= partnr/subnr;
|
|
if(paf->flag & PAF_EDISTR) jitlevel*= 2; /* looks better in general, not very scietific */
|
|
if(jitlevel<3) jitlevel= 3;
|
|
if(jitlevel>100) jitlevel= 100;
|
|
}
|
|
|
|
jit= MEM_callocN(2+ jitlevel*2*sizeof(float), "jit");
|
|
init_mv_jit(jit, jitlevel, paf->seed);
|
|
BLI_array_randomize(jit, 2*sizeof(float), jitlevel, paf->seed); /* for custom jit or even distribution */
|
|
}
|
|
return;
|
|
}
|
|
|
|
if(paf->flag & PAF_TRAND) {
|
|
u= trands[2*partnr];
|
|
v= trands[2*partnr+1];
|
|
}
|
|
else {
|
|
/* jittered distribution gets fixed random offset */
|
|
if(subnr>=jitlevel) {
|
|
int jitrand= (subnr/jitlevel) % JIT_RAND;
|
|
|
|
subnr %= jitlevel;
|
|
u= jit[2*subnr] + trands[2*jitrand];
|
|
v= jit[2*subnr+1] + trands[2*jitrand+1];
|
|
if(u > 1.0f) u-= 1.0f;
|
|
if(v > 1.0f) v-= 1.0f;
|
|
}
|
|
else {
|
|
u= jit[2*subnr];
|
|
v= jit[2*subnr+1];
|
|
}
|
|
}
|
|
|
|
v1= (noco+(mface->v1))->co;
|
|
v2= (noco+(mface->v2))->co;
|
|
v3= (noco+(mface->v3))->co;
|
|
n1= (noco+(mface->v1))->no;
|
|
n2= (noco+(mface->v2))->no;
|
|
n3= (noco+(mface->v3))->no;
|
|
|
|
if(mface->v4) {
|
|
float uv= u*v;
|
|
float muv= (1.0f-u)*(v);
|
|
float umv= (u)*(1.0f-v);
|
|
float mumv= (1.0f-u)*(1.0f-v);
|
|
|
|
v4= (noco+(mface->v4))->co;
|
|
n4= (noco+(mface->v4))->no;
|
|
|
|
co[0]= mumv*v1[0] + muv*v2[0] + uv*v3[0] + umv*v4[0];
|
|
co[1]= mumv*v1[1] + muv*v2[1] + uv*v3[1] + umv*v4[1];
|
|
co[2]= mumv*v1[2] + muv*v2[2] + uv*v3[2] + umv*v4[2];
|
|
|
|
no[0]= mumv*n1[0] + muv*n2[0] + uv*n3[0] + umv*n4[0];
|
|
no[1]= mumv*n1[1] + muv*n2[1] + uv*n3[1] + umv*n4[1];
|
|
no[2]= mumv*n1[2] + muv*n2[2] + uv*n3[2] + umv*n4[2];
|
|
}
|
|
else {
|
|
/* mirror triangle uv coordinates when on other side */
|
|
if(u + v > 1.0f) {
|
|
u= 1.0f-u;
|
|
v= 1.0f-v;
|
|
}
|
|
co[0]= v1[0] + u*(v3[0]-v1[0]) + v*(v2[0]-v1[0]);
|
|
co[1]= v1[1] + u*(v3[1]-v1[1]) + v*(v2[1]-v1[1]);
|
|
co[2]= v1[2] + u*(v3[2]-v1[2]) + v*(v2[2]-v1[2]);
|
|
|
|
no[0]= n1[0] + u*(n3[0]-n1[0]) + v*(n2[0]-n1[0]);
|
|
no[1]= n1[1] + u*(n3[1]-n1[1]) + v*(n2[1]-n1[1]);
|
|
no[2]= n1[2] + u*(n3[2]-n1[2]) + v*(n2[2]-n1[2]);
|
|
}
|
|
}
|
|
|
|
|
|
/* Gets a MDeformVert's weight in group (0 if not in group) */
|
|
/* note; this call could be in mesh.c or deform.c, but OK... it's in armature.c too! (ton) */
|
|
static float vert_weight(MDeformVert *dvert, int group)
|
|
{
|
|
MDeformWeight *dw;
|
|
int i;
|
|
|
|
if(dvert) {
|
|
dw= dvert->dw;
|
|
for(i= dvert->totweight; i>0; i--, dw++) {
|
|
if(dw->def_nr == group) return dw->weight;
|
|
if(i==1) break; /*otherwise dw will point to somewhere it shouldn't*/
|
|
}
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
