3514 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3514 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): none yet.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/blenkernel/intern/curve.c
 | 
						|
 *  \ingroup bke
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include <math.h>  // floor
 | 
						|
#include <string.h>
 | 
						|
#include <stdlib.h>
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "BLI_bpath.h"
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_ghash.h"
 | 
						|
 | 
						|
#include "DNA_curve_types.h"
 | 
						|
#include "DNA_material_types.h"
 | 
						|
 | 
						|
/* for dereferencing pointers */
 | 
						|
#include "DNA_key_types.h"
 | 
						|
#include "DNA_scene_types.h"
 | 
						|
#include "DNA_vfont_types.h"
 | 
						|
#include "DNA_object_types.h"
 | 
						|
 | 
						|
#include "BKE_animsys.h"
 | 
						|
#include "BKE_anim.h"
 | 
						|
#include "BKE_curve.h"
 | 
						|
#include "BKE_displist.h"
 | 
						|
#include "BKE_font.h"
 | 
						|
#include "BKE_global.h"
 | 
						|
#include "BKE_key.h"
 | 
						|
#include "BKE_library.h"
 | 
						|
#include "BKE_main.h"
 | 
						|
#include "BKE_object.h"
 | 
						|
#include "BKE_material.h"
 | 
						|
 | 
						|
/* globals */
 | 
						|
 | 
						|
/* local */
 | 
						|
static int cu_isectLL(const float v1[3], const float v2[3], const float v3[3], const float v4[3],
 | 
						|
                      short cox, short coy,
 | 
						|
                      float *labda, float *mu, float vec[3]);
 | 
						|
 | 
						|
void BKE_curve_unlink(Curve *cu)
 | 
						|
{
 | 
						|
	int a;
 | 
						|
 | 
						|
	for (a = 0; a < cu->totcol; a++) {
 | 
						|
		if (cu->mat[a]) cu->mat[a]->id.us--;
 | 
						|
		cu->mat[a] = NULL;
 | 
						|
	}
 | 
						|
	if (cu->vfont)
 | 
						|
		cu->vfont->id.us--;
 | 
						|
	cu->vfont = NULL;
 | 
						|
 | 
						|
	if (cu->vfontb)
 | 
						|
		cu->vfontb->id.us--;
 | 
						|
	cu->vfontb = NULL;
 | 
						|
 | 
						|
	if (cu->vfonti)
 | 
						|
		cu->vfonti->id.us--;
 | 
						|
	cu->vfonti = NULL;
 | 
						|
 | 
						|
	if (cu->vfontbi)
 | 
						|
		cu->vfontbi->id.us--;
 | 
						|
	cu->vfontbi = NULL;
 | 
						|
 | 
						|
	if (cu->key)
 | 
						|
		cu->key->id.us--;
 | 
						|
	cu->key = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* frees editcurve entirely */
 | 
						|
void BKE_curve_editfont_free(Curve *cu)
 | 
						|
{
 | 
						|
	if (cu->editfont) {
 | 
						|
		EditFont *ef = cu->editfont;
 | 
						|
 | 
						|
		if (ef->oldstr)
 | 
						|
			MEM_freeN(ef->oldstr);
 | 
						|
		if (ef->oldstrinfo)
 | 
						|
			MEM_freeN(ef->oldstrinfo);
 | 
						|
		if (ef->textbuf)
 | 
						|
			MEM_freeN(ef->textbuf);
 | 
						|
		if (ef->textbufinfo)
 | 
						|
			MEM_freeN(ef->textbufinfo);
 | 
						|
		if (ef->copybuf)
 | 
						|
			MEM_freeN(ef->copybuf);
 | 
						|
		if (ef->copybufinfo)
 | 
						|
			MEM_freeN(ef->copybufinfo);
 | 
						|
 | 
						|
		MEM_freeN(ef);
 | 
						|
		cu->editfont = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_editNurb_keyIndex_free(EditNurb *editnurb)
 | 
						|
{
 | 
						|
	if (!editnurb->keyindex) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	BLI_ghash_free(editnurb->keyindex, NULL, (GHashValFreeFP)MEM_freeN);
 | 
						|
	editnurb->keyindex = NULL;
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_editNurb_free(Curve *cu)
 | 
						|
{
 | 
						|
	if (cu->editnurb) {
 | 
						|
		BKE_nurbList_free(&cu->editnurb->nurbs);
 | 
						|
		BKE_curve_editNurb_keyIndex_free(cu->editnurb);
 | 
						|
		MEM_freeN(cu->editnurb);
 | 
						|
		cu->editnurb = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* don't free curve itself */
 | 
						|
void BKE_curve_free(Curve *cu)
 | 
						|
{
 | 
						|
	BKE_nurbList_free(&cu->nurb);
 | 
						|
	BLI_freelistN(&cu->bev);
 | 
						|
	BKE_displist_free(&cu->disp);
 | 
						|
	BKE_curve_editfont_free(cu);
 | 
						|
 | 
						|
	BKE_curve_editNurb_free(cu);
 | 
						|
	BKE_curve_unlink(cu);
 | 
						|
	BKE_free_animdata((ID *)cu);
 | 
						|
 | 
						|
	if (cu->mat)
 | 
						|
		MEM_freeN(cu->mat);
 | 
						|
	if (cu->str)
 | 
						|
		MEM_freeN(cu->str);
 | 
						|
	if (cu->strinfo)
 | 
						|
		MEM_freeN(cu->strinfo);
 | 
						|
	if (cu->bb)
 | 
						|
		MEM_freeN(cu->bb);
 | 
						|
	if (cu->path)
 | 
						|
		free_path(cu->path);
 | 
						|
	if (cu->tb)
 | 
						|
		MEM_freeN(cu->tb);
 | 
						|
}
 | 
						|
 | 
						|
Curve *BKE_curve_add(const char *name, int type)
 | 
						|
{
 | 
						|
	Curve *cu;
 | 
						|
 | 
						|
	cu = BKE_libblock_alloc(&G.main->curve, ID_CU, name);
 | 
						|
	copy_v3_fl(cu->size, 1.0f);
 | 
						|
	cu->flag = CU_FRONT | CU_BACK | CU_DEFORM_BOUNDS_OFF | CU_PATH_RADIUS;
 | 
						|
	cu->pathlen = 100;
 | 
						|
	cu->resolu = cu->resolv = (type == OB_SURF) ? 4 : 12;
 | 
						|
	cu->width = 1.0;
 | 
						|
	cu->wordspace = 1.0;
 | 
						|
	cu->spacing = cu->linedist = 1.0;
 | 
						|
	cu->fsize = 1.0;
 | 
						|
	cu->ulheight = 0.05;
 | 
						|
	cu->texflag = CU_AUTOSPACE;
 | 
						|
	cu->smallcaps_scale = 0.75f;
 | 
						|
	/* XXX: this one seems to be the best one in most cases, at least for curve deform... */
 | 
						|
	cu->twist_mode = CU_TWIST_MINIMUM;
 | 
						|
	cu->type = type;
 | 
						|
	cu->bevfac1 = 0.0f;
 | 
						|
	cu->bevfac2 = 1.0f;
 | 
						|
 | 
						|
	cu->bb = BKE_boundbox_alloc_unit();
 | 
						|
 | 
						|
	if (type == OB_FONT) {
 | 
						|
		cu->vfont = cu->vfontb = cu->vfonti = cu->vfontbi = BKE_vfont_builtin_get();
 | 
						|
		cu->vfont->id.us += 4;
 | 
						|
		cu->str = MEM_mallocN(12, "str");
 | 
						|
		BLI_strncpy(cu->str, "Text", 12);
 | 
						|
		cu->len = cu->pos = 4;
 | 
						|
		cu->strinfo = MEM_callocN(12 * sizeof(CharInfo), "strinfo new");
 | 
						|
		cu->totbox = cu->actbox = 1;
 | 
						|
		cu->tb = MEM_callocN(MAXTEXTBOX * sizeof(TextBox), "textbox");
 | 
						|
		cu->tb[0].w = cu->tb[0].h = 0.0;
 | 
						|
	}
 | 
						|
 | 
						|
	return cu;
 | 
						|
}
 | 
						|
 | 
						|
Curve *BKE_curve_copy(Curve *cu)
 | 
						|
{
 | 
						|
	Curve *cun;
 | 
						|
	int a;
 | 
						|
 | 
						|
	cun = BKE_libblock_copy(&cu->id);
 | 
						|
	cun->nurb.first = cun->nurb.last = NULL;
 | 
						|
	BKE_nurbList_duplicate(&(cun->nurb), &(cu->nurb));
 | 
						|
 | 
						|
	cun->mat = MEM_dupallocN(cu->mat);
 | 
						|
	for (a = 0; a < cun->totcol; a++) {
 | 
						|
		id_us_plus((ID *)cun->mat[a]);
 | 
						|
	}
 | 
						|
 | 
						|
	cun->str = MEM_dupallocN(cu->str);
 | 
						|
	cun->strinfo = MEM_dupallocN(cu->strinfo);
 | 
						|
	cun->tb = MEM_dupallocN(cu->tb);
 | 
						|
	cun->bb = MEM_dupallocN(cu->bb);
 | 
						|
 | 
						|
	cun->key = BKE_key_copy(cu->key);
 | 
						|
	if (cun->key) cun->key->from = (ID *)cun;
 | 
						|
 | 
						|
	cun->disp.first = cun->disp.last = NULL;
 | 
						|
	cun->bev.first = cun->bev.last = NULL;
 | 
						|
	cun->path = NULL;
 | 
						|
 | 
						|
	cun->editnurb = NULL;
 | 
						|
	cun->editfont = NULL;
 | 
						|
	cun->selboxes = NULL;
 | 
						|
 | 
						|
#if 0   // XXX old animation system
 | 
						|
	/* single user ipo too */
 | 
						|
	if (cun->ipo) cun->ipo = copy_ipo(cun->ipo);
 | 
						|
#endif // XXX old animation system
 | 
						|
 | 
						|
	id_us_plus((ID *)cun->vfont);
 | 
						|
	id_us_plus((ID *)cun->vfontb);
 | 
						|
	id_us_plus((ID *)cun->vfonti);
 | 
						|
	id_us_plus((ID *)cun->vfontbi);
 | 
						|
 | 
						|
	return cun;
 | 
						|
}
 | 
						|
 | 
						|
static void extern_local_curve(Curve *cu)
 | 
						|
{
 | 
						|
	id_lib_extern((ID *)cu->vfont);
 | 
						|
	id_lib_extern((ID *)cu->vfontb);
 | 
						|
	id_lib_extern((ID *)cu->vfonti);
 | 
						|
	id_lib_extern((ID *)cu->vfontbi);
 | 
						|
 | 
						|
	if (cu->mat) {
 | 
						|
		extern_local_matarar(cu->mat, cu->totcol);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_make_local(Curve *cu)
 | 
						|
{
 | 
						|
	Main *bmain = G.main;
 | 
						|
	Object *ob;
 | 
						|
	int is_local = FALSE, is_lib = FALSE;
 | 
						|
 | 
						|
	/* - when there are only lib users: don't do
 | 
						|
	 * - when there are only local users: set flag
 | 
						|
	 * - mixed: do a copy
 | 
						|
	 */
 | 
						|
 | 
						|
	if (cu->id.lib == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (cu->id.us == 1) {
 | 
						|
		id_clear_lib_data(bmain, &cu->id);
 | 
						|
		extern_local_curve(cu);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
 | 
						|
		if (ob->data == cu) {
 | 
						|
			if (ob->id.lib) is_lib = TRUE;
 | 
						|
			else is_local = TRUE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (is_local && is_lib == FALSE) {
 | 
						|
		id_clear_lib_data(bmain, &cu->id);
 | 
						|
		extern_local_curve(cu);
 | 
						|
	}
 | 
						|
	else if (is_local && is_lib) {
 | 
						|
		Curve *cu_new = BKE_curve_copy(cu);
 | 
						|
		cu_new->id.us = 0;
 | 
						|
 | 
						|
		BKE_id_lib_local_paths(bmain, cu->id.lib, &cu_new->id);
 | 
						|
 | 
						|
		for (ob = bmain->object.first; ob; ob = ob->id.next) {
 | 
						|
			if (ob->data == cu) {
 | 
						|
				if (ob->id.lib == NULL) {
 | 
						|
					ob->data = cu_new;
 | 
						|
					cu_new->id.us++;
 | 
						|
					cu->id.us--;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Get list of nurbs from editnurbs structure */
 | 
						|
ListBase *BKE_curve_editNurbs_get(Curve *cu)
 | 
						|
{
 | 
						|
	if (cu->editnurb) {
 | 
						|
		return &cu->editnurb->nurbs;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
short BKE_curve_type_get(Curve *cu)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	int type = cu->type;
 | 
						|
 | 
						|
	if (cu->vfont) {
 | 
						|
		return OB_FONT;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cu->type) {
 | 
						|
		type = OB_CURVE;
 | 
						|
 | 
						|
		for (nu = cu->nurb.first; nu; nu = nu->next) {
 | 
						|
			if (nu->pntsv > 1) {
 | 
						|
				type = OB_SURF;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return type;
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_curve_dimension_update(Curve *cu)
 | 
						|
{
 | 
						|
	ListBase *nurbs = BKE_curve_nurbs_get(cu);
 | 
						|
	Nurb *nu = nurbs->first;
 | 
						|
 | 
						|
	if (cu->flag & CU_3D) {
 | 
						|
		for (; nu; nu = nu->next) {
 | 
						|
			nu->flag &= ~CU_2D;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		for (; nu; nu = nu->next) {
 | 
						|
			nu->flag |= CU_2D;
 | 
						|
			BKE_nurb_test2D(nu);
 | 
						|
 | 
						|
			/* since the handles are moved they need to be auto-located again */
 | 
						|
			if (nu->type == CU_BEZIER)
 | 
						|
				BKE_nurb_handles_calc(nu);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_type_test(Object *ob)
 | 
						|
{
 | 
						|
	ob->type = BKE_curve_type_get(ob->data);
 | 
						|
 | 
						|
	if (ob->type == OB_CURVE)
 | 
						|
		BKE_curve_curve_dimension_update((Curve *)ob->data);
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_texspace_calc(Curve *cu)
 | 
						|
{
 | 
						|
	DispList *dl;
 | 
						|
	BoundBox *bb;
 | 
						|
	float *fp, min[3], max[3];
 | 
						|
	int tot, do_it = FALSE;
 | 
						|
 | 
						|
	if (cu->bb == NULL)
 | 
						|
		cu->bb = MEM_callocN(sizeof(BoundBox), "boundbox");
 | 
						|
	bb = cu->bb;
 | 
						|
 | 
						|
	INIT_MINMAX(min, max);
 | 
						|
 | 
						|
	dl = cu->disp.first;
 | 
						|
	while (dl) {
 | 
						|
		tot = ELEM(dl->type, DL_INDEX3, DL_INDEX4) ? dl->nr : dl->nr * dl->parts;
 | 
						|
 | 
						|
		if (tot) do_it = TRUE;
 | 
						|
		fp = dl->verts;
 | 
						|
		while (tot--) {
 | 
						|
			minmax_v3v3_v3(min, max, fp);
 | 
						|
			fp += 3;
 | 
						|
		}
 | 
						|
		dl = dl->next;
 | 
						|
	}
 | 
						|
 | 
						|
	if (do_it == FALSE) {
 | 
						|
		min[0] = min[1] = min[2] = -1.0f;
 | 
						|
		max[0] = max[1] = max[2] = 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	BKE_boundbox_init_from_minmax(bb, min, max);
 | 
						|
 | 
						|
	if (cu->texflag & CU_AUTOSPACE) {
 | 
						|
		mid_v3_v3v3(cu->loc, min, max);
 | 
						|
		cu->size[0] = (max[0] - min[0]) / 2.0f;
 | 
						|
		cu->size[1] = (max[1] - min[1]) / 2.0f;
 | 
						|
		cu->size[2] = (max[2] - min[2]) / 2.0f;
 | 
						|
 | 
						|
		zero_v3(cu->rot);
 | 
						|
 | 
						|
		if (cu->size[0] == 0.0f) cu->size[0] = 1.0f;
 | 
						|
		else if (cu->size[0] > 0.0f && cu->size[0] < 0.00001f) cu->size[0] = 0.00001f;
 | 
						|
		else if (cu->size[0] < 0.0f && cu->size[0] > -0.00001f) cu->size[0] = -0.00001f;
 | 
						|
 | 
						|
		if (cu->size[1] == 0.0f) cu->size[1] = 1.0f;
 | 
						|
		else if (cu->size[1] > 0.0f && cu->size[1] < 0.00001f) cu->size[1] = 0.00001f;
 | 
						|
		else if (cu->size[1] < 0.0f && cu->size[1] > -0.00001f) cu->size[1] = -0.00001f;
 | 
						|
 | 
						|
		if (cu->size[2] == 0.0f) cu->size[2] = 1.0f;
 | 
