This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/operations/COM_VariableSizeBokehBlurOperation.cpp
Jeroen Bakker 8b8bc164da Small optimizations in compositor.
Most of them are not noticeable.
2012-07-12 19:19:03 +00:00

331 lines
11 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
#include "COM_VariableSizeBokehBlurOperation.h"
#include "BLI_math.h"
#include "COM_OpenCLDevice.h"
extern "C" {
#include "RE_pipeline.h"
}
VariableSizeBokehBlurOperation::VariableSizeBokehBlurOperation() : NodeOperation()
{
this->addInputSocket(COM_DT_COLOR);
this->addInputSocket(COM_DT_COLOR, COM_SC_NO_RESIZE); // do not resize the bokeh image.
this->addInputSocket(COM_DT_VALUE); // radius
#ifdef COM_DEFOCUS_SEARCH
this->addInputSocket(COM_DT_COLOR, COM_SC_NO_RESIZE); // inverse search radius optimization structure.
#endif
this->addOutputSocket(COM_DT_COLOR);
this->setComplex(true);
this->setOpenCL(true);
this->m_inputProgram = NULL;
this->m_inputBokehProgram = NULL;
this->m_inputSizeProgram = NULL;
this->m_maxBlur = 32.0f;
this->m_threshold = 1.0f;
#ifdef COM_DEFOCUS_SEARCH
this->m_inputSearchProgram = NULL;
#endif
}
void VariableSizeBokehBlurOperation::initExecution()
{
this->m_inputProgram = getInputSocketReader(0);
this->m_inputBokehProgram = getInputSocketReader(1);
this->m_inputSizeProgram = getInputSocketReader(2);
#ifdef COM_DEFOCUS_SEARCH
this->m_inputSearchProgram = getInputSocketReader(3);
#endif
QualityStepHelper::initExecution(COM_QH_INCREASE);
}
void *VariableSizeBokehBlurOperation::initializeTileData(rcti *rect, MemoryBuffer **memoryBuffers)
{
MemoryBuffer** result = new MemoryBuffer*[3];
result[0] = (MemoryBuffer*)this->m_inputProgram->initializeTileData(rect, memoryBuffers);
result[1] = (MemoryBuffer*)this->m_inputBokehProgram->initializeTileData(rect, memoryBuffers);
result[2] = (MemoryBuffer*)this->m_inputSizeProgram->initializeTileData(rect, memoryBuffers);
return result;
}
void VariableSizeBokehBlurOperation::deinitializeTileData(rcti *rect, MemoryBuffer **memoryBuffers, void *data)
{
MemoryBuffer** result = (MemoryBuffer**)data;
delete[] result;
}
void VariableSizeBokehBlurOperation::executePixel(float *color, int x, int y, MemoryBuffer *inputBuffers[], void *data)
{
MemoryBuffer** buffers = (MemoryBuffer**)data;
MemoryBuffer* inputProgramBuffer = buffers[0];
MemoryBuffer* inputBokehBuffer = buffers[1];
MemoryBuffer* inputSizeBuffer = buffers[2];
float* inputSizeFloatBuffer = inputSizeBuffer->getBuffer();
float* inputProgramFloatBuffer = inputProgramBuffer->getBuffer();
float readColor[4];
float bokeh[4];
float tempSize[4];
float multiplier_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float color_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
#ifdef COM_DEFOCUS_SEARCH
float search[4];
this->m_inputSearchProgram->read(search, x/InverseSearchRadiusOperation::DIVIDER, y / InverseSearchRadiusOperation::DIVIDER, inputBuffers, NULL);
int minx = search[0];
int miny = search[1];
int maxx = search[2];
int maxy = search[3];
#else
int minx = MAX2(x - this->m_maxBlur, 0.0f);
int miny = MAX2(y - this->m_maxBlur, 0.0f);
int maxx = MIN2(x + this->m_maxBlur, m_width);
int maxy = MIN2(y + this->m_maxBlur, m_height);
#endif
{
inputSizeBuffer->readNoCheck(tempSize, x, y);
inputProgramBuffer->readNoCheck(readColor, x, y);
add_v4_v4(color_accum, readColor);
add_v4_fl(multiplier_accum, 1.0f);
float sizeCenter = tempSize[0];
const int addXStep = QualityStepHelper::getStep()*COM_NUMBER_OF_CHANNELS;