/* Gets a faces average weight in a group, helper for below, face and weights are always set */
|
|
static float face_weight(MFace *face, float *weights)
|
|
{
|
|
float tweight;
|
|
|
|
tweight = weights[face->v1] + weights[face->v2] + weights[face->v3];
|
|
|
|
if(face->v4) {
|
|
tweight += weights[face->v4];
|
|
tweight /= 4.0;
|
|
}
|
|
else {
|
|
tweight /= 3.0;
|
|
}
|
|
|
|
return tweight;
|
|
}
|
|
|
|
/* helper function for build_particle_system() */
|
|
static void make_weight_tables(PartEff *paf, Mesh *me, int totpart, VeNoCo *vertlist, int totvert, MFace *facelist, int totface, float **vweights, float **fweights)
|
|
{
|
|
MFace *mface;
|
|
float *foweights=NULL, *voweights=NULL;
|
|
float totvweight=0.0f, totfweight=0.0f;
|
|
int a;
|
|
|
|
if((paf->flag & PAF_FACE)==0) totface= 0;
|
|
|
|
/* collect emitting vertices & faces if vert groups used */
|
|
if(paf->vertgroup && me->dvert) {
|
|
|
|
/* allocate weights array for all vertices, also for lookup of faces later on. note it's a malloc */
|
|
*vweights= voweights= MEM_mallocN( totvert*sizeof(float), "pafvoweights" );
|
|
totvweight= 0.0f;
|
|
for(a=0; a<totvert; a++) {
|
|
voweights[a]= vert_weight(me->dvert+a, paf->vertgroup-1);
|
|
totvweight+= voweights[a];
|
|
}
|
|
|
|
if(totface) {
|
|
/* allocate weights array for faces, note it's a malloc */
|
|
*fweights= foweights= MEM_mallocN(totface*sizeof(float), "paffoweights" );
|
|
for(a=0, mface=facelist; a<totface; a++, mface++) {
|
|
foweights[a] = face_weight(mface, voweights);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* make weights for faces or for even area distribution */
|
|
if(totface && (paf->flag & PAF_EDISTR)) {
|
|
float maxfarea= 0.0f, curfarea;
|
|
|
|
/* two cases for area distro, second case we already have group weights */
|
|
if(foweights==NULL) {
|
|
/* allocate weights array for faces, note it's a malloc */
|
|
*fweights= foweights= MEM_mallocN(totface*sizeof(float), "paffoweights" );
|
|
|
|
for(a=0, mface=facelist; a<totface; a++, mface++) {
|
|
if (mface->v4)
|
|
curfarea= AreaQ3Dfl(vertlist[mface->v1].co, vertlist[mface->v2].co, vertlist[mface->v3].co, vertlist[mface->v4].co);
|
|
else
|
|
curfarea= AreaT3Dfl(vertlist[mface->v1].co, vertlist[mface->v2].co, vertlist[mface->v3].co);
|
|
if(curfarea>maxfarea)
|
|
maxfarea = curfarea;
|
|
foweights[a]= curfarea;
|
|
}
|
|
}
|
|
else {
|
|
for(a=0, mface=facelist; a<totface; a++, mface++) {
|
|
if(foweights[a]!=0.0f) {
|
|
if (mface->v4)
|
|
curfarea= AreaQ3Dfl(vertlist[mface->v1].co, vertlist[mface->v2].co, vertlist[mface->v3].co, vertlist[mface->v4].co);
|
|
else
|
|
curfarea= AreaT3Dfl(vertlist[mface->v1].co, vertlist[mface->v2].co, vertlist[mface->v3].co);