						|
		else if (cu->size[2] > 0.0f && cu->size[2] < 0.00001f) cu->size[2] = 0.00001f;
 | 
						|
		else if (cu->size[2] < 0.0f && cu->size[2] > -0.00001f) cu->size[2] = -0.00001f;
 | 
						|
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int BKE_nurbList_index_get_co(ListBase *nurb, const int index, float r_co[3])
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	int tot = 0;
 | 
						|
 | 
						|
	for (nu = nurb->first; nu; nu = nu->next) {
 | 
						|
		int tot_nu;
 | 
						|
		if (nu->type == CU_BEZIER) {
 | 
						|
			tot_nu = nu->pntsu;
 | 
						|
			if (index - tot < tot_nu) {
 | 
						|
				copy_v3_v3(r_co, nu->bezt[index - tot].vec[1]);
 | 
						|
				return TRUE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			tot_nu = nu->pntsu * nu->pntsv;
 | 
						|
			if (index - tot < tot_nu) {
 | 
						|
				copy_v3_v3(r_co, nu->bp[index - tot].vec);
 | 
						|
				return TRUE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		tot += tot_nu;
 | 
						|
	}
 | 
						|
 | 
						|
	return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
int BKE_nurbList_verts_count(ListBase *nurb)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	int tot = 0;
 | 
						|
 | 
						|
	nu = nurb->first;
 | 
						|
	while (nu) {
 | 
						|
		if (nu->bezt)
 | 
						|
			tot += 3 * nu->pntsu;
 | 
						|
		else if (nu->bp)
 | 
						|
			tot += nu->pntsu * nu->pntsv;
 | 
						|
 | 
						|
		nu = nu->next;
 | 
						|
	}
 | 
						|
	return tot;
 | 
						|
}
 | 
						|
 | 
						|
int BKE_nurbList_verts_count_without_handles(ListBase *nurb)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	int tot = 0;
 | 
						|
 | 
						|
	nu = nurb->first;
 | 
						|
	while (nu) {
 | 
						|
		if (nu->bezt)
 | 
						|
			tot += nu->pntsu;
 | 
						|
		else if (nu->bp)
 | 
						|
			tot += nu->pntsu * nu->pntsv;
 | 
						|
 | 
						|
		nu = nu->next;
 | 
						|
	}
 | 
						|
	return tot;
 | 
						|
}
 | 
						|
 | 
						|
/* **************** NURBS ROUTINES ******************** */
 | 
						|
 | 
						|
void BKE_nurb_free(Nurb *nu)
 | 
						|
{
 | 
						|
 | 
						|
	if (nu == NULL) return;
 | 
						|
 | 
						|
	if (nu->bezt)
 | 
						|
		MEM_freeN(nu->bezt);
 | 
						|
	nu->bezt = NULL;
 | 
						|
	if (nu->bp)
 | 
						|
		MEM_freeN(nu->bp);
 | 
						|
	nu->bp = NULL;
 | 
						|
	if (nu->knotsu)
 | 
						|
		MEM_freeN(nu->knotsu);
 | 
						|
	nu->knotsu = NULL;
 | 
						|
	if (nu->knotsv)
 | 
						|
		MEM_freeN(nu->knotsv);
 | 
						|
	nu->knotsv = NULL;
 | 
						|
	/* if (nu->trim.first) freeNurblist(&(nu->trim)); */
 | 
						|
 | 
						|
	MEM_freeN(nu);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BKE_nurbList_free(ListBase *lb)
 | 
						|
{
 | 
						|
	Nurb *nu, *next;
 | 
						|
 | 
						|
	if (lb == NULL) return;
 | 
						|
 | 
						|
	nu = lb->first;
 | 
						|
	while (nu) {
 | 
						|
		next = nu->next;
 | 
						|
		BKE_nurb_free(nu);
 | 
						|
		nu = next;
 | 
						|
	}
 | 
						|
	lb->first = lb->last = NULL;
 | 
						|
}
 | 
						|
 | 
						|
Nurb *BKE_nurb_duplicate(Nurb *nu)
 | 
						|
{
 | 
						|
	Nurb *newnu;
 | 
						|
	int len;
 | 
						|
 | 
						|
	newnu = (Nurb *)MEM_mallocN(sizeof(Nurb), "duplicateNurb");
 | 
						|
	if (newnu == NULL) return NULL;
 | 
						|
	memcpy(newnu, nu, sizeof(Nurb));
 | 
						|
 | 
						|
	if (nu->bezt) {
 | 
						|
		newnu->bezt =
 | 
						|
		    (BezTriple *)MEM_mallocN((nu->pntsu) * sizeof(BezTriple), "duplicateNurb2");
 | 
						|
		memcpy(newnu->bezt, nu->bezt, nu->pntsu * sizeof(BezTriple));
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		len = nu->pntsu * nu->pntsv;
 | 
						|
		newnu->bp =
 | 
						|
		    (BPoint *)MEM_mallocN((len) * sizeof(BPoint), "duplicateNurb3");
 | 
						|
		memcpy(newnu->bp, nu->bp, len * sizeof(BPoint));
 | 
						|
 | 
						|
		newnu->knotsu = newnu->knotsv = NULL;
 | 
						|
 | 
						|
		if (nu->knotsu) {
 | 
						|
			len = KNOTSU(nu);
 | 
						|
			if (len) {
 | 
						|
				newnu->knotsu = MEM_mallocN(len * sizeof(float), "duplicateNurb4");
 | 
						|
				memcpy(newnu->knotsu, nu->knotsu, sizeof(float) * len);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (nu->pntsv > 1 && nu->knotsv) {
 | 
						|
			len = KNOTSV(nu);
 | 
						|
			if (len) {
 | 
						|
				newnu->knotsv = MEM_mallocN(len * sizeof(float), "duplicateNurb5");
 | 
						|
				memcpy(newnu->knotsv, nu->knotsv, sizeof(float) * len);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return newnu;
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurbList_duplicate(ListBase *lb1, ListBase *lb2)
 | 
						|
{
 | 
						|
	Nurb *nu, *nun;
 | 
						|
 | 
						|
	BKE_nurbList_free(lb1);
 | 
						|
 | 
						|
	nu = lb2->first;
 | 
						|
	while (nu) {
 | 
						|
		nun = BKE_nurb_duplicate(nu);
 | 
						|
		BLI_addtail(lb1, nun);
 | 
						|
 | 
						|
		nu = nu->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_test2D(Nurb *nu)
 | 
						|
{
 | 
						|
	BezTriple *bezt;
 | 
						|
	BPoint *bp;
 | 
						|
	int a;
 | 
						|
 | 
						|
	if ((nu->flag & CU_2D) == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (nu->type == CU_BEZIER) {
 | 
						|
		a = nu->pntsu;
 | 
						|
		bezt = nu->bezt;
 | 
						|
		while (a--) {
 | 
						|
			bezt->vec[0][2] = 0.0;
 | 
						|
			bezt->vec[1][2] = 0.0;
 | 
						|
			bezt->vec[2][2] = 0.0;
 | 
						|
			bezt++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		a = nu->pntsu * nu->pntsv;
 | 
						|
		bp = nu->bp;
 | 
						|
		while (a--) {
 | 
						|
			bp->vec[2] = 0.0;
 | 
						|
			bp++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_minmax(Nurb *nu, float min[3], float max[3])
 | 
						|
{
 | 
						|
	BezTriple *bezt;
 | 
						|
	BPoint *bp;
 | 
						|
	int a;
 | 
						|
 | 
						|
	if (nu->type == CU_BEZIER) {
 | 
						|
		a = nu->pntsu;
 | 
						|
		bezt = nu->bezt;
 | 
						|
		while (a--) {
 | 
						|
			minmax_v3v3_v3(min, max, bezt->vec[0]);
 | 
						|
			minmax_v3v3_v3(min, max, bezt->vec[1]);
 | 
						|
			minmax_v3v3_v3(min, max, bezt->vec[2]);
 | 
						|
			bezt++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		a = nu->pntsu * nu->pntsv;
 | 
						|
		bp = nu->bp;
 | 
						|
		while (a--) {
 | 
						|
			minmax_v3v3_v3(min, max, bp->vec);
 | 
						|
			bp++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* be sure to call makeknots after this */
 | 
						|
void BKE_nurb_points_add(Nurb *nu, int number)
 | 
						|
{
 | 
						|
	BPoint *tmp = nu->bp;
 | 
						|
	int i;
 | 
						|
	nu->bp = (BPoint *)MEM_mallocN((nu->pntsu + number) * sizeof(BPoint), "rna_Curve_spline_points_add");
 | 
						|
 | 
						|
	if (tmp) {
 | 
						|
		memmove(nu->bp, tmp, nu->pntsu * sizeof(BPoint));
 | 
						|
		MEM_freeN(tmp);
 | 
						|
	}
 | 
						|
 | 
						|
	memset(nu->bp + nu->pntsu, 0, number * sizeof(BPoint));
 | 
						|
 | 
						|
	for (i = 0, tmp = nu->bp + nu->pntsu; i < number; i++, tmp++) {
 | 
						|
		tmp->radius = 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	nu->pntsu += number;
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_bezierPoints_add(Nurb *nu, int number)
 | 
						|
{
 | 
						|
	BezTriple *tmp = nu->bezt;
 | 
						|
	int i;
 | 
						|
	nu->bezt = (BezTriple *)MEM_mallocN((nu->pntsu + number) * sizeof(BezTriple), "rna_Curve_spline_points_add");
 | 
						|
 | 
						|
	if (tmp) {
 | 
						|
		memmove(nu->bezt, tmp, nu->pntsu * sizeof(BezTriple));
 | 
						|
		MEM_freeN(tmp);
 | 
						|
	}
 | 
						|
 | 
						|
	memset(nu->bezt + nu->pntsu, 0, number * sizeof(BezTriple));
 | 
						|
 | 
						|
	for (i = 0, tmp = nu->bezt + nu->pntsu; i < number; i++, tmp++) {
 | 
						|
		tmp->radius = 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	nu->pntsu += number;
 | 
						|
}
 | 
						|
 | 
						|
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
 | 
						|
 | 
						|
 | 
						|
static void calcknots(float *knots, const short pnts, const short order, const short flag)
 | 
						|
{
 | 
						|
	/* knots: number of pnts NOT corrected for cyclic */
 | 
						|
	const int pnts_order = pnts + order;
 | 
						|
	float k;
 | 
						|
	int a;
 | 
						|
 | 
						|
	switch (flag & (CU_NURB_ENDPOINT | CU_NURB_BEZIER)) {
 | 
						|
		case CU_NURB_ENDPOINT:
 | 
						|
			k = 0.0;
 | 
						|
			for (a = 1; a <= pnts_order; a++) {
 | 
						|
				knots[a - 1] = k;
 | 
						|
				if (a >= order && a <= pnts)
 | 
						|
					k += 1.0f;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case CU_NURB_BEZIER:
 | 
						|
			/* Warning, the order MUST be 2 or 4,
 | 
						|
			 * if this is not enforced, the displist will be corrupt */
 | 
						|
			if (order == 4) {
 | 
						|
				k = 0.34;
 | 
						|
				for (a = 0; a < pnts_order; a++) {
 | 
						|
					knots[a] = floorf(k);
 | 
						|
					k += (1.0f / 3.0f);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (order == 3) {
 | 
						|
				k = 0.6f;
 | 
						|
				for (a = 0; a < pnts_order; a++) {
 | 
						|
					if (a >= order && a <= pnts)
 | 
						|
						k += 0.5f;
 | 
						|
					knots[a] = floorf(k);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				printf("bez nurb curve order is not 3 or 4, should never happen\n");
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			for (a = 0; a < pnts_order; a++) {
 | 
						|
				knots[a] = (float)a;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void makecyclicknots(float *knots, short pnts, short order)
 | 
						|
/* pnts, order: number of pnts NOT corrected for cyclic */
 | 
						|
{
 | 
						|
	int a, b, order2, c;
 | 
						|
 | 
						|
	if (knots == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	order2 = order - 1;
 | 
						|
 | 
						|
	/* do first long rows (order -1), remove identical knots at endpoints */
 | 
						|
	if (order > 2) {
 | 
						|
		b = pnts + order2;
 | 
						|
		for (a = 1; a < order2; a++) {
 | 
						|
			if (knots[b] != knots[b - a])
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (a == order2)
 | 
						|
			knots[pnts + order - 2] += 1.0f;
 | 
						|
	}
 | 
						|
 | 
						|
	b = order;
 | 
						|
	c = pnts + order + order2;
 | 
						|
	for (a = pnts + order2; a < c; a++) {
 | 
						|
		knots[a] = knots[a - 1] + (knots[b] - knots[b - 1]);
 | 
						|
		b--;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static void makeknots(Nurb *nu, short uv)
 | 
						|
{
 | 
						|
	if (nu->type == CU_NURBS) {
 | 
						|
		if (uv == 1) {
 | 
						|
			if (nu->knotsu)
 | 
						|
				MEM_freeN(nu->knotsu);
 | 
						|
			if (BKE_nurb_check_valid_u(nu)) {
 | 
						|
				nu->knotsu = MEM_callocN(4 + sizeof(float) * KNOTSU(nu), "makeknots");
 | 
						|
				if (nu->flagu & CU_NURB_CYCLIC) {
 | 
						|
					calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0);  /* cyclic should be uniform */
 | 
						|
					makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else
 | 
						|
				nu->knotsu = NULL;
 | 
						|
		}
 | 
						|
		else if (uv == 2) {
 | 
						|
			if (nu->knotsv)
 | 
						|
				MEM_freeN(nu->knotsv);
 | 
						|
			if (BKE_nurb_check_valid_v(nu)) {
 | 
						|
				nu->knotsv = MEM_callocN(4 + sizeof(float) * KNOTSV(nu), "makeknots");
 | 
						|
				if (nu->flagv & CU_NURB_CYCLIC) {
 | 
						|
					calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0);  /* cyclic should be uniform */
 | 
						|
					makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else nu->knotsv = NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_knot_calc_u(Nurb *nu)
 | 
						|
{
 | 
						|
	makeknots(nu, 1);
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_knot_calc_v(Nurb *nu)
 | 
						|
{
 | 
						|
	makeknots(nu, 2);
 | 
						|
}
 | 
						|
 | 
						|
static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
 | 
						|
{
 | 
						|
	float d, e;
 | 
						|
	int i, i1 = 0, i2 = 0, j, orderpluspnts, opp2, o2;
 | 
						|
 | 
						|
	orderpluspnts = order + pnts;
 | 
						|
	opp2 = orderpluspnts - 1;
 | 
						|
 | 
						|
	/* this is for float inaccuracy */
 | 
						|
	if (t < knots[0])
 | 
						|
		t = knots[0];
 | 
						|
	else if (t > knots[opp2]) 
 | 
						|
		t = knots[opp2];
 | 
						|
 | 
						|
	/* this part is order '1' */
 | 
						|
	o2 = order + 1;
 | 
						|
	for (i = 0; i < opp2; i++) {
 | 
						|
		if (knots[i] != knots[i + 1] && t >= knots[i] && t <= knots[i + 1]) {
 | 
						|
			basis[i] = 1.0;
 | 
						|
			i1 = i - o2;
 | 
						|
			if (i1 < 0) i1 = 0;
 | 
						|
			i2 = i;
 | 
						|
			i++;
 | 
						|
			while (i < opp2) {
 | 
						|
				basis[i] = 0.0;
 | 
						|
				i++;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			basis[i] = 0.0;
 | 
						|
	}
 | 
						|
	basis[i] = 0.0;
 | 
						|
 | 
						|
	/* this is order 2, 3, ... */
 | 
						|
	for (j = 2; j <= order; j++) {
 | 
						|
 | 
						|
		if (i2 + j >= orderpluspnts) i2 = opp2 - j;
 | 
						|
 | 
						|
		for (i = i1; i <= i2; i++) {
 | 
						|