if (sizeCenter > this->m_threshold) {
for (int ny = miny; ny < maxy; ny += QualityStepHelper::getStep()) {
float dy = ny - y;
int offsetNy = ny * inputSizeBuffer->getWidth() * COM_NUMBER_OF_CHANNELS;
int offsetNxNy = offsetNy + (minx*COM_NUMBER_OF_CHANNELS);
for (int nx = minx; nx < maxx; nx += QualityStepHelper::getStep()) {
if (nx != x || ny != y)
{
float size = inputSizeFloatBuffer[offsetNxNy];
if (size > this->m_threshold) {
float fsize = fabsf(size);
float dx = nx - x;
if (fsize > fabsf(dx) && fsize > fabsf(dy)) {
float u = (256.0f + (dx/size) * 255.0f);
float v = (256.0f + (dy/size) * 255.0f);
inputBokehBuffer->readNoCheck(bokeh, u, v);
madd_v4_v4v4(color_accum, bokeh, &inputProgramFloatBuffer[offsetNxNy]);
add_v4_v4(multiplier_accum, bokeh);
}
}
}
offsetNxNy += addXStep;
}
}
}
color[0] = color_accum[0] / multiplier_accum[0];
color[1] = color_accum[1] / multiplier_accum[1];
color[2] = color_accum[2] / multiplier_accum[2];
color[3] = color_accum[3] / multiplier_accum[3];
}
}
void VariableSizeBokehBlurOperation::executeOpenCL(OpenCLDevice* device,
MemoryBuffer *outputMemoryBuffer, cl_mem clOutputBuffer,
MemoryBuffer **inputMemoryBuffers, list<cl_mem> *clMemToCleanUp,
list<cl_kernel> *clKernelsToCleanUp)
{
cl_kernel defocusKernel = device->COM_clCreateKernel("defocusKernel", NULL);
cl_int step = this->getStep();
cl_int maxBlur = this->m_maxBlur;
cl_float threshold = this->m_threshold;
device->COM_clAttachMemoryBufferToKernelParameter(defocusKernel, 0, -1, clMemToCleanUp, inputMemoryBuffers, this->m_inputProgram);
device->COM_clAttachMemoryBufferToKernelParameter(defocusKernel, 1, -1, clMemToCleanUp, inputMemoryBuffers, this->m_inputBokehProgram);
device->COM_clAttachMemoryBufferToKernelParameter(defocusKernel, 2, 4, clMemToCleanUp, inputMemoryBuffers, this->m_inputSizeProgram);
device->COM_clAttachOutputMemoryBufferToKernelParameter(defocusKernel, 3, clOutputBuffer);
device->COM_clAttachMemoryBufferOffsetToKernelParameter(defocusKernel, 5, outputMemoryBuffer);
clSetKernelArg(defocusKernel, 6, sizeof(cl_int), &step);
clSetKernelArg(defocusKernel, 7, sizeof(cl_int), &maxBlur);
clSetKernelArg(defocusKernel, 8, sizeof(cl_float), &threshold);
device->COM_clAttachSizeToKernelParameter(defocusKernel, 9, this);
device->COM_clEnqueueRange(defocusKernel, outputMemoryBuffer, 10, this);
}
void VariableSizeBokehBlurOperation::deinitExecution()
{
this->m_inputProgram = NULL;
this->m_inputBokehProgram = NULL;
this->m_inputSizeProgram = NULL;
#ifdef COM_DEFOCUS_SEARCH
this->m_inputSearchProgram = NULL;
#endif
}
bool VariableSizeBokehBlurOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newInput;
rcti bokehInput;
newInput.xmax = input->xmax + this->m_maxBlur + 2;
newInput.xmin = input->xmin - this->m_maxBlur + 2;
newInput.ymax = input->ymax + this->m_maxBlur - 2;
newInput.ymin = input->ymin - this->m_maxBlur - 2;
bokehInput.xmax = 512;
bokehInput.xmin = 0;
bokehInput.ymax = 512;
bokehInput.ymin = 0;
NodeOperation *operation = getInputOperation(2);
if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output) ) {
return true;
}
operation = getInputOperation(1);
if (operation->determineDependingAreaOfInterest(&bokehInput, readOperation, output) ) {
return true;
}
#ifdef COM_DEFOCUS_SEARCH
rcti searchInput;
searchInput.xmax = (input->xmax / InverseSearchRadiusOperation::DIVIDER) + 1;
searchInput.xmin = (input->xmin / InverseSearchRadiusOperation::DIVIDER) - 1;
searchInput.ymax = (input->ymax / InverseSearchRadiusOperation::DIVIDER) + 1;