|
|
if(curfarea>maxfarea)
|
|
maxfarea = curfarea;
|
|
foweights[a]*= curfarea;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* normalize weights for max face area, calculate tot */
|
|
if(maxfarea!=0.0f) {
|
|
maxfarea= 1.0f/maxfarea;
|
|
for(a=0; a< totface; a++) {
|
|
if(foweights[a]!=0.0) {
|
|
foweights[a] *= maxfarea;
|
|
totfweight+= foweights[a];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(foweights) {
|
|
/* only add totfweight value */
|
|
for(a=0; a< totface; a++) {
|
|
if(foweights[a]!=0.0) {
|
|
totfweight+= foweights[a];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if weight arrays, we turn these arrays into the amount of particles */
|
|
if(totvert && voweights) {
|
|
float mult= (float)totpart/totvweight;
|
|
|
|
for(a=0; a< totvert; a++) {
|
|
if(voweights[a]!=0.0)
|
|
voweights[a] *= mult;
|
|
}
|
|
}
|
|
|
|
if(totface && foweights) {
|
|
float mult= (float)totpart/totfweight;
|
|
|
|
for(a=0; a< totface; a++) {
|
|
if(foweights[a]!=0.0)
|
|
foweights[a] *= mult;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* helper function for build_particle_system() */
|
|
static void make_length_tables(PartEff *paf, Mesh *me, int totvert, MFace *facelist, int totface, float **vlengths, float **flengths)
|
|
{
|
|
MFace *mface;
|
|
float *folengths=NULL, *volengths=NULL;
|
|
int a;
|
|
|
|
if((paf->flag & PAF_FACE)==0) totface= 0;
|
|
|
|
/* collect emitting vertices & faces if vert groups used */
|
|
if(paf->vertgroup_v && me->dvert) {
|
|
|
|
/* allocate lengths array for all vertices, also for lookup of faces later on. note it's a malloc */
|
|
*vlengths= volengths= MEM_mallocN( totvert*sizeof(float), "pafvolengths" );
|
|
for(a=0; a<totvert; a++) {
|
|
volengths[a]= vert_weight(me->dvert+a, paf->vertgroup_v-1);
|
|
}
|
|
|
|
if(totface) {
|
|
/* allocate lengths array for faces, note it's a malloc */
|
|
*flengths= folengths= MEM_mallocN(totface*sizeof(float), "paffolengths" );
|
|
for(a=0, mface=facelist; a<totface; a++, mface++) {
|
|
folengths[a] = face_weight(mface, volengths);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* for paf start to end, store all matrices for objects */
|
|
typedef struct pMatrixCache {
|
|
float obmat[4][4];
|
|
float imat[3][3];
|
|
} pMatrixCache;
|
|
|
|
static pMatrixCache *cache_object_matrices(Object *ob, int start, int end)
|
|
{
|
|
pMatrixCache *mcache, *mc;
|
|
Object *par;
|
|
float framelenold, sfrao;
|
|
int cfrao;
|
|
|
|
mcache= mc= MEM_mallocN( (end-start+1)*sizeof(pMatrixCache), "ob matrix cache");
|
|
|
|
framelenold= G.scene->r.framelen;
|
|
G.scene->r.framelen= 1.0f;
|
|
cfrao= G.scene->r.cfra;
|
|
sfrao= ob->sf;
|
|
ob->sf= 0.0f;
|
|