			if (basis[i] != 0.0f)
 | 
						|
				d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i]);
 | 
						|
			else
 | 
						|
				d = 0.0f;
 | 
						|
 | 
						|
			if (basis[i + 1] != 0.0f)
 | 
						|
				e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1]);
 | 
						|
			else
 | 
						|
				e = 0.0;
 | 
						|
 | 
						|
			basis[i] = d + e;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*start = 1000;
 | 
						|
	*end = 0;
 | 
						|
 | 
						|
	for (i = i1; i <= i2; i++) {
 | 
						|
		if (basis[i] > 0.0f) {
 | 
						|
			*end = i;
 | 
						|
			if (*start == 1000) *start = i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BKE_nurb_makeFaces(Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv)
 | 
						|
/* coord_array  has to be 3*4*resolu*resolv in size, and zero-ed */
 | 
						|
{
 | 
						|
	BPoint *bp;
 | 
						|
	float *basisu, *basis, *basisv, *sum, *fp, *in;
 | 
						|
	float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
 | 
						|
	int i, j, iofs, jofs, cycl, len, curu, curv;
 | 
						|
	int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
 | 
						|
 | 
						|
	int totu = nu->pntsu * resolu, totv = nu->pntsv * resolv;
 | 
						|
 | 
						|
	if (nu->knotsu == NULL || nu->knotsv == NULL)
 | 
						|
		return;
 | 
						|
	if (nu->orderu > nu->pntsu)
 | 
						|
		return;
 | 
						|
	if (nu->orderv > nu->pntsv)
 | 
						|
		return;
 | 
						|
	if (coord_array == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* allocate and initialize */
 | 
						|
	len = totu * totv;
 | 
						|
	if (len == 0)
 | 
						|
		return;
 | 
						|
 | 
						|
	sum = (float *)MEM_callocN(sizeof(float) * len, "makeNurbfaces1");
 | 
						|
 | 
						|
	len = totu * totv;
 | 
						|
	if (len == 0) {
 | 
						|
		MEM_freeN(sum);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	bp = nu->bp;
 | 
						|
	i = nu->pntsu * nu->pntsv;
 | 
						|
	ratcomp = 0;
 | 
						|
	while (i--) {
 | 
						|
		if (bp->vec[3] != 1.0f) {
 | 
						|
			ratcomp = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		bp++;
 | 
						|
	}
 | 
						|
 | 
						|
	fp = nu->knotsu;
 | 
						|
	ustart = fp[nu->orderu - 1];
 | 
						|
	if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
		uend = fp[nu->pntsu + nu->orderu - 1];
 | 
						|
	else
 | 
						|
		uend = fp[nu->pntsu];
 | 
						|
	ustep = (uend - ustart) / ((nu->flagu & CU_NURB_CYCLIC) ? totu : totu - 1);
 | 
						|
 | 
						|
	basisu = (float *)MEM_mallocN(sizeof(float) * KNOTSU(nu), "makeNurbfaces3");
 | 
						|
 | 
						|
	fp = nu->knotsv;
 | 
						|
	vstart = fp[nu->orderv - 1];
 | 
						|
 | 
						|
	if (nu->flagv & CU_NURB_CYCLIC)
 | 
						|
		vend = fp[nu->pntsv + nu->orderv - 1];
 | 
						|
	else
 | 
						|
		vend = fp[nu->pntsv];
 | 
						|
	vstep = (vend - vstart) / ((nu->flagv & CU_NURB_CYCLIC) ? totv : totv - 1);
 | 
						|
 | 
						|
	len = KNOTSV(nu);
 | 
						|
	basisv = (float *)MEM_mallocN(sizeof(float) * len * totv, "makeNurbfaces3");
 | 
						|
	jstart = (int *)MEM_mallocN(sizeof(float) * totv, "makeNurbfaces4");
 | 
						|
	jend = (int *)MEM_mallocN(sizeof(float) * totv, "makeNurbfaces5");
 | 
						|
 | 
						|
	/* precalculation of basisv and jstart, jend */
 | 
						|
	if (nu->flagv & CU_NURB_CYCLIC)
 | 
						|
		cycl = nu->orderv - 1;
 | 
						|
	else cycl = 0;
 | 
						|
	v = vstart;
 | 
						|
	basis = basisv;
 | 
						|
	curv = totv;
 | 
						|
	while (curv--) {
 | 
						|
		basisNurb(v, nu->orderv, (short)(nu->pntsv + cycl), nu->knotsv, basis, jstart + curv, jend + curv);
 | 
						|
		basis += KNOTSV(nu);
 | 
						|
		v += vstep;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
		cycl = nu->orderu - 1;
 | 
						|
	else
 | 
						|
		cycl = 0;
 | 
						|
	in = coord_array;
 | 
						|
	u = ustart;
 | 
						|
	curu = totu;
 | 
						|
	while (curu--) {
 | 
						|
		basisNurb(u, nu->orderu, (short)(nu->pntsu + cycl), nu->knotsu, basisu, &istart, &iend);
 | 
						|
 | 
						|
		basis = basisv;
 | 
						|
		curv = totv;
 | 
						|
		while (curv--) {
 | 
						|
			jsta = jstart[curv];
 | 
						|
			jen = jend[curv];
 | 
						|
 | 
						|
			/* calculate sum */
 | 
						|
			sumdiv = 0.0;
 | 
						|
			fp = sum;
 | 
						|
 | 
						|
			for (j = jsta; j <= jen; j++) {
 | 
						|
 | 
						|
				if (j >= nu->pntsv)
 | 
						|
					jofs = (j - nu->pntsv);
 | 
						|
				else
 | 
						|
					jofs = j;
 | 
						|
				bp = nu->bp + nu->pntsu * jofs + istart - 1;
 | 
						|
 | 
						|
				for (i = istart; i <= iend; i++, fp++) {
 | 
						|
					if (i >= nu->pntsu) {
 | 
						|
						iofs = i - nu->pntsu;
 | 
						|
						bp = nu->bp + nu->pntsu * jofs + iofs;
 | 
						|
					}
 | 
						|
					else
 | 
						|
						bp++;
 | 
						|
 | 
						|
					if (ratcomp) {
 | 
						|
						*fp = basisu[i] * basis[j] * bp->vec[3];
 | 
						|
						sumdiv += *fp;
 | 
						|
					}
 | 
						|
					else
 | 
						|
						*fp = basisu[i] * basis[j];
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (ratcomp) {
 | 
						|
				fp = sum;
 | 
						|
				for (j = jsta; j <= jen; j++) {
 | 
						|
					for (i = istart; i <= iend; i++, fp++) {
 | 
						|
						*fp /= sumdiv;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* one! (1.0) real point now */
 | 
						|
			fp = sum;
 | 
						|
			for (j = jsta; j <= jen; j++) {
 | 
						|
 | 
						|
				if (j >= nu->pntsv)
 | 
						|
					jofs = (j - nu->pntsv);
 | 
						|
				else
 | 
						|
					jofs = j;
 | 
						|
				bp = nu->bp + nu->pntsu * jofs + istart - 1;
 | 
						|
 | 
						|
				for (i = istart; i <= iend; i++, fp++) {
 | 
						|
					if (i >= nu->pntsu) {
 | 
						|
						iofs = i - nu->pntsu;
 | 
						|
						bp = nu->bp + nu->pntsu * jofs + iofs;
 | 
						|
					}
 | 
						|
					else
 | 
						|
						bp++;
 | 
						|
 | 
						|
					if (*fp != 0.0f) {
 | 
						|
						madd_v3_v3fl(in, bp->vec, *fp);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			in += 3;
 | 
						|
			basis += KNOTSV(nu);
 | 
						|
		}
 | 
						|
		u += ustep;
 | 
						|
		if (rowstride != 0)
 | 
						|
			in = (float *) (((unsigned char *) in) + (rowstride - 3 * totv * sizeof(*in)));
 | 
						|
	}
 | 
						|
 | 
						|
	/* free */
 | 
						|
	MEM_freeN(sum);
 | 
						|
	MEM_freeN(basisu);
 | 
						|
	MEM_freeN(basisv);
 | 
						|
	MEM_freeN(jstart);
 | 
						|
	MEM_freeN(jend);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * \param coord_array Has to be 3 * 4 * pntsu * resolu in size and zero-ed
 | 
						|
 * \param tilt_array   set when non-NULL
 | 
						|
 * \param radius_array set when non-NULL
 | 
						|
 */
 | 
						|
void BKE_nurb_makeCurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array,
 | 
						|
                        int resolu, int stride)
 | 
						|
{
 | 
						|
	BPoint *bp;
 | 
						|
	float u, ustart, uend, ustep, sumdiv;
 | 
						|
	float *basisu, *sum, *fp;
 | 
						|
	float *coord_fp = coord_array, *tilt_fp = tilt_array, *radius_fp = radius_array, *weight_fp = weight_array;
 | 
						|
	int i, len, istart, iend, cycl;
 | 
						|
 | 
						|
	if (nu->knotsu == NULL)
 | 
						|
		return;
 | 
						|
	if (nu->orderu > nu->pntsu)
 | 
						|
		return;
 | 
						|
	if (coord_array == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* allocate and initialize */
 | 
						|
	len = nu->pntsu;
 | 
						|
	if (len == 0)
 | 
						|
		return;
 | 
						|
	sum = (float *)MEM_callocN(sizeof(float) * len, "makeNurbcurve1");
 | 
						|
 | 
						|
	resolu = (resolu * SEGMENTSU(nu));
 | 
						|
 | 
						|
	if (resolu == 0) {
 | 
						|
		MEM_freeN(sum);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	fp = nu->knotsu;
 | 
						|
	ustart = fp[nu->orderu - 1];
 | 
						|
	if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
		uend = fp[nu->pntsu + nu->orderu - 1];
 | 
						|
	else
 | 
						|
		uend = fp[nu->pntsu];
 | 
						|
	ustep = (uend - ustart) / (resolu - ((nu->flagu & CU_NURB_CYCLIC) ? 0 : 1));
 | 
						|
 | 
						|
	basisu = (float *)MEM_mallocN(sizeof(float) * KNOTSU(nu), "makeNurbcurve3");
 | 
						|
 | 
						|
	if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
		cycl = nu->orderu - 1;
 | 
						|
	else
 | 
						|
		cycl = 0;
 | 
						|
 | 
						|
	u = ustart;
 | 
						|
	while (resolu--) {
 | 
						|
		basisNurb(u, nu->orderu, (short)(nu->pntsu + cycl), nu->knotsu, basisu, &istart, &iend);
 | 
						|
 | 
						|
		/* calc sum */
 | 
						|
		sumdiv = 0.0;
 | 
						|
		fp = sum;
 | 
						|
		bp = nu->bp + istart - 1;
 | 
						|
		for (i = istart; i <= iend; i++, fp++) {
 | 
						|
			if (i >= nu->pntsu)
 | 
						|
				bp = nu->bp + (i - nu->pntsu);
 | 
						|
			else
 | 
						|
				bp++;
 | 
						|
 | 
						|
			*fp = basisu[i] * bp->vec[3];
 | 
						|
			sumdiv += *fp;
 | 
						|
		}
 | 
						|
		if ((sumdiv != 0.0f) && (sumdiv < 0.999f || sumdiv > 1.001f)) {
 | 
						|
			/* is normalizing needed? */
 | 
						|
			fp = sum;
 | 
						|
			for (i = istart; i <= iend; i++, fp++) {
 | 
						|
				*fp /= sumdiv;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* one! (1.0) real point */
 | 
						|
		fp = sum;
 | 
						|
		bp = nu->bp + istart - 1;
 | 
						|
		for (i = istart; i <= iend; i++, fp++) {
 | 
						|
			if (i >= nu->pntsu)
 | 
						|
				bp = nu->bp + (i - nu->pntsu);
 | 
						|
			else
 | 
						|
				bp++;
 | 
						|
 | 
						|
			if (*fp != 0.0f) {
 | 
						|
				madd_v3_v3fl(coord_fp, bp->vec, *fp);
 | 
						|
 | 
						|
				if (tilt_fp)
 | 
						|
					(*tilt_fp) += (*fp) * bp->alfa;
 | 
						|
 | 
						|
				if (radius_fp)
 | 
						|
					(*radius_fp) += (*fp) * bp->radius;
 | 
						|
 | 
						|
				if (weight_fp)
 | 
						|
					(*weight_fp) += (*fp) * bp->weight;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		coord_fp = (float *)(((char *)coord_fp) + stride);
 | 
						|
 | 
						|
		if (tilt_fp)
 | 
						|
			tilt_fp = (float *)(((char *)tilt_fp) + stride);
 | 
						|
		if (radius_fp)
 | 
						|
			radius_fp = (float *)(((char *)radius_fp) + stride);
 | 
						|
		if (weight_fp)
 | 
						|
			weight_fp = (float *)(((char *)weight_fp) + stride);
 | 
						|
 | 
						|
		u += ustep;
 | 
						|
	}
 | 
						|
 | 
						|
	/* free */
 | 
						|
	MEM_freeN(sum);
 | 
						|
	MEM_freeN(basisu);
 | 
						|
}
 | 
						|
 | 
						|
/* forward differencing method for bezier curve */
 | 
						|
void BKE_curve_forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
 | 
						|
{
 | 
						|
	float rt0, rt1, rt2, rt3, f;
 | 
						|
	int a;
 | 
						|
 | 
						|
	f = (float)it;
 | 
						|
	rt0 = q0;
 | 
						|
	rt1 = 3.0f * (q1 - q0) / f;
 | 
						|
	f *= f;
 | 
						|
	rt2 = 3.0f * (q0 - 2.0f * q1 + q2) / f;
 | 
						|
	f *= it;
 | 
						|
	rt3 = (q3 - q0 + 3.0f * (q1 - q2)) / f;
 | 
						|
 | 
						|
	q0 = rt0;
 | 
						|
	q1 = rt1 + rt2 + rt3;
 | 
						|
	q2 = 2 * rt2 + 6 * rt3;
 | 
						|
	q3 = 6 * rt3;
 | 
						|
 | 
						|
	for (a = 0; a <= it; a++) {
 | 
						|
		*p = q0;
 | 
						|
		p = (float *)(((char *)p) + stride);
 | 
						|
		q0 += q1;
 | 
						|
		q1 += q2;
 | 
						|
		q2 += q3;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void forward_diff_bezier_cotangent(const float p0[3], const float p1[3], const float p2[3], const float p3[3],
 | 
						|
                                          float p[3], int it, int stride)
 | 
						|
{
 | 
						|
	/* note that these are not perpendicular to the curve
 | 
						|
	 * they need to be rotated for this,
 | 
						|
	 *
 | 
						|
	 * This could also be optimized like BKE_curve_forward_diff_bezier */
 | 
						|
	int a;
 | 
						|
	for (a = 0; a <= it; a++) {
 | 
						|
		float t = (float)a / (float)it;
 | 
						|
 | 
						|
		int i;
 | 
						|
		for (i = 0; i < 3; i++) {
 | 
						|
			p[i] = (-6.0f  * t +  6.0f) * p0[i] +
 | 
						|
			       ( 18.0f * t - 12.0f) * p1[i] +
 | 
						|
			       (-18.0f * t +  6.0f) * p2[i] +
 | 
						|
			       ( 6.0f  * t)         * p3[i];
 | 
						|
		}
 | 
						|
		normalize_v3(p);
 | 
						|
		p = (float *)(((char *)p) + stride);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
 | 
						|
 | 
						|
float *BKE_curve_surf_make_orco(Object *ob)
 | 
						|
{
 | 
						|
	/* Note: this function is used in convertblender only atm, so
 | 
						|
	 * suppose nonzero curve's render resolution should always be used */
 | 
						|
	Curve *cu = ob->data;
 | 
						|
	Nurb *nu;
 | 
						|
	int a, b, tot = 0;
 | 
						|
	int sizeu, sizev;
 | 
						|
	int resolu, resolv;
 | 
						|
	float *fp, *coord_array;
 | 
						|
 | 
						|
	/* first calculate the size of the datablock */
 | 
						|
	nu = cu->nurb.first;
 | 
						|
	while (nu) {
 | 
						|
		/* as we want to avoid the seam in a cyclic nurbs
 | 
						|
		 * texture wrapping, reserve extra orco data space to save these extra needed
 | 
						|
		 * vertex based UV coordinates for the meridian vertices.