searchInput.ymin = (input->ymin / InverseSearchRadiusOperation::DIVIDER) - 1;
operation = getInputOperation(3);
if (operation->determineDependingAreaOfInterest(&searchInput, readOperation, output) ) {
return true;
}
#endif
operation = getInputOperation(0);
if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output) ) {
return true;
}
return false;
}
#ifdef COM_DEFOCUS_SEARCH
// InverseSearchRadiusOperation
InverseSearchRadiusOperation::InverseSearchRadiusOperation() : NodeOperation()
{
this->addInputSocket(COM_DT_VALUE, COM_SC_NO_RESIZE); // radius
this->addOutputSocket(COM_DT_COLOR);
this->setComplex(true);
this->m_inputRadius = NULL;
}
void InverseSearchRadiusOperation::initExecution()
{
this->m_inputRadius = this->getInputSocketReader(0);
}
void* InverseSearchRadiusOperation::initializeTileData(rcti *rect, MemoryBuffer **memoryBuffers)
{
MemoryBuffer * data = new MemoryBuffer(NULL, rect);
float* buffer = data->getBuffer();
int x, y;
int width = this->m_inputRadius->getWidth();
int height = this->m_inputRadius->getHeight();
float temp[4];
int offset = 0;
for (y = rect->ymin; y < rect->ymax ; y++) {
for (x = rect->xmin; x < rect->xmax ; x++) {
int rx = x * DIVIDER;
int ry = y * DIVIDER;
buffer[offset] = MAX2(rx - m_maxBlur, 0);
buffer[offset+1] = MAX2(ry- m_maxBlur, 0);
buffer[offset+2] = MIN2(rx+DIVIDER + m_maxBlur, width);
buffer[offset+3] = MIN2(ry+DIVIDER + m_maxBlur, height);
offset += 4;
}
}
// for (x = rect->xmin; x < rect->xmax ; x++) {
// for (y = rect->ymin; y < rect->ymax ; y++) {
// int rx = x * DIVIDER;
// int ry = y * DIVIDER;
// float radius = 0.0f;
// float maxx = x;
// float maxy = y;
// for (int x2 = 0 ; x2 < DIVIDER ; x2 ++) {
// for (int y2 = 0 ; y2 < DIVIDER ; y2 ++) {
// this->m_inputRadius->read(temp, rx+x2, ry+y2, COM_PS_NEAREST, NULL);
// if (radius < temp[0]) {
// radius = temp[0];
// maxx = x2;
// maxy = y2;
// }
// }
// }
// int impactRadius = ceil(radius / DIVIDER);
// for (int x2 = x - impactRadius ; x2 < x + impactRadius ; x2 ++) {
// for (int y2 = y - impactRadius ; y2 < y + impactRadius ; y2 ++) {
// data->read(temp, x2, y2);
// temp[0] = MIN2(temp[0], maxx);
// temp[1] = MIN2(temp[1], maxy);
// temp[2] = MAX2(temp[2], maxx);
// temp[3] = MAX2(temp[3], maxy);
// data->writePixel(x2, y2, temp);
// }
// }
// }
// }
return data;
}
void InverseSearchRadiusOperation::executePixel(float *color, int x, int y, MemoryBuffer *inputBuffers[], void *data)
{
MemoryBuffer *buffer = (MemoryBuffer*)data;
buffer->readNoCheck(color, x, y);
}
void InverseSearchRadiusOperation::deinitializeTileData(rcti *rect, MemoryBuffer **memoryBuffers, void *data)
{
if (data) {
MemoryBuffer* mb = (MemoryBuffer*)data;
delete mb;
}
}
void InverseSearchRadiusOperation::deinitExecution()
{
this->m_inputRadius = NULL;
}
void InverseSearchRadiusOperation::determineResolution(unsigned int resolution[], unsigned int preferredResolution[])
{
NodeOperation::determineResolution(resolution, preferredResolution);
resolution[0] = resolution[0] / DIVIDER;
resolution[1] = resolution[1] / DIVIDER;
}
bool InverseSearchRadiusOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
rcti newRect;
newRect.ymin = input->ymin*DIVIDER - m_maxBlur;
newRect.ymax = input->ymax*DIVIDER + m_maxBlur;
newRect.xmin = input->xmin*DIVIDER - m_maxBlur;
newRect.xmax = input->xmax*DIVIDER + m_maxBlur;
return NodeOperation::determineDependingAreaOfInterest(&newRect, readOperation, output);
}
#endif