|
|
for(G.scene->r.cfra= start; G.scene->r.cfra<=end; G.scene->r.cfra++, mc++) {
|
|
|
|
par= ob;
|
|
while(par) {
|
|
par->ctime= -1234567.0; /* hrms? */
|
|
do_ob_key(par);
|
|
if(par->type==OB_ARMATURE) {
|
|
do_all_pose_actions(par); // only does this object actions
|
|
where_is_pose(par);
|
|
}
|
|
par= par->parent;
|
|
}
|
|
|
|
where_is_object(ob);
|
|
Mat4CpyMat4(mc->obmat, ob->obmat);
|
|
Mat4Invert(ob->imat, ob->obmat);
|
|
Mat3CpyMat4(mc->imat, ob->imat);
|
|
Mat3Transp(mc->imat);
|
|
}
|
|
|
|
|
|
/* restore */
|
|
G.scene->r.cfra= cfrao;
|
|
G.scene->r.framelen= framelenold;
|
|
ob->sf= sfrao;
|
|
|
|
/* restore hierarchy */
|
|
par= ob;
|
|
while(par) {
|
|
/* do not do ob->ipo: keep insertkey */
|
|
par->ctime= -1234567.0; /* hrms? */
|
|
do_ob_key(par);
|
|
|
|
if(par->type==OB_ARMATURE) {
|
|
do_all_pose_actions(par); // only does this object actions
|
|
where_is_pose(par);
|
|
}
|
|
par= par->parent;
|
|
}
|
|
|
|
where_is_object(ob);
|
|
|
|
return mcache;
|
|
}
|
|
|
|
/* main particle building function
|
|
one day particles should become dynamic (realtime) with the current method as a 'bake' (ton) */
|
|
void build_particle_system(Object *ob)
|
|
{
|
|
RNG *rng;
|
|
PartEff *paf;
|
|
Particle *pa;
|
|
Mesh *me;
|
|
Base *base;
|
|
MTex *mtexmove=0, *mtextime=0;
|
|
Material *ma;
|
|
MFace *facelist= NULL;
|
|
pMatrixCache *mcache=NULL, *mcnow, *mcprev;
|
|
ListBase *effectorbase;
|
|
VeNoCo *vertexcosnos;
|
|
double startseconds= PIL_check_seconds_timer();
|
|
float ftime, dtime, force[3], vec[3], fac, co[3], no[3];
|
|
float *voweights= NULL, *foweights= NULL, maxw=1.0f;
|
|
float *volengths= NULL, *folengths= NULL;
|
|
int deform=0, a, totpart, paf_sta, paf_end;
|
|
int waitcursor_set= 0, totvert, totface, curface, curvert;
|
|
|
|
/* return conditions */
|
|
if(ob->type!=OB_MESH) return;
|
|
me= ob->data;
|
|
|
|
paf= give_parteff(ob);
|
|
if(paf==NULL) return;
|
|
if(paf->keys) MEM_freeN(paf->keys); /* free as early as possible, for returns */
|
|
paf->keys= NULL;
|
|
|
|
if(paf->end < paf->sta) return;
|
|
|
|
if( (paf->flag & PAF_OFACE) && (paf->flag & PAF_FACE)==0) return;
|
|
|
|
if(me->totvert==0) return;
|
|
|
|
if(ob==G.obedit) return;
|
|
|
|
totpart= (R.flag & R_RENDERING)?paf->totpart:(paf->disp*paf->totpart)/100;
|
|
if(totpart==0) return;
|
|
|
|
/* No returns after this line! */
|
|
|
|
/* material */
|
|
ma= give_current_material(ob, paf->omat);
|
|
if(ma) {
|
|
if(paf->speedtex)
|
|
mtexmove= ma->mtex[paf->speedtex-1];
|
|
mtextime= ma->mtex[paf->timetex-1];
|
|
}
|
|
|
|
disable_speed_curve(1); /* check this... */
|
|
|
|
/* initialize particles */
|
|
new_particle(paf);
|
|
|
|