 | 
						|
		 * Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
 | 
						|
		 * the renderface/vert construction.
 | 
						|
		 *
 | 
						|
		 * See also convertblender.c: init_render_surf()
 | 
						|
		 */
 | 
						|
 | 
						|
		resolu = cu->resolu_ren ? cu->resolu_ren : nu->resolu;
 | 
						|
		resolv = cu->resolv_ren ? cu->resolv_ren : nu->resolv;
 | 
						|
 | 
						|
		sizeu = nu->pntsu * resolu;
 | 
						|
		sizev = nu->pntsv * resolv;
 | 
						|
		if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
 | 
						|
		if (nu->flagv & CU_NURB_CYCLIC) sizev++;
 | 
						|
		if (nu->pntsv > 1) tot += sizeu * sizev;
 | 
						|
 | 
						|
		nu = nu->next;
 | 
						|
	}
 | 
						|
	/* makeNurbfaces wants zeros */
 | 
						|
	fp = coord_array = MEM_callocN(3 * sizeof(float) * tot, "make_orco");
 | 
						|
 | 
						|
	nu = cu->nurb.first;
 | 
						|
	while (nu) {
 | 
						|
		resolu = cu->resolu_ren ? cu->resolu_ren : nu->resolu;
 | 
						|
		resolv = cu->resolv_ren ? cu->resolv_ren : nu->resolv;
 | 
						|
 | 
						|
		if (nu->pntsv > 1) {
 | 
						|
			sizeu = nu->pntsu * resolu;
 | 
						|
			sizev = nu->pntsv * resolv;
 | 
						|
 | 
						|
			if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
				sizeu++;
 | 
						|
			if (nu->flagv & CU_NURB_CYCLIC)
 | 
						|
				sizev++;
 | 
						|
 | 
						|
			if (cu->flag & CU_UV_ORCO) {
 | 
						|
				for (b = 0; b < sizeu; b++) {
 | 
						|
					for (a = 0; a < sizev; a++) {
 | 
						|
 | 
						|
						if (sizev < 2)
 | 
						|
							fp[0] = 0.0f;
 | 
						|
						else
 | 
						|
							fp[0] = -1.0f + 2.0f * ((float)a) / (sizev - 1);
 | 
						|
 | 
						|
						if (sizeu < 2)
 | 
						|
							fp[1] = 0.0f;
 | 
						|
						else
 | 
						|
							fp[1] = -1.0f + 2.0f * ((float)b) / (sizeu - 1);
 | 
						|
 | 
						|
						fp[2] = 0.0;
 | 
						|
 | 
						|
						fp += 3;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				int size = (nu->pntsu * resolu) * (nu->pntsv * resolv) * 3 * sizeof(float);
 | 
						|
				float *_tdata = MEM_callocN(size, "temp data");
 | 
						|
				float *tdata = _tdata;
 | 
						|
 | 
						|
				BKE_nurb_makeFaces(nu, tdata, 0, resolu, resolv);
 | 
						|
 | 
						|
				for (b = 0; b < sizeu; b++) {
 | 
						|
					int use_b = b;
 | 
						|
					if (b == sizeu - 1 && (nu->flagu & CU_NURB_CYCLIC))
 | 
						|
						use_b = FALSE;
 | 
						|
 | 
						|
					for (a = 0; a < sizev; a++) {
 | 
						|
						int use_a = a;
 | 
						|
						if (a == sizev - 1 && (nu->flagv & CU_NURB_CYCLIC))
 | 
						|
							use_a = FALSE;
 | 
						|
 | 
						|
						tdata = _tdata + 3 * (use_b * (nu->pntsv * resolv) + use_a);
 | 
						|
 | 
						|
						fp[0] = (tdata[0] - cu->loc[0]) / cu->size[0];
 | 
						|
						fp[1] = (tdata[1] - cu->loc[1]) / cu->size[1];
 | 
						|
						fp[2] = (tdata[2] - cu->loc[2]) / cu->size[2];
 | 
						|
						fp += 3;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				MEM_freeN(_tdata);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		nu = nu->next;
 | 
						|
	}
 | 
						|
 | 
						|
	return coord_array;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* NOTE: This routine is tied to the order of vertex
 | 
						|
 * built by displist and as passed to the renderer.
 | 
						|
 */
 | 
						|
float *BKE_curve_make_orco(Scene *scene, Object *ob)
 | 
						|
{
 | 
						|
	Curve *cu = ob->data;
 | 
						|
	DispList *dl;
 | 
						|
	int u, v, numVerts;
 | 
						|
	float *fp, *coord_array;
 | 
						|
	ListBase disp = {NULL, NULL};
 | 
						|
 | 
						|
	BKE_displist_make_curveTypes_forOrco(scene, ob, &disp);
 | 
						|
 | 
						|
	numVerts = 0;
 | 
						|
	for (dl = disp.first; dl; dl = dl->next) {
 | 
						|
		if (dl->type == DL_INDEX3) {
 | 
						|
			numVerts += dl->nr;
 | 
						|
		}
 | 
						|
		else if (dl->type == DL_SURF) {
 | 
						|
			/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only
 | 
						|
			 * (closed circle beveling)
 | 
						|
			 */
 | 
						|
			if (dl->flag & DL_CYCL_U) {
 | 
						|
				if (dl->flag & DL_CYCL_V)
 | 
						|
					numVerts += (dl->parts + 1) * (dl->nr + 1);
 | 
						|
				else
 | 
						|
					numVerts += dl->parts * (dl->nr + 1);
 | 
						|
			}
 | 
						|
			else
 | 
						|
				numVerts += dl->parts * dl->nr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	fp = coord_array = MEM_mallocN(3 * sizeof(float) * numVerts, "cu_orco");
 | 
						|
	for (dl = disp.first; dl; dl = dl->next) {
 | 
						|
		if (dl->type == DL_INDEX3) {
 | 
						|
			for (u = 0; u < dl->nr; u++, fp += 3) {
 | 
						|
				if (cu->flag & CU_UV_ORCO) {
 | 
						|
					fp[0] = 2.0f * u / (dl->nr - 1) - 1.0f;
 | 
						|
					fp[1] = 0.0;
 | 
						|
					fp[2] = 0.0;
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					copy_v3_v3(fp, &dl->verts[u * 3]);
 | 
						|
 | 
						|
					fp[0] = (fp[0] - cu->loc[0]) / cu->size[0];
 | 
						|
					fp[1] = (fp[1] - cu->loc[1]) / cu->size[1];
 | 
						|
					fp[2] = (fp[2] - cu->loc[2]) / cu->size[2];
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (dl->type == DL_SURF) {
 | 
						|
			int sizeu = dl->nr, sizev = dl->parts;
 | 
						|
 | 
						|
			/* exception as handled in convertblender.c too */
 | 
						|
			if (dl->flag & DL_CYCL_U) {
 | 
						|
				sizeu++;
 | 
						|
				if (dl->flag & DL_CYCL_V)
 | 
						|
					sizev++;
 | 
						|
			}
 | 
						|
 | 
						|
			for (u = 0; u < sizev; u++) {
 | 
						|
				for (v = 0; v < sizeu; v++, fp += 3) {
 | 
						|
					if (cu->flag & CU_UV_ORCO) {
 | 
						|
						fp[0] = 2.0f * u / (sizev - 1) - 1.0f;
 | 
						|
						fp[1] = 2.0f * v / (sizeu - 1) - 1.0f;
 | 
						|
						fp[2] = 0.0;
 | 
						|
					}
 | 
						|
					else {
 | 
						|
						float *vert;
 | 
						|
						int realv = v % dl->nr;
 | 
						|
						int realu = u % dl->parts;
 | 
						|
 | 
						|
						vert = dl->verts + 3 * (dl->nr * realu + realv);
 | 
						|
						copy_v3_v3(fp, vert);
 | 
						|
 | 
						|
						fp[0] = (fp[0] - cu->loc[0]) / cu->size[0];
 | 
						|
						fp[1] = (fp[1] - cu->loc[1]) / cu->size[1];
 | 
						|
						fp[2] = (fp[2] - cu->loc[2]) / cu->size[2];
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	BKE_displist_free(&disp);
 | 
						|
 | 
						|
	return coord_array;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ***************** BEVEL ****************** */
 | 
						|
 | 
						|
void BKE_curve_bevel_make(Scene *scene, Object *ob, ListBase *disp, int forRender)
 | 
						|
{
 | 
						|
	DispList *dl, *dlnew;
 | 
						|
	Curve *bevcu, *cu;
 | 
						|
	float *fp, facx, facy, angle, dangle;
 | 
						|
	int nr, a;
 | 
						|
 | 
						|
	cu = ob->data;
 | 
						|
	disp->first = disp->last = NULL;
 | 
						|
 | 
						|
	/* if a font object is being edited, then do nothing */
 | 
						|
// XXX	if ( ob == obedit && ob->type == OB_FONT ) return;
 | 
						|
 | 
						|
	if (cu->bevobj) {
 | 
						|
		if (cu->bevobj->type != OB_CURVE)
 | 
						|
			return;
 | 
						|
 | 
						|
		bevcu = cu->bevobj->data;
 | 
						|
		if (bevcu->ext1 == 0.0f && bevcu->ext2 == 0.0f) {
 | 
						|
			ListBase bevdisp = {NULL, NULL};
 | 
						|
			facx = cu->bevobj->size[0];
 | 
						|
			facy = cu->bevobj->size[1];
 | 
						|
 | 
						|
			if (forRender) {
 | 
						|
				BKE_displist_make_curveTypes_forRender(scene, cu->bevobj, &bevdisp, NULL, 0);
 | 
						|
				dl = bevdisp.first;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				dl = cu->bevobj->disp.first;
 | 
						|
				if (dl == NULL) {
 | 
						|
					BKE_displist_make_curveTypes(scene, cu->bevobj, 0);
 | 
						|
					dl = cu->bevobj->disp.first;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			while (dl) {
 | 
						|
				if (ELEM(dl->type, DL_POLY, DL_SEGM)) {
 | 
						|
					dlnew = MEM_mallocN(sizeof(DispList), "makebevelcurve1");
 | 
						|
					*dlnew = *dl;
 | 
						|
					dlnew->verts = MEM_mallocN(3 * sizeof(float) * dl->parts * dl->nr, "makebevelcurve1");
 | 
						|
					memcpy(dlnew->verts, dl->verts, 3 * sizeof(float) * dl->parts * dl->nr);
 | 
						|
 | 
						|
					if (dlnew->type == DL_SEGM)
 | 
						|
						dlnew->flag |= (DL_FRONT_CURVE | DL_BACK_CURVE);
 | 
						|
 | 
						|
					BLI_addtail(disp, dlnew);
 | 
						|
					fp = dlnew->verts;
 | 
						|
					nr = dlnew->parts * dlnew->nr;
 | 
						|
					while (nr--) {
 | 
						|
						fp[2] = fp[1] * facy;
 | 
						|
						fp[1] = -fp[0] * facx;
 | 
						|
						fp[0] = 0.0;
 | 
						|
						fp += 3;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				dl = dl->next;
 | 
						|
			}
 | 
						|
 | 
						|
			BKE_displist_free(&bevdisp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (cu->ext1 == 0.0f && cu->ext2 == 0.0f) {
 | 
						|
		/* pass */
 | 
						|
	}
 | 
						|
	else if (cu->ext2 == 0.0f) {
 | 
						|
		dl = MEM_callocN(sizeof(DispList), "makebevelcurve2");
 | 
						|
		dl->verts = MEM_mallocN(2 * 3 * sizeof(float), "makebevelcurve2");
 | 
						|
		BLI_addtail(disp, dl);
 | 
						|
		dl->type = DL_SEGM;
 | 
						|
		dl->parts = 1;
 | 
						|
		dl->flag = DL_FRONT_CURVE | DL_BACK_CURVE;
 | 
						|
		dl->nr = 2;
 | 
						|
 | 
						|
		fp = dl->verts;
 | 
						|
		fp[0] = fp[1] = 0.0;
 | 
						|
		fp[2] = -cu->ext1;
 | 
						|
		fp[3] = fp[4] = 0.0;
 | 
						|
		fp[5] = cu->ext1;
 | 
						|
	}
 | 
						|
	else if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0 && cu->ext1 == 0.0f) { // we make a full round bevel in that case
 | 
						|
		nr = 4 + 2 * cu->bevresol;
 | 
						|
 | 
						|
		dl = MEM_callocN(sizeof(DispList), "makebevelcurve p1");
 | 
						|
		dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p1");
 | 
						|
		BLI_addtail(disp, dl);
 | 
						|
		dl->type = DL_POLY;
 | 
						|
		dl->parts = 1;
 | 
						|
		dl->flag = DL_BACK_CURVE;
 | 
						|
		dl->nr = nr;
 | 
						|
 | 
						|
		/* a circle */
 | 
						|
		fp = dl->verts;
 | 
						|
		dangle = (2.0f * (float)M_PI / (nr));
 | 
						|
		angle = -(nr - 1) * dangle;
 | 
						|
 | 
						|
		for (a = 0; a < nr; a++) {
 | 
						|
			fp[0] = 0.0;
 | 
						|
			fp[1] = (cosf(angle) * (cu->ext2));
 | 
						|
			fp[2] = (sinf(angle) * (cu->ext2)) - cu->ext1;
 | 
						|
			angle += dangle;
 | 
						|
			fp += 3;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		short dnr;
 | 
						|
 | 
						|
		/* bevel now in three parts, for proper vertex normals */
 | 
						|
		/* part 1, back */
 | 
						|
 | 
						|
		if ((cu->flag & CU_BACK) || !(cu->flag & CU_FRONT)) {
 | 
						|
			dnr = nr = 2 + cu->bevresol;
 | 
						|
			if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0)
 | 
						|
				nr = 3 + 2 * cu->bevresol;
 | 
						|
 | 
						|
			dl = MEM_callocN(sizeof(DispList), "makebevelcurve p1");
 | 
						|
			dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p1");
 | 
						|
			BLI_addtail(disp, dl);
 | 
						|
			dl->type = DL_SEGM;
 | 
						|
			dl->parts = 1;
 | 
						|
			dl->flag = DL_BACK_CURVE;
 | 
						|
			dl->nr = nr;
 | 
						|
 | 
						|
			/* half a circle */
 | 
						|
			fp = dl->verts;
 | 
						|
			dangle = (0.5 * M_PI / (dnr - 1));
 | 
						|
			angle = -(nr - 1) * dangle;
 | 
						|
 | 
						|
			for (a = 0; a < nr; a++) {
 | 
						|
				fp[0] = 0.0;
 | 
						|
				fp[1] = (float)(cosf(angle) * (cu->ext2));
 | 
						|
				fp[2] = (float)(sinf(angle) * (cu->ext2)) - cu->ext1;
 | 
						|
				angle += dangle;
 | 
						|
				fp += 3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* part 2, sidefaces */
 | 
						|
		if (cu->ext1 != 0.0f) {
 | 
						|
			nr = 2;
 | 
						|
 | 
						|
			dl = MEM_callocN(sizeof(DispList), "makebevelcurve p2");
 | 
						|
			dl->verts = MEM_callocN(nr * 3 * sizeof(float), "makebevelcurve p2");
 | 
						|
			BLI_addtail(disp, dl);
 | 
						|
			dl->type = DL_SEGM;
 | 
						|
			dl->parts = 1;
 | 
						|
			dl->nr = nr;
 | 
						|
 | 
						|
			fp = dl->verts;
 | 
						|
			fp[1] = cu->ext2;
 | 