/* reset deflector cache, sumohandle is free, but its still sorta abuse... (ton) */
|
|
for(base= G.scene->base.first; base; base= base->next)
|
|
base->object->sumohandle= NULL;
|
|
|
|
/* all object positions from start to end */
|
|
paf_sta= (int)floor(paf->sta);
|
|
paf_end= (int)ceil(paf->end);
|
|
if((paf->flag & PAF_STATIC)==0)
|
|
mcache= cache_object_matrices(ob, paf_sta, paf_end);
|
|
|
|
/* mult generations? */
|
|
for(a=0; a<PAF_MAXMULT; a++) {
|
|
if(paf->mult[a]!=0.0) {
|
|
/* interesting formula! this way after 'x' generations the total is paf->totpart */
|
|
totpart= (int)(totpart / (1.0+paf->mult[a]*paf->child[a]));
|
|
}
|
|
else break;
|
|
}
|
|
|
|
/* for static particles, calculate system on current frame (? ton) */
|
|
if(ma) do_mat_ipo(ma);
|
|
|
|
/* matrix invert for static too */
|
|
Mat4Invert(ob->imat, ob->obmat);
|
|
|
|
/* new random generator */
|
|
rng = rng_new(paf->seed);
|
|
|
|
/* otherwise it goes way too fast */
|
|
force[0]= paf->force[0]*0.05f;
|
|
force[1]= paf->force[1]*0.05f;
|
|
force[2]= paf->force[2]*0.05f;
|
|
|
|
if( paf->flag & PAF_STATIC ) deform= 0;
|
|
else {
|
|
deform= (ob->parent && ob->parent->type==OB_LATTICE && ob->partype==PARSKEL);
|
|
if(deform) init_latt_deform(ob->parent, 0);
|
|
}
|
|
|
|
/* get the effectors */
|
|
effectorbase= pdInitEffectors(ob->lay);
|
|
|
|
/* init geometry, return is 6 x float * me->totvert in size */
|
|
vertexcosnos= (VeNoCo *)mesh_get_mapped_verts_nors(ob);
|
|
facelist= me->mface;
|
|
totvert= me->totvert;
|
|
totface= me->totface;
|
|
|
|
/* if vertexweights or even distribution, it makes weight tables, also checks where it emits from */
|
|
make_weight_tables(paf, me, totpart, vertexcosnos, totvert, facelist, totface, &voweights, &foweights);
|
|
|
|
/* vertexweights can define lengths too */
|
|
make_length_tables(paf, me, totvert, facelist, totface, &volengths, &folengths);
|
|
|
|
/* now define where to emit from, if there are face weights we skip vertices */
|
|
if(paf->flag & PAF_OFACE) totvert= 0;
|
|
if((paf->flag & PAF_FACE)==0) totface= 0;
|
|
if(foweights) totvert= 0;
|
|
|
|
/* initialize give_mesh_particle_coord */
|
|
if(totface)
|
|
give_mesh_particle_coord(paf, vertexcosnos, facelist, totpart, totface, NULL, NULL);
|
|
|
|
/* correction for face timing when using weighted average */
|
|
if(totface && foweights) {
|
|
maxw= (paf->end-paf->sta)/foweights[0];
|
|
}
|
|
else if(totvert && voweights) {
|
|
maxw= (paf->end-paf->sta)/voweights[0];
|
|
}
|
|
|
|
/* for loop below */
|
|
if (paf->flag & PAF_STATIC) {
|
|
ftime = G.scene->r.cfra;
|
|
dtime= 0.0f;
|
|
} else {
|
|
ftime= paf->sta;
|
|
dtime= (paf->end - paf->sta)/(float)totpart;
|
|
}
|
|