						|
			fp[2] = -cu->ext1;
 | 
						|
			fp[4] = cu->ext2;
 | 
						|
			fp[5] = cu->ext1;
 | 
						|
 | 
						|
			if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0) {
 | 
						|
				dl = MEM_dupallocN(dl);
 | 
						|
				dl->verts = MEM_dupallocN(dl->verts);
 | 
						|
				BLI_addtail(disp, dl);
 | 
						|
 | 
						|
				fp = dl->verts;
 | 
						|
				fp[1] = -fp[1];
 | 
						|
				fp[2] = -fp[2];
 | 
						|
				fp[4] = -fp[4];
 | 
						|
				fp[5] = -fp[5];
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* part 3, front */
 | 
						|
		if ((cu->flag & CU_FRONT) || !(cu->flag & CU_BACK)) {
 | 
						|
			dnr = nr = 2 + cu->bevresol;
 | 
						|
			if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0)
 | 
						|
				nr = 3 + 2 * cu->bevresol;
 | 
						|
 | 
						|
			dl = MEM_callocN(sizeof(DispList), "makebevelcurve p3");
 | 
						|
			dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p3");
 | 
						|
			BLI_addtail(disp, dl);
 | 
						|
			dl->type = DL_SEGM;
 | 
						|
			dl->flag = DL_FRONT_CURVE;
 | 
						|
			dl->parts = 1;
 | 
						|
			dl->nr = nr;
 | 
						|
 | 
						|
			/* half a circle */
 | 
						|
			fp = dl->verts;
 | 
						|
			angle = 0.0;
 | 
						|
			dangle = (0.5 * M_PI / (dnr - 1));
 | 
						|
 | 
						|
			for (a = 0; a < nr; a++) {
 | 
						|
				fp[0] = 0.0;
 | 
						|
				fp[1] = (float)(cosf(angle) * (cu->ext2));
 | 
						|
				fp[2] = (float)(sinf(angle) * (cu->ext2)) + cu->ext1;
 | 
						|
				angle += dangle;
 | 
						|
				fp += 3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int cu_isectLL(const float v1[3], const float v2[3], const float v3[3], const float v4[3],
 | 
						|
                      short cox, short coy,
 | 
						|
                      float *labda, float *mu, float vec[3])
 | 
						|
{
 | 
						|
	/* return:
 | 
						|
	 * -1: collinear
 | 
						|
	 *  0: no intersection of segments
 | 
						|
	 *  1: exact intersection of segments
 | 
						|
	 *  2: cross-intersection of segments
 | 
						|
	 */
 | 
						|
	float deler;
 | 
						|
 | 
						|
	deler = (v1[cox] - v2[cox]) * (v3[coy] - v4[coy]) - (v3[cox] - v4[cox]) * (v1[coy] - v2[coy]);
 | 
						|
	if (deler == 0.0f)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	*labda = (v1[coy] - v3[coy]) * (v3[cox] - v4[cox]) - (v1[cox] - v3[cox]) * (v3[coy] - v4[coy]);
 | 
						|
	*labda = -(*labda / deler);
 | 
						|
 | 
						|
	deler = v3[coy] - v4[coy];
 | 
						|
	if (deler == 0) {
 | 
						|
		deler = v3[cox] - v4[cox];
 | 
						|
		*mu = -(*labda * (v2[cox] - v1[cox]) + v1[cox] - v3[cox]) / deler;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		*mu = -(*labda * (v2[coy] - v1[coy]) + v1[coy] - v3[coy]) / deler;
 | 
						|
	}
 | 
						|
	vec[cox] = *labda * (v2[cox] - v1[cox]) + v1[cox];
 | 
						|
	vec[coy] = *labda * (v2[coy] - v1[coy]) + v1[coy];
 | 
						|
 | 
						|
	if (*labda >= 0.0f && *labda <= 1.0f && *mu >= 0.0f && *mu <= 1.0f) {
 | 
						|
		if (*labda == 0.0f || *labda == 1.0f || *mu == 0.0f || *mu == 1.0f)
 | 
						|
			return 1;
 | 
						|
		return 2;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static short bevelinside(BevList *bl1, BevList *bl2)
 | 
						|
{
 | 
						|
	/* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
 | 
						|
	/* returns '1' if correct hole  */
 | 
						|
	BevPoint *bevp, *prevbevp;
 | 
						|
	float min, max, vec[3], hvec1[3], hvec2[3], lab, mu;
 | 
						|
	int nr, links = 0, rechts = 0, mode;
 | 
						|
 | 
						|
	/* take first vertex of possible hole */
 | 
						|
 | 
						|
	bevp = (BevPoint *)(bl2 + 1);
 | 
						|
	hvec1[0] = bevp->vec[0];
 | 
						|
	hvec1[1] = bevp->vec[1];
 | 
						|
	hvec1[2] = 0.0;
 | 
						|
	copy_v3_v3(hvec2, hvec1);
 | 
						|
	hvec2[0] += 1000;
 | 
						|
 | 
						|
	/* test it with all edges of potential surounding poly */
 | 
						|
	/* count number of transitions left-right  */
 | 
						|
 | 
						|
	bevp = (BevPoint *)(bl1 + 1);
 | 
						|
	nr = bl1->nr;
 | 
						|
	prevbevp = bevp + (nr - 1);
 | 
						|
 | 
						|
	while (nr--) {
 | 
						|
		min = prevbevp->vec[1];
 | 
						|
		max = bevp->vec[1];
 | 
						|
		if (max < min) {
 | 
						|
			min = max;
 | 
						|
			max = prevbevp->vec[1];
 | 
						|
		}
 | 
						|
		if (min != max) {
 | 
						|
			if (min <= hvec1[1] && max >= hvec1[1]) {
 | 
						|
				/* there's a transition, calc intersection point */
 | 
						|
				mode = cu_isectLL(prevbevp->vec, bevp->vec, hvec1, hvec2, 0, 1, &lab, &mu, vec);
 | 
						|
				/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
 | 
						|
				 * only allow for one situation: we choose lab= 1.0
 | 
						|
				 */
 | 
						|
				if (mode >= 0 && lab != 0.0f) {
 | 
						|
					if (vec[0] < hvec1[0]) links++;
 | 
						|
					else rechts++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		prevbevp = bevp;
 | 
						|
		bevp++;
 | 
						|
	}
 | 
						|
 | 
						|
	if ( (links & 1) && (rechts & 1) )
 | 
						|
		return 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
struct bevelsort {
 | 
						|
	float left;
 | 
						|
	BevList *bl;
 | 
						|
	int dir;
 | 
						|
};
 | 
						|
 | 
						|
static int vergxcobev(const void *a1, const void *a2)
 | 
						|
{
 | 
						|
	const struct bevelsort *x1 = a1, *x2 = a2;
 | 
						|
 | 
						|
	if (x1->left > x2->left)
 | 
						|
		return 1;
 | 
						|
	else if (x1->left < x2->left)
 | 
						|
		return -1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* this function cannot be replaced with atan2, but why? */
 | 
						|
 | 
						|
static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
 | 
						|
{
 | 
						|
	float t01, t02, x3, y3;
 | 
						|
 | 
						|
	t01 = (float)sqrt(x1 * x1 + y1 * y1);
 | 
						|
	t02 = (float)sqrt(x2 * x2 + y2 * y2);
 | 
						|
	if (t01 == 0.0f)
 | 
						|
		t01 = 1.0f;
 | 
						|
	if (t02 == 0.0f)
 | 
						|
		t02 = 1.0f;
 | 
						|
 | 
						|
	x1 /= t01;
 | 
						|
	y1 /= t01;
 | 
						|
	x2 /= t02;
 | 
						|
	y2 /= t02;
 | 
						|
 | 
						|
	t02 = x1 * x2 + y1 * y2;
 | 
						|
	if (fabsf(t02) >= 1.0f)
 | 
						|
		t02 = 0.5 * M_PI;
 | 
						|
	else
 | 
						|
		t02 = (saacos(t02)) / 2.0f;
 | 
						|
 | 
						|
	t02 = (float)sin(t02);
 | 
						|
	if (t02 == 0.0f)
 | 
						|
		t02 = 1.0f;
 | 
						|
 | 
						|
	x3 = x1 - x2;
 | 
						|
	y3 = y1 - y2;
 | 
						|
	if (x3 == 0 && y3 == 0) {
 | 
						|
		x3 = y1;
 | 
						|
		y3 = -x1;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		t01 = (float)sqrt(x3 * x3 + y3 * y3);
 | 
						|
		x3 /= t01;
 | 
						|
		y3 /= t01;
 | 
						|
	}
 | 
						|
 | 
						|
	*sina = -y3 / t02;
 | 
						|
	*cosa = x3 / t02;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array,
 | 
						|
                         float *weight_array, int resolu, int stride)
 | 
						|
{
 | 
						|
	BezTriple *pprev, *next, *last;
 | 
						|
	float fac, dfac, t[4];
 | 
						|
	int a;
 | 
						|
 | 
						|
	if (tilt_array == NULL && radius_array == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	last = nu->bezt + (nu->pntsu - 1);
 | 
						|
 | 
						|
	/* returns a point */
 | 
						|
	if (prevbezt == nu->bezt) {
 | 
						|
		if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
			pprev = last;
 | 
						|
		else
 | 
						|
			pprev = prevbezt;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		pprev = prevbezt - 1;
 | 
						|
 | 
						|
	/* next point */
 | 
						|
	if (bezt == last) {
 | 
						|
		if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
			next = nu->bezt;
 | 
						|
		else
 | 
						|
			next = bezt;
 | 
						|
	}
 | 
						|
	else
 | 
						|
		next = bezt + 1;
 | 
						|
 | 
						|
	fac = 0.0;
 | 
						|
	dfac = 1.0f / (float)resolu;
 | 
						|
 | 
						|
	for (a = 0; a < resolu; a++, fac += dfac) {
 | 
						|
		if (tilt_array) {
 | 
						|
			if (nu->tilt_interp == KEY_CU_EASE) { /* May as well support for tilt also 2.47 ease interp */
 | 
						|
				*tilt_array = prevbezt->alfa +
 | 
						|
					(bezt->alfa - prevbezt->alfa) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				key_curve_position_weights(fac, t, nu->tilt_interp);
 | 
						|
				*tilt_array = t[0] * pprev->alfa + t[1] * prevbezt->alfa + t[2] * bezt->alfa + t[3] * next->alfa;
 | 
						|
			}
 | 
						|
 | 
						|
			tilt_array = (float *)(((char *)tilt_array) + stride);
 | 
						|
		}
 | 
						|
 | 
						|
		if (radius_array) {
 | 
						|
			if (nu->radius_interp == KEY_CU_EASE) {
 | 
						|
				/* Support 2.47 ease interp
 | 
						|
				 * Note! - this only takes the 2 points into account,
 | 
						|
				 * giving much more localized results to changes in radius, sometimes you want that */
 | 
						|
				*radius_array = prevbezt->radius +
 | 
						|
					(bezt->radius - prevbezt->radius) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
 | 
						|
				/* reuse interpolation from tilt if we can */
 | 
						|
				if (tilt_array == NULL || nu->tilt_interp != nu->radius_interp) {
 | 
						|
					key_curve_position_weights(fac, t, nu->radius_interp);
 | 
						|
				}
 | 
						|
				*radius_array = t[0] * pprev->radius + t[1] * prevbezt->radius +
 | 
						|
					t[2] * bezt->radius + t[3] * next->radius;
 | 
						|
			}
 | 
						|
 | 
						|
			radius_array = (float *)(((char *)radius_array) + stride);
 | 
						|
		}
 | 
						|
 | 
						|
		if (weight_array) {
 | 
						|
			/* basic interpolation for now, could copy tilt interp too  */
 | 
						|
			*weight_array = prevbezt->weight +
 | 
						|
				(bezt->weight - prevbezt->weight) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
 | 
						|
 | 
						|
			weight_array = (float *)(((char *)weight_array) + stride);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* make_bevel_list_3D_* funcs, at a minimum these must
 | 
						|
 * fill in the bezp->quat and bezp->dir values */
 | 
						|
 | 
						|
/* correct non-cyclic cases by copying direction and rotation
 | 
						|
 * values onto the first & last end-points */
 | 
						|
static void bevel_list_cyclic_fix_3D(BevList *bl)
 | 
						|
{
 | 
						|
	BevPoint *bevp, *bevp1;
 | 
						|
 | 
						|
	bevp = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp + 1;
 | 
						|
	copy_qt_qt(bevp->quat, bevp1->quat);
 | 
						|
	copy_v3_v3(bevp->dir, bevp1->dir);
 | 
						|
	copy_v3_v3(bevp->tan, bevp1->tan);
 | 
						|
	bevp = (BevPoint *)(bl + 1);
 | 
						|
	bevp += (bl->nr - 1);
 | 
						|
	bevp1 = bevp - 1;
 | 
						|
	copy_qt_qt(bevp->quat, bevp1->quat);
 | 
						|
	copy_v3_v3(bevp->dir, bevp1->dir);
 | 
						|
	copy_v3_v3(bevp->tan, bevp1->tan);
 | 
						|
}
 | 
						|
 | 
						|
/* utility for make_bevel_list_3D_* funcs */
 | 
						|
static void bevel_list_calc_bisect(BevList *bl)
 | 
						|
{
 | 
						|
	BevPoint *bevp2, *bevp1, *bevp0;
 | 
						|
	int nr;
 | 
						|
 | 
						|
	bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
	bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
	nr = bl->nr;
 | 
						|
	while (nr--) {
 | 
						|
		/* totally simple */
 | 
						|
		bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
 | 
						|
 | 
						|
		bevp0 = bevp1;
 | 
						|
		bevp1 = bevp2;
 | 
						|
		bevp2++;
 | 
						|
	}
 | 
						|
}
 | 
						|
static void bevel_list_flip_tangents(BevList *bl)
 | 
						|
{
 | 
						|
	BevPoint *bevp2, *bevp1, *bevp0;
 | 
						|
	int nr;
 | 
						|
 | 
						|
	bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
	bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
	nr = bl->nr;
 | 
						|
	while (nr--) {
 | 
						|
		if (RAD2DEGF(angle_v2v2(bevp0->tan, bevp1->tan)) > 90.0f)
 | 
						|
			negate_v3(bevp1->tan);
 | 
						|
 | 
						|
		bevp0 = bevp1;
 | 
						|
		bevp1 = bevp2;
 | 
						|
		bevp2++;
 | 
						|
	}
 | 
						|
}
 | 
						|
/* apply user tilt */
 | 
						|
static void bevel_list_apply_tilt(BevList *bl)
 | 
						|
{
 | 
						|
	BevPoint *bevp2, *bevp1;
 | 
						|
	int nr;
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
 | 
						|
	nr = bl->nr;
 | 
						|
	while (nr--) {
 | 
						|
		axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
 | 
						|
		mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
 | 
						|
		normalize_qt(bevp1->quat);
 | 
						|
 | 
						|
		bevp1 = bevp2;
 | 
						|
		bevp2++;
 | 
						|
	}
 | 
						|
}
 | 
						|
/* smooth quats, this function should be optimized, it can get slow with many iterations. */
 | 
						|
static void bevel_list_smooth(BevList *bl, int smooth_iter)
 | 
						|
{
 | 
						|
	BevPoint *bevp2, *bevp1, *bevp0;
 | 
						|
	int nr;
 | 
						|
 | 
						|
	float q[4];
 | 
						|
	float bevp0_quat[4];
 | 
						|
	int a;
 | 
						|
 | 
						|
	for (a = 0; a < smooth_iter; a++) {
 | 
						|
		bevp2 = (BevPoint *)(bl + 1);
 | 
						|
		bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
		bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
		nr = bl->nr;
 | 
						|
 | 
						|
		if (bl->poly == -1) { /* check its not cyclic */
 | 
						|
			/* skip the first point */
 | 
						|
			/* bevp0 = bevp1; */
 | 
						|
			bevp1 = bevp2;
 | 
						|
			bevp2++;
 | 
						|
			nr--;
 | 
						|
 | 
						|
			bevp0 = bevp1;
 | 
						|
			bevp1 = bevp2;
 | 
						|
			bevp2++;
 | 
						|
			nr--;
 | 
						|
		}
 | 
						|
 | 
						|
		copy_qt_qt(bevp0_quat, bevp0->quat);
 | 
						|
 | 
						|
		while (nr--) {
 | 
						|
			/* interpolate quats */
 | 
						|
			float zaxis[3] = {0, 0, 1}, cross[3], q2[4];
 | 
						|
			interp_qt_qtqt(q, bevp0_quat, bevp2->quat, 0.5);
 | 
						|
			normalize_qt(q);
 | 
						|
 | 
						|
			mul_qt_v3(q, zaxis);
 | 
						|
			cross_v3_v3v3(cross, zaxis, bevp1->dir);
 | 
						|
			axis_angle_to_quat(q2, cross, angle_normalized_v3v3(zaxis, bevp1->dir));
 | 
						|
			normalize_qt(q2);
 | 
						|
 | 
						|
			copy_qt_qt(bevp0_quat, bevp1->quat);
 | 
						|
			mul_qt_qtqt(q, q2, q);
 | 
						|
			interp_qt_qtqt(bevp1->quat, bevp1->quat, q, 0.5);
 | 
						|
			normalize_qt(bevp1->quat);
 | 
						|
 | 
						|
			/* bevp0 = bevp1; */ /* UNUSED */
 | 
						|
			bevp1 = bevp2;
 | 
						|
			bevp2++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void make_bevel_list_3D_zup(BevList *bl)
 | 
						|
{
 | 
						|
	BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
 | 
						|
	int nr;
 | 
						|
 | 
						|
	bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
	bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
	nr = bl->nr;
 | 
						|
	while (nr--) {
 | 
						|
		/* totally simple */
 | 
						|
		bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
 | 
						|
		vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
 | 
						|
 | 
						|
		bevp0 = bevp1;
 | 
						|
		bevp1 = bevp2;
 | 
						|
		bevp2++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void make_bevel_list_3D_minimum_twist(BevList *bl)
 | 
						|
{
 | 
						|
	BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
 | 
						|
	int nr;
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	bevel_list_calc_bisect(bl);
 | 
						|
 | 
						|
	bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
	bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
	nr = bl->nr;
 | 
						|
	while (nr--) {
 | 
						|
 | 
						|
		if (nr + 4 > bl->nr) { /* first time and second time, otherwise first point adjusts last */
 | 
						|
			vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			float angle = angle_normalized_v3v3(bevp0->dir, bevp1->dir);
 | 
						|
 | 
						|
			if (angle > 0.0f) { /* otherwise we can keep as is */
 | 
						|
				float cross_tmp[3];
 | 
						|
				cross_v3_v3v3(cross_tmp, bevp0->dir, bevp1->dir);
 | 
						|
				axis_angle_to_quat(q, cross_tmp, angle);
 | 
						|
				mul_qt_qtqt(bevp1->quat, q, bevp0->quat);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				copy_qt_qt(bevp1->quat, bevp0->quat);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		bevp0 = bevp1;
 | 
						|
		bevp1 = bevp2;
 | 
						|
		bevp2++;
 | 
						|
	}
 | 
						|
 | 
						|
	if (bl->poly != -1) { /* check for cyclic */
 | 
						|
 | 
						|
		/* Need to correct for the start/end points not matching
 | 
						|
		 * do this by calculating the tilt angle difference, then apply
 | 
						|
		 * the rotation gradually over the entire curve
 | 
						|
		 *
 | 
						|
		 * note that the split is between last and second last, rather than first/last as youd expect.
 | 
						|
		 *
 | 
						|
		 * real order is like this
 | 
						|
		 * 0,1,2,3,4 --> 1,2,3,4,0
 | 
						|
		 *
 | 
						|
		 * this is why we compare last with second last
 | 
						|
		 * */
 | 
						|
		float vec_1[3] = {0, 1, 0}, vec_2[3] = {0, 1, 0}, angle, ang_fac, cross_tmp[3];
 | 
						|
 | 
						|
		BevPoint *bevp_first;
 | 
						|
		BevPoint *bevp_last;
 | 
						|
 | 
						|
 | 
						|
		bevp_first = (BevPoint *)(bl + 1);
 | 
						|
		bevp_first += bl->nr - 1;
 | 
						|
		bevp_last = bevp_first;
 | 
						|
		bevp_last--;
 | 
						|
 | 
						|
		/* quats and vec's are normalized, should not need to re-normalize */
 | 
						|
		mul_qt_v3(bevp_first->quat, vec_1);
 | 
						|
		mul_qt_v3(bevp_last->quat, vec_2);
 | 
						|
		normalize_v3(vec_1);
 | 
						|
		normalize_v3(vec_2);
 | 
						|
 | 
						|
		/* align the vector, can avoid this and it looks 98% OK but
 | 
						|
		 * better to align the angle quat roll's before comparing */
 | 
						|
		{
 | 
						|
			cross_v3_v3v3(cross_tmp, bevp_last->dir, bevp_first->dir);
 | 
						|
			angle = angle_normalized_v3v3(bevp_first->dir, bevp_last->dir);
 | 
						|
			axis_angle_to_quat(q, cross_tmp, angle);
 | 
						|
			mul_qt_v3(q, vec_2);
 | 
						|
		}
 | 
						|
 | 
						|
		angle = angle_normalized_v3v3(vec_1, vec_2);
 | 
						|
 | 
						|
		/* flip rotation if needs be */
 | 
						|
		cross_v3_v3v3(cross_tmp, vec_1, vec_2);
 | 
						|
		normalize_v3(cross_tmp);
 | 
						|
		if (angle_normalized_v3v3(bevp_first->dir, cross_tmp) < DEG2RADF(90.0f))
 | 
						|
			angle = -angle;
 | 
						|
 | 
						|
		bevp2 = (BevPoint *)(bl + 1);
 | 
						|
		bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
		bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
		nr = bl->nr;
 | 
						|
		while (nr--) {
 | 
						|
			ang_fac = angle * (1.0f - ((float)nr / bl->nr)); /* also works */
 | 
						|
 | 
						|
			axis_angle_to_quat(q, bevp1->dir, ang_fac);
 | 
						|
			mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
 | 
						|
 | 
						|
			bevp0 = bevp1;
 | 
						|
			bevp1 = bevp2;
 | 
						|
			bevp2++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void make_bevel_list_3D_tangent(BevList *bl)
 | 
						|
{
 | 
						|
	BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
 | 
						|
	int nr;
 | 
						|
 | 
						|
	float bevp0_tan[3];
 | 
						|
 | 
						|
	bevel_list_calc_bisect(bl);
 | 
						|
	if (bl->poly == -1) /* check its not cyclic */
 | 
						|
		bevel_list_cyclic_fix_3D(bl);  // XXX - run this now so tangents will be right before doing the flipping
 | 
						|
	bevel_list_flip_tangents(bl);
 | 
						|
 | 
						|
	/* correct the tangents */
 | 
						|
	bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
	bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
	nr = bl->nr;
 | 
						|
	while (nr--) {
 | 
						|
		float cross_tmp[3];
 | 
						|
		cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
 | 
						|
		cross_v3_v3v3(bevp1->tan, cross_tmp, bevp1->dir);
 | 
						|
		normalize_v3(bevp1->tan);
 | 
						|
 | 
						|
		bevp0 = bevp1;
 | 
						|
		bevp1 = bevp2;
 | 
						|
		bevp2++;
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	/* now for the real twist calc */
 | 
						|
	bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
	bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
	copy_v3_v3(bevp0_tan, bevp0->tan);
 | 
						|
 | 
						|
	nr = bl->nr;
 | 
						|
	while (nr--) {
 | 
						|
		/* make perpendicular, modify tan in place, is ok */
 | 
						|
		float cross_tmp[3];
 | 
						|
		float zero[3] = {0, 0, 0};
 | 
						|
 | 
						|
		cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
 | 
						|
		normalize_v3(cross_tmp);
 | 
						|
		tri_to_quat(bevp1->quat, zero, cross_tmp, bevp1->tan); /* XXX - could be faster */
 | 
						|
 | 
						|
		/* bevp0 = bevp1; */ /* UNUSED */
 | 
						|
		bevp1 = bevp2;
 | 
						|
		bevp2++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void make_bevel_list_3D(BevList *bl, int smooth_iter, int twist_mode)
 | 
						|
{
 | 
						|
	switch (twist_mode) {
 | 
						|
		case CU_TWIST_TANGENT:
 | 
						|
			make_bevel_list_3D_tangent(bl);
 | 
						|
			break;
 | 
						|
		case CU_TWIST_MINIMUM:
 | 
						|
			make_bevel_list_3D_minimum_twist(bl);
 | 
						|
			break;
 | 
						|
		default: /* CU_TWIST_Z_UP default, pre 2.49c */
 | 
						|
			make_bevel_list_3D_zup(bl);
 | 
						|
	}
 | 
						|
 | 
						|
	if (bl->poly == -1) /* check its not cyclic */
 | 
						|
		bevel_list_cyclic_fix_3D(bl);
 | 
						|
 | 
						|
	if (smooth_iter)
 | 
						|
		bevel_list_smooth(bl, smooth_iter);
 | 
						|
 | 
						|
	bevel_list_apply_tilt(bl);
 | 
						|
}
 | 
						|
 | 
						|
/* only for 2 points */
 | 
						|
static void make_bevel_list_segment_3D(BevList *bl)
 | 
						|
{
 | 
						|
	float q[4];
 | 
						|
 | 
						|
	BevPoint *bevp2 = (BevPoint *)(bl + 1);
 | 
						|
	BevPoint *bevp1 = bevp2 + 1;
 | 
						|
 | 
						|
	/* simple quat/dir */
 | 
						|
	sub_v3_v3v3(bevp1->dir, bevp1->vec, bevp2->vec);
 | 
						|
	normalize_v3(bevp1->dir);
 | 
						|
 | 
						|
	vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
 | 
						|
 | 
						|
	axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
 | 
						|
	mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
 | 
						|
	normalize_qt(bevp1->quat);
 | 
						|
	copy_v3_v3(bevp2->dir, bevp1->dir);
 | 
						|
	copy_qt_qt(bevp2->quat, bevp1->quat);
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_bevelList_make(Object *ob)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * - convert all curves to polys, with indication of resol and flags for double-vertices
 | 
						|
	 * - possibly; do a smart vertice removal (in case Nurb)
 | 
						|
	 * - separate in individual blicks with BoundBox
 | 
						|
	 * - AutoHole detection
 | 
						|
	 */
 | 
						|
	Curve *cu;
 | 
						|
	Nurb *nu;
 | 
						|
	BezTriple *bezt, *prevbezt;
 | 
						|
	BPoint *bp;
 | 
						|
	BevList *bl, *blnew, *blnext;
 | 
						|
	BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
 | 
						|
	float min, inp, x1, x2, y1, y2;
 | 
						|
	struct bevelsort *sortdata, *sd, *sd1;
 | 
						|
	int a, b, nr, poly, resolu = 0, len = 0;
 | 
						|
	int do_tilt, do_radius, do_weight;
 | 
						|
 | 
						|
	/* this function needs an object, because of tflag and upflag */
 | 
						|
	cu = ob->data;
 | 
						|
 | 
						|
	/* do we need to calculate the radius for each point? */
 | 
						|
	/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
 | 
						|
 | 
						|
	/* STEP 1: MAKE POLYS  */
 | 
						|
 | 
						|
	BLI_freelistN(&(cu->bev));
 | 
						|
	if (cu->editnurb && ob->type != OB_FONT) {
 | 
						|
		ListBase *nurbs = BKE_curve_editNurbs_get(cu);
 | 
						|
		nu = nurbs->first;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		nu = cu->nurb.first;
 | 
						|
	}
 | 
						|
 | 
						|
	while (nu) {
 | 
						|
		/* check if we will calculate tilt data */
 | 
						|
		do_tilt = CU_DO_TILT(cu, nu);
 | 
						|
		do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
 | 
						|
		do_weight = TRUE;
 | 
						|
 | 
						|
		/* check we are a single point? also check we are not a surface and that the orderu is sane,
 | 
						|
		 * enforced in the UI but can go wrong possibly */
 | 
						|
		if (!BKE_nurb_check_valid_u(nu)) {
 | 
						|
			bl = MEM_callocN(sizeof(BevList) + 1 * sizeof(BevPoint), "makeBevelList1");
 | 
						|
			BLI_addtail(&(cu->bev), bl);