|
|
curface= curvert= 0;
|
|
for(a=0; a<totpart; a++, ftime+=dtime) {
|
|
|
|
/* we set waitcursor only when a half second expired, particles now are realtime updated */
|
|
if(waitcursor_set==0 && (a % 256)==255) {
|
|
double seconds= PIL_check_seconds_timer();
|
|
if(seconds - startseconds > 0.5) {
|
|
waitcursor(1);
|
|
waitcursor_set= 1;
|
|
}
|
|
}
|
|
|
|
pa= new_particle(paf);
|
|
pa->time= ftime;
|
|
|
|
/* get coordinates from faces, only when vertices set to zero */
|
|
if(totvert==0 && totface) {
|
|
int curjit;
|
|
|
|
/* use weight table, we have to do faces in order to be able to use jitter table... */
|
|
if(foweights) {
|
|
|
|
if(foweights[curface] < 1.0f) {
|
|
float remainder= 0.0f;
|
|
|
|
while(remainder + foweights[curface] < 1.0f && curface<totface-1) {
|
|
remainder += foweights[curface];
|
|
curface++;
|
|
}
|
|
foweights[curface] += remainder;
|
|
maxw= (paf->end-paf->sta)/foweights[curface];
|
|
}
|
|
|
|
if(foweights[curface]==0.0f)
|
|
break; /* WARN skips here out of particle generating */
|
|
else {
|
|
if(foweights[curface] > 1.0f)
|
|
foweights[curface] -= 1.0f;
|
|
|
|
curjit= (int) foweights[curface];
|
|
give_mesh_particle_coord(paf, vertexcosnos, facelist+curface, a, curjit, co, no);
|
|
|
|
/* time correction to make particles appear evenly, maxw does interframe (0-1) */
|
|
pa->time= paf->sta + maxw*foweights[curface];
|
|
}
|
|
}
|
|
else {
|
|
curface= a % totface;
|
|
curjit= a/totface;
|
|
give_mesh_particle_coord(paf, vertexcosnos, facelist+curface, a, curjit, co, no);
|
|
}
|
|
}
|
|
/* get coordinates from vertices */
|
|
if(totvert) {
|
|
/* use weight table */
|
|
if(voweights) {
|
|
|
|
if(voweights[curvert] < 1.0f) {
|
|
float remainder= 0.0f;
|
|
|
|
while(remainder + voweights[curvert] < 1.0f && curvert<totvert-1) {
|
|
remainder += voweights[curvert];
|
|
curvert++;
|
|
}
|
|
voweights[curvert] += remainder;
|
|
maxw= (paf->end-paf->sta)/voweights[curvert];
|
|
}
|
|
|
|
if(voweights[curvert]==0.0f)
|
|
break; /* WARN skips here out of particle generating */
|
|
else {
|
|
if(voweights[curvert] > 1.0f)
|
|
voweights[curvert] -= 1.0f;
|
|
|
|
/* time correction to make particles appear evenly */
|
|
pa->time= paf->sta + maxw*voweights[curvert];
|
|
}
|
|
}
|
|
else {
|
|
curvert= a % totvert;
|
|
if(a >= totvert && totface)
|
|
totvert= 0;
|
|
}
|
|
|
|
VECCOPY(co, vertexcosnos[curvert].co);
|
|
VECCOPY(no, vertexcosnos[curvert].no);
|
|
}
|
|
|
|
VECCOPY(pa->co, co);
|
|
|
|
/* dynamic options */
|
|
if((paf->flag & PAF_STATIC)==0) {
|
|
int cur;
|
|
|
|
/* particle retiming with texture */
|
|
if(mtextime && (paf->flag2 & PAF_TEXTIME)) {
|
|
float tin, tr, tg, tb, ta, orco[3];
|
|
|