 | 
						|
			bl->nr = 0;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (G.is_rendering && cu->resolu_ren != 0)
 | 
						|
				resolu = cu->resolu_ren;
 | 
						|
			else
 | 
						|
				resolu = nu->resolu;
 | 
						|
 | 
						|
			if (nu->type == CU_POLY) {
 | 
						|
				len = nu->pntsu;
 | 
						|
				bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelList2");
 | 
						|
				BLI_addtail(&(cu->bev), bl);
 | 
						|
 | 
						|
				if (nu->flagu & CU_NURB_CYCLIC) bl->poly = 0;
 | 
						|
				else bl->poly = -1;
 | 
						|
				bl->nr = len;
 | 
						|
				bl->dupe_nr = 0;
 | 
						|
				bevp = (BevPoint *)(bl + 1);
 | 
						|
				bp = nu->bp;
 | 
						|
 | 
						|
				while (len--) {
 | 
						|
					copy_v3_v3(bevp->vec, bp->vec);
 | 
						|
					bevp->alfa = bp->alfa;
 | 
						|
					bevp->radius = bp->radius;
 | 
						|
					bevp->weight = bp->weight;
 | 
						|
					bevp->split_tag = TRUE;
 | 
						|
					bevp++;
 | 
						|
					bp++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (nu->type == CU_BEZIER) {
 | 
						|
				/* in case last point is not cyclic */
 | 
						|
				len = resolu * (nu->pntsu + (nu->flagu & CU_NURB_CYCLIC) - 1) + 1;
 | 
						|
				bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelBPoints");
 | 
						|
				BLI_addtail(&(cu->bev), bl);
 | 
						|
 | 
						|
				if (nu->flagu & CU_NURB_CYCLIC) bl->poly = 0;
 | 
						|
				else bl->poly = -1;
 | 
						|
				bevp = (BevPoint *)(bl + 1);
 | 
						|
 | 
						|
				a = nu->pntsu - 1;
 | 
						|
				bezt = nu->bezt;
 | 
						|
				if (nu->flagu & CU_NURB_CYCLIC) {
 | 
						|
					a++;
 | 
						|
					prevbezt = nu->bezt + (nu->pntsu - 1);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					prevbezt = bezt;
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
 | 
						|
				while (a--) {
 | 
						|
					if (prevbezt->h2 == HD_VECT && bezt->h1 == HD_VECT) {
 | 
						|
 | 
						|
						copy_v3_v3(bevp->vec, prevbezt->vec[1]);
 | 
						|
						bevp->alfa = prevbezt->alfa;
 | 
						|
						bevp->radius = prevbezt->radius;
 | 
						|
						bevp->weight = prevbezt->weight;
 | 
						|
						bevp->split_tag = TRUE;
 | 
						|
						bevp->dupe_tag = FALSE;
 | 
						|
						bevp++;
 | 
						|
						bl->nr++;
 | 
						|
						bl->dupe_nr = 1;
 | 
						|
					}
 | 
						|
					else {
 | 
						|
						/* always do all three, to prevent data hanging around */
 | 
						|
						int j;
 | 
						|
 | 
						|
						/* BevPoint must stay aligned to 4 so sizeof(BevPoint)/sizeof(float) works */
 | 
						|
						for (j = 0; j < 3; j++) {
 | 
						|
							BKE_curve_forward_diff_bezier(prevbezt->vec[1][j],  prevbezt->vec[2][j],
 | 
						|
							                              bezt->vec[0][j],      bezt->vec[1][j],
 | 
						|
							                              &(bevp->vec[j]), resolu, sizeof(BevPoint));
 | 
						|
						}
 | 
						|
 | 
						|
						/* if both arrays are NULL do nothiong */
 | 
						|
						alfa_bezpart(prevbezt, bezt, nu,
 | 
						|
						             do_tilt    ? &bevp->alfa : NULL,
 | 
						|
						             do_radius  ? &bevp->radius : NULL,
 | 
						|
						             do_weight  ? &bevp->weight : NULL,
 | 
						|
						             resolu, sizeof(BevPoint));
 | 
						|
 | 
						|
 | 
						|
						if (cu->twist_mode == CU_TWIST_TANGENT) {
 | 
						|
							forward_diff_bezier_cotangent(prevbezt->vec[1], prevbezt->vec[2],
 | 
						|
							                              bezt->vec[0],     bezt->vec[1],
 | 
						|
							                              bevp->tan, resolu, sizeof(BevPoint));
 | 
						|
						}
 | 
						|
 | 
						|
						/* indicate with handlecodes double points */
 | 
						|
						if (prevbezt->h1 == prevbezt->h2) {
 | 
						|
							if (prevbezt->h1 == 0 || prevbezt->h1 == HD_VECT)
 | 
						|
								bevp->split_tag = TRUE;
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							if (prevbezt->h1 == 0 || prevbezt->h1 == HD_VECT)
 | 
						|
								bevp->split_tag = TRUE;
 | 
						|
							else if (prevbezt->h2 == 0 || prevbezt->h2 == HD_VECT)
 | 
						|
								bevp->split_tag = TRUE;
 | 
						|
						}
 | 
						|
						bl->nr += resolu;
 | 
						|
						bevp += resolu;
 | 
						|
					}
 | 
						|
					prevbezt = bezt;
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
 | 
						|
				if ((nu->flagu & CU_NURB_CYCLIC) == 0) {      /* not cyclic: endpoint */
 | 
						|
					copy_v3_v3(bevp->vec, prevbezt->vec[1]);
 | 
						|
					bevp->alfa = prevbezt->alfa;
 | 
						|
					bevp->radius = prevbezt->radius;
 | 
						|
					bevp->weight = prevbezt->weight;
 | 
						|
					bl->nr++;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (nu->type == CU_NURBS) {
 | 
						|
				if (nu->pntsv == 1) {
 | 
						|
					len = (resolu * SEGMENTSU(nu));
 | 
						|
 | 
						|
					bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelList3");
 | 
						|
					BLI_addtail(&(cu->bev), bl);
 | 
						|
					bl->nr = len;
 | 
						|
					bl->dupe_nr = 0;
 | 
						|
					if (nu->flagu & CU_NURB_CYCLIC) bl->poly = 0;
 | 
						|
					else bl->poly = -1;
 | 
						|
					bevp = (BevPoint *)(bl + 1);
 | 
						|
 | 
						|
					BKE_nurb_makeCurve(nu, &bevp->vec[0],
 | 
						|
					                   do_tilt      ? &bevp->alfa : NULL,
 | 
						|
					                   do_radius    ? &bevp->radius : NULL,
 | 
						|
					                   do_weight    ? &bevp->weight : NULL,
 | 
						|
					                   resolu, sizeof(BevPoint));
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		nu = nu->next;
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
 | 
						|
	bl = cu->bev.first;
 | 
						|
	while (bl) {
 | 
						|
		if (bl->nr) { /* null bevel items come from single points */
 | 
						|
			nr = bl->nr;
 | 
						|
			bevp1 = (BevPoint *)(bl + 1);
 | 
						|
			bevp0 = bevp1 + (nr - 1);
 | 
						|
			nr--;
 | 
						|
			while (nr--) {
 | 
						|
				if (fabsf(bevp0->vec[0] - bevp1->vec[0]) < 0.00001f) {
 | 
						|
					if (fabsf(bevp0->vec[1] - bevp1->vec[1]) < 0.00001f) {
 | 
						|
						if (fabsf(bevp0->vec[2] - bevp1->vec[2]) < 0.00001f) {
 | 
						|
							bevp0->dupe_tag = TRUE;
 | 
						|
							bl->dupe_nr++;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
				bevp0 = bevp1;
 | 
						|
				bevp1++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		bl = bl->next;
 | 
						|
	}
 | 
						|
	bl = cu->bev.first;
 | 
						|
	while (bl) {
 | 
						|
		blnext = bl->next;
 | 
						|
		if (bl->nr && bl->dupe_nr) {
 | 
						|
			nr = bl->nr - bl->dupe_nr + 1;  /* +1 because vectorbezier sets flag too */
 | 
						|
			blnew = MEM_mallocN(sizeof(BevList) + nr * sizeof(BevPoint), "makeBevelList4");
 | 
						|
			memcpy(blnew, bl, sizeof(BevList));
 | 
						|
			blnew->nr = 0;
 | 
						|
			BLI_remlink(&(cu->bev), bl);
 | 
						|
			BLI_insertlinkbefore(&(cu->bev), blnext, blnew);    /* to make sure bevlijst is tuned with nurblist */
 | 
						|
			bevp0 = (BevPoint *)(bl + 1);
 | 
						|
			bevp1 = (BevPoint *)(blnew + 1);
 | 
						|
			nr = bl->nr;
 | 
						|
			while (nr--) {
 | 
						|
				if (bevp0->dupe_tag == 0) {
 | 
						|
					memcpy(bevp1, bevp0, sizeof(BevPoint));
 | 
						|
					bevp1++;
 | 
						|
					blnew->nr++;
 | 
						|
				}
 | 
						|
				bevp0++;
 | 
						|
			}
 | 
						|
			MEM_freeN(bl);
 | 
						|
			blnew->dupe_nr = 0;
 | 
						|
		}
 | 
						|
		bl = blnext;
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 3: POLYS COUNT AND AUTOHOLE */
 | 
						|
	bl = cu->bev.first;
 | 
						|
	poly = 0;
 | 
						|
	while (bl) {
 | 
						|
		if (bl->nr && bl->poly >= 0) {
 | 
						|
			poly++;
 | 
						|
			bl->poly = poly;
 | 
						|
			bl->hole = 0;
 | 
						|
		}
 | 
						|
		bl = bl->next;
 | 
						|
	}
 | 
						|
 | 
						|
	/* find extreme left points, also test (turning) direction */
 | 
						|
	if (poly > 0) {
 | 
						|
		sd = sortdata = MEM_mallocN(sizeof(struct bevelsort) * poly, "makeBevelList5");
 | 
						|
		bl = cu->bev.first;
 | 
						|
		while (bl) {
 | 
						|
			if (bl->poly > 0) {
 | 
						|
 | 
						|
				min = 300000.0;
 | 
						|
				bevp = (BevPoint *)(bl + 1);
 | 
						|
				nr = bl->nr;
 | 
						|
				while (nr--) {
 | 
						|
					if (min > bevp->vec[0]) {
 | 
						|
						min = bevp->vec[0];
 | 
						|
						bevp1 = bevp;
 | 
						|
					}
 | 
						|
					bevp++;
 | 
						|
				}
 | 
						|
				sd->bl = bl;
 | 
						|
				sd->left = min;
 | 
						|
 | 
						|
				bevp = (BevPoint *)(bl + 1);
 | 
						|
				if (bevp1 == bevp)
 | 
						|
					bevp0 = bevp + (bl->nr - 1);
 | 
						|
				else
 | 
						|
					bevp0 = bevp1 - 1;
 | 
						|
				bevp = bevp + (bl->nr - 1);
 | 
						|
				if (bevp1 == bevp)
 | 
						|
					bevp2 = (BevPoint *)(bl + 1);
 | 
						|
				else
 | 
						|
					bevp2 = bevp1 + 1;
 | 
						|
 | 
						|
				inp = ((bevp1->vec[0] - bevp0->vec[0]) * (bevp0->vec[1] - bevp2->vec[1]) +
 | 
						|
				       (bevp0->vec[1] - bevp1->vec[1]) * (bevp0->vec[0] - bevp2->vec[0]));
 | 
						|
 | 
						|
				if (inp > 0.0f)
 | 
						|
					sd->dir = 1;
 | 
						|
				else
 | 
						|
					sd->dir = 0;
 | 
						|
 | 
						|
				sd++;
 | 
						|
			}
 | 
						|
 | 
						|
			bl = bl->next;
 | 
						|
		}
 | 
						|
		qsort(sortdata, poly, sizeof(struct bevelsort), vergxcobev);
 | 
						|
 | 
						|
		sd = sortdata + 1;
 | 
						|
		for (a = 1; a < poly; a++, sd++) {
 | 
						|
			bl = sd->bl;     /* is bl a hole? */
 | 
						|
			sd1 = sortdata + (a - 1);
 | 
						|
			for (b = a - 1; b >= 0; b--, sd1--) { /* all polys to the left */
 | 
						|
				if (bevelinside(sd1->bl, bl)) {
 | 
						|
					bl->hole = 1 - sd1->bl->hole;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* turning direction */
 | 
						|
		if ((cu->flag & CU_3D) == 0) {
 | 
						|
			sd = sortdata;
 | 
						|
			for (a = 0; a < poly; a++, sd++) {
 | 
						|
				if (sd->bl->hole == sd->dir) {
 | 
						|
					bl = sd->bl;
 | 
						|
					bevp1 = (BevPoint *)(bl + 1);
 | 
						|
					bevp2 = bevp1 + (bl->nr - 1);
 | 
						|
					nr = bl->nr / 2;
 | 
						|
					while (nr--) {
 | 
						|
						SWAP(BevPoint, *bevp1, *bevp2);
 | 
						|
						bevp1++;
 | 
						|
						bevp2--;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		MEM_freeN(sortdata);
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 4: 2D-COSINES or 3D ORIENTATION */
 | 
						|
	if ((cu->flag & CU_3D) == 0) {
 | 
						|
		/* note: bevp->dir and bevp->quat are not needed for beveling but are
 | 
						|
		 * used when making a path from a 2D curve, therefor they need to be set - Campbell */
 | 
						|
		bl = cu->bev.first;
 | 
						|
		while (bl) {
 | 
						|
 | 
						|
			if (bl->nr < 2) {
 | 
						|
				/* do nothing */
 | 
						|
			}
 | 
						|
			else if (bl->nr == 2) {   /* 2 pnt, treat separate */
 | 
						|
				bevp2 = (BevPoint *)(bl + 1);
 | 
						|
				bevp1 = bevp2 + 1;
 | 
						|
 | 
						|
				x1 = bevp1->vec[0] - bevp2->vec[0];
 | 
						|
				y1 = bevp1->vec[1] - bevp2->vec[1];
 | 
						|
 | 
						|
				calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
 | 
						|
				bevp2->sina = bevp1->sina;
 | 
						|
				bevp2->cosa = bevp1->cosa;
 | 
						|
 | 
						|
				/* fill in dir & quat */
 | 
						|
				make_bevel_list_segment_3D(bl);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				bevp2 = (BevPoint *)(bl + 1);
 | 
						|
				bevp1 = bevp2 + (bl->nr - 1);
 | 
						|
				bevp0 = bevp1 - 1;
 | 
						|
 | 
						|
				nr = bl->nr;
 | 
						|
				while (nr--) {
 | 
						|
					x1 = bevp1->vec[0] - bevp0->vec[0];
 | 
						|
					x2 = bevp1->vec[0] - bevp2->vec[0];
 | 
						|
					y1 = bevp1->vec[1] - bevp0->vec[1];
 | 
						|
					y2 = bevp1->vec[1] - bevp2->vec[1];
 | 
						|
 | 
						|
					calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
 | 
						|
 | 
						|
					/* from: make_bevel_list_3D_zup, could call but avoid a second loop.