|
/* calculate normalized orco */
|
|
orco[0] = (co[0]-me->loc[0])/me->size[0];
|
|
orco[1] = (co[1]-me->loc[1])/me->size[1];
|
|
orco[2] = (co[2]-me->loc[2])/me->size[2];
|
|
externtex(mtextime, orco, &tin, &tr, &tg, &tb, &ta);
|
|
|
|
if(paf->flag2neg & PAF_TEXTIME)
|
|
pa->time = paf->sta + (paf->end - paf->sta)*tin;
|
|
else
|
|
pa->time = paf->sta + (paf->end - paf->sta)*(1.0f-tin);
|
|
}
|
|
|
|
/* set ob at correct time, we use cached matrices */
|
|
cur= (int)floor(pa->time) + 1 ; /* + 1 has a reason: (obmat/prevobmat) otherwise comet-tails start too late */
|
|
|
|
if(cur <= paf_end) mcnow= mcache + cur - paf_sta;
|
|
else mcnow= mcache + paf_end - paf_sta + 1;
|
|
|
|
if(cur > paf_sta) mcprev= mcnow-1;
|
|
else mcprev= mcache;
|
|
|
|
/* move to global space */
|
|
Mat4MulVecfl(mcnow->obmat, pa->co);
|
|
|
|
VECCOPY(vec, co);
|
|
Mat4MulVecfl(mcprev->obmat, vec);
|
|
|
|
/* first start speed: object */
|
|
VECSUB(pa->no, pa->co, vec);
|
|
|
|
VecMulf(pa->no, paf->obfac);
|
|
|
|
/* calculate the correct inter-frame */
|
|
fac= (pa->time- (float)floor(pa->time));
|
|
pa->co[0]= fac*pa->co[0] + (1.0f-fac)*vec[0];
|
|
pa->co[1]= fac*pa->co[1] + (1.0f-fac)*vec[1];
|
|
pa->co[2]= fac*pa->co[2] + (1.0f-fac)*vec[2];
|
|
|
|
/* start speed: normal */
|
|
if(paf->normfac!=0.0) {
|
|
/* imat is transpose ! */
|
|
VECCOPY(vec, no);
|
|
Mat3MulVecfl(mcnow->imat, vec);
|
|
|
|
Normalise(vec);
|
|
VecMulf(vec, paf->normfac);
|
|
VECADD(pa->no, pa->no, vec);
|
|
}
|
|
}
|
|
else {
|
|
if(paf->normfac!=0.0) {
|
|
VECCOPY(pa->no, no);
|
|
Normalise(pa->no);
|
|
VecMulf(pa->no, paf->normfac);
|
|
}
|
|
}
|
|
|
|
pa->lifetime= paf->lifetime;
|
|
if(paf->randlife!=0.0) {
|
|
pa->lifetime*= 1.0f + paf->randlife*(rng_getFloat(rng) - 0.5f);
|
|
}
|
|
pa->mat_nr= paf->omat;
|
|
|
|
if(folengths)
|
|
pa->lifetime*= folengths[curface];
|
|
|
|
make_particle_keys(rng, ob, 0, a, paf, pa, force, deform, mtexmove, effectorbase);
|
|
}
|
|
|
|
/* free stuff */
|
|
give_mesh_particle_coord(NULL, NULL, NULL, 0, 0, NULL, NULL);
|
|
MEM_freeN(vertexcosnos);
|
|
if(voweights) MEM_freeN(voweights);
|
|
if(foweights) MEM_freeN(foweights);
|
|
if(volengths) MEM_freeN(volengths);
|
|
if(folengths) MEM_freeN(folengths);
|
|
if(mcache) MEM_freeN(mcache);
|
|
rng_free(rng);
|
|
|
|
if(deform) end_latt_deform();
|
|
|
|
if(effectorbase)
|
|
pdEndEffectors(effectorbase);
|
|
|
|
/* reset deflector cache */
|
|
for(base= G.scene->base.first; base; base= base->next) {
|
|
if(base->object->sumohandle) {
|
|
MEM_freeN(base->object->sumohandle);
|
|
base->object->sumohandle= NULL;
|
|
}
|
|
}
|
|
|
|
disable_speed_curve(0);
|
|
|
|
if(waitcursor_set) waitcursor(0);
|
|
}
|
|
|