 | 
						|
					 * no need for tricky tilt calculation as with 3D curves */
 | 
						|
					bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
 | 
						|
					vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
 | 
						|
					/* done with inline make_bevel_list_3D_zup */
 | 
						|
 | 
						|
					bevp0 = bevp1;
 | 
						|
					bevp1 = bevp2;
 | 
						|
					bevp2++;
 | 
						|
				}
 | 
						|
 | 
						|
				/* correct non-cyclic cases */
 | 
						|
				if (bl->poly == -1) {
 | 
						|
					bevp = (BevPoint *)(bl + 1);
 | 
						|
					bevp1 = bevp + 1;
 | 
						|
					bevp->sina = bevp1->sina;
 | 
						|
					bevp->cosa = bevp1->cosa;
 | 
						|
					bevp = (BevPoint *)(bl + 1);
 | 
						|
					bevp += (bl->nr - 1);
 | 
						|
					bevp1 = bevp - 1;
 | 
						|
					bevp->sina = bevp1->sina;
 | 
						|
					bevp->cosa = bevp1->cosa;
 | 
						|
 | 
						|
					/* correct for the dir/quat, see above why its needed */
 | 
						|
					bevel_list_cyclic_fix_3D(bl);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			bl = bl->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else { /* 3D Curves */
 | 
						|
		bl = cu->bev.first;
 | 
						|
		while (bl) {
 | 
						|
 | 
						|
			if (bl->nr < 2) {
 | 
						|
				/* do nothing */
 | 
						|
			}
 | 
						|
			else if (bl->nr == 2) {   /* 2 pnt, treat separate */
 | 
						|
				make_bevel_list_segment_3D(bl);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				make_bevel_list_3D(bl, (int)(resolu * cu->twist_smooth), cu->twist_mode);
 | 
						|
			}
 | 
						|
			bl = bl->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* ****************** HANDLES ************** */
 | 
						|
 | 
						|
/*
 | 
						|
 *   handlecodes:
 | 
						|
 *		0: nothing,  1:auto,  2:vector,  3:aligned
 | 
						|
 */
 | 
						|
 | 
						|
/* mode: is not zero when FCurve, is 2 when forced horizontal for autohandles */
 | 
						|
static void calchandleNurb_intern(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode, int skip_align)
 | 
						|
{
 | 
						|
	float *p1, *p2, *p3, pt[3];
 | 
						|
	float dvec_a[3], dvec_b[3];
 | 
						|
	float len, len_a, len_b;
 | 
						|
	const float eps = 1e-5;
 | 
						|
 | 
						|
	if (bezt->h1 == 0 && bezt->h2 == 0) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	p2 = bezt->vec[1];
 | 
						|
 | 
						|
	if (prev == NULL) {
 | 
						|
		p3 = next->vec[1];
 | 
						|
		pt[0] = 2.0f * p2[0] - p3[0];
 | 
						|
		pt[1] = 2.0f * p2[1] - p3[1];
 | 
						|
		pt[2] = 2.0f * p2[2] - p3[2];
 | 
						|
		p1 = pt;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		p1 = prev->vec[1];
 | 
						|
	}
 | 
						|
 | 
						|
	if (next == NULL) {
 | 
						|
		pt[0] = 2.0f * p2[0] - p1[0];
 | 
						|
		pt[1] = 2.0f * p2[1] - p1[1];
 | 
						|
		pt[2] = 2.0f * p2[2] - p1[2];
 | 
						|
		p3 = pt;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		p3 = next->vec[1];
 | 
						|
	}
 | 
						|
 | 
						|
	sub_v3_v3v3(dvec_a, p2, p1);
 | 
						|
	sub_v3_v3v3(dvec_b, p3, p2);
 | 
						|
 | 
						|
	if (mode != 0) {
 | 
						|
		len_a = dvec_a[0];
 | 
						|
		len_b = dvec_b[0];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		len_a = len_v3(dvec_a);
 | 
						|
		len_b = len_v3(dvec_b);
 | 
						|
	}
 | 
						|
 | 
						|
	if (len_a == 0.0f) len_a = 1.0f;
 | 
						|
	if (len_b == 0.0f) len_b = 1.0f;
 | 
						|
 | 
						|
 | 
						|
	if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM) || ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) {    /* auto */
 | 
						|
		float tvec[3];
 | 
						|
		tvec[0] = dvec_b[0] / len_b + dvec_a[0] / len_a;
 | 
						|
		tvec[1] = dvec_b[1] / len_b + dvec_a[1] / len_a;
 | 
						|
		tvec[2] = dvec_b[2] / len_b + dvec_a[2] / len_a;
 | 
						|
		len = len_v3(tvec) * 2.5614f;
 | 
						|
 | 
						|
		if (len != 0.0f) {
 | 
						|
			int leftviolate = 0, rightviolate = 0;  /* for mode==2 */
 | 
						|
 | 
						|
			if (len_a > 5.0f * len_b)
 | 
						|
				len_a = 5.0f * len_b;
 | 
						|
			if (len_b > 5.0f * len_a)
 | 
						|
				len_b = 5.0f * len_a;
 | 
						|
 | 
						|
			if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) {
 | 
						|
				len_a /= len;
 | 
						|
				madd_v3_v3v3fl(p2 - 3, p2, tvec, -len_a);
 | 
						|
 | 
						|
				if ((bezt->h1 == HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
 | 
						|
					float ydiff1 = prev->vec[1][1] - bezt->vec[1][1];
 | 
						|
					float ydiff2 = next->vec[1][1] - bezt->vec[1][1];
 | 
						|
					if ((ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f)) {
 | 
						|
						bezt->vec[0][1] = bezt->vec[1][1];
 | 
						|
					}
 | 
						|
					else { /* handles should not be beyond y coord of two others */
 | 
						|
						if (ydiff1 <= 0.0f) {
 | 
						|
							if (prev->vec[1][1] > bezt->vec[0][1]) {
 | 
						|
								bezt->vec[0][1] = prev->vec[1][1];
 | 
						|
								leftviolate = 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							if (prev->vec[1][1] < bezt->vec[0][1]) {
 | 
						|
								bezt->vec[0][1] = prev->vec[1][1];
 | 
						|
								leftviolate = 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) {
 | 
						|
				len_b /= len;
 | 
						|
				madd_v3_v3v3fl(p2 + 3, p2, tvec,  len_b);
 | 
						|
 | 
						|
				if ((bezt->h2 == HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
 | 
						|
					float ydiff1 = prev->vec[1][1] - bezt->vec[1][1];
 | 
						|
					float ydiff2 = next->vec[1][1] - bezt->vec[1][1];
 | 
						|
					if ( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) {
 | 
						|
						bezt->vec[2][1] = bezt->vec[1][1];
 | 
						|
					}
 | 
						|
					else { /* andles should not be beyond y coord of two others */
 | 
						|
						if (ydiff1 <= 0.0f) {
 | 
						|
							if (next->vec[1][1] < bezt->vec[2][1]) {
 | 
						|
								bezt->vec[2][1] = next->vec[1][1];
 | 
						|
								rightviolate = 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
						else {
 | 
						|
							if (next->vec[1][1] > bezt->vec[2][1]) {
 | 
						|
								bezt->vec[2][1] = next->vec[1][1];
 | 
						|
								rightviolate = 1;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (leftviolate || rightviolate) { /* align left handle */
 | 
						|
				float h1[3], h2[3];
 | 
						|
				float dot;
 | 
						|
 | 
						|
				sub_v3_v3v3(h1, p2 - 3, p2);
 | 
						|
				sub_v3_v3v3(h2, p2, p2 + 3);
 | 
						|
 | 
						|
				len_a = normalize_v3(h1);
 | 
						|
				len_b = normalize_v3(h2);
 | 
						|
 | 
						|
				dot = dot_v3v3(h1, h2);
 | 
						|
 | 
						|
				if (leftviolate) {
 | 
						|
					mul_v3_fl(h1, dot * len_b);
 | 
						|
					sub_v3_v3v3(p2 + 3, p2, h1);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					mul_v3_fl(h2, dot * len_a);
 | 
						|
					add_v3_v3v3(p2 - 3, p2, h2);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (bezt->h1 == HD_VECT) {    /* vector */
 | 
						|
		madd_v3_v3v3fl(p2 - 3, p2, dvec_a, -1.0f / 3.0f);
 | 
						|
	}
 | 
						|
	if (bezt->h2 == HD_VECT) {
 | 
						|
		madd_v3_v3v3fl(p2 + 3, p2, dvec_b,  1.0f / 3.0f);
 | 
						|
	}
 | 
						|
 | 
						|
	if (skip_align) {
 | 
						|
		/* handles need to be updated during animation and applying stuff like hooks,
 | 
						|
		 * but in such situations it's quite difficult to distinguish in which order
 | 
						|
		 * align handles should be aligned so skip them for now */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	len_b = len_v3v3(p2, p2 + 3);
 | 
						|
	len_a = len_v3v3(p2, p2 - 3);
 | 
						|
	if (len_a == 0.0f)
 | 
						|
		len_a = 1.0f;
 | 
						|
	if (len_b == 0.0f)
 | 
						|
		len_b = 1.0f;
 | 
						|
 | 
						|
	if (bezt->f1 & SELECT) { /* order of calculation */
 | 
						|
		if (bezt->h2 == HD_ALIGN) { /* aligned */
 | 
						|
			if (len_a > eps) {
 | 
						|
				len = len_b / len_a;
 | 
						|
				p2[3] = p2[0] + len * (p2[0] - p2[-3]);
 | 
						|
				p2[4] = p2[1] + len * (p2[1] - p2[-2]);
 | 
						|
				p2[5] = p2[2] + len * (p2[2] - p2[-1]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (bezt->h1 == HD_ALIGN) {
 | 
						|
			if (len_b > eps) {
 | 
						|
				len = len_a / len_b;
 | 
						|
				p2[-3] = p2[0] + len * (p2[0] - p2[3]);
 | 
						|
				p2[-2] = p2[1] + len * (p2[1] - p2[4]);
 | 
						|
				p2[-1] = p2[2] + len * (p2[2] - p2[5]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		if (bezt->h1 == HD_ALIGN) {
 | 
						|
			if (len_b > eps) {
 | 
						|
				len = len_a / len_b;
 | 
						|
				p2[-3] = p2[0] + len * (p2[0] - p2[3]);
 | 
						|
				p2[-2] = p2[1] + len * (p2[1] - p2[4]);
 | 
						|
				p2[-1] = p2[2] + len * (p2[2] - p2[5]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (bezt->h2 == HD_ALIGN) {   /* aligned */
 | 
						|
			if (len_a > eps) {
 | 
						|
				len = len_b / len_a;
 | 
						|
				p2[3] = p2[0] + len * (p2[0] - p2[-3]);
 | 
						|
				p2[4] = p2[1] + len * (p2[1] - p2[-2]);
 | 
						|
				p2[5] = p2[2] + len * (p2[2] - p2[-1]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void calchandlesNurb_intern(Nurb *nu, int skip_align)
 | 
						|
{
 | 
						|
	BezTriple *bezt, *prev, *next;
 | 
						|
	short a;
 | 
						|
 | 
						|
	if (nu->type != CU_BEZIER)
 | 
						|
		return;
 | 
						|
	if (nu->pntsu < 2)
 | 
						|
		return;
 | 
						|
 | 
						|
	a = nu->pntsu;
 | 
						|
	bezt = nu->bezt;
 | 
						|
	if (nu->flagu & CU_NURB_CYCLIC) prev = bezt + (a - 1);
 | 
						|
	else prev = NULL;
 | 
						|
	next = bezt + 1;
 | 
						|
 | 
						|
	while (a--) {
 | 
						|
		calchandleNurb_intern(bezt, prev, next, 0, skip_align);
 | 
						|
		prev = bezt;
 | 
						|
		if (a == 1) {
 | 
						|
			if (nu->flagu & CU_NURB_CYCLIC)
 | 
						|
				next = nu->bezt;
 | 
						|
			else
 | 
						|
				next = NULL;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			next++;
 | 
						|
 | 
						|
		bezt++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_handle_calc(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
 | 
						|
{
 | 
						|
	calchandleNurb_intern(bezt, prev, next, mode, FALSE);
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_handles_calc(Nurb *nu) /* first, if needed, set handle flags */
 | 
						|
{
 | 
						|
	calchandlesNurb_intern(nu, FALSE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BKE_nurb_handles_test(Nurb *nu)
 | 
						|
{
 | 
						|
	/* use when something has changed with handles.
 | 
						|
	 * it treats all BezTriples with the following rules:
 | 
						|
	 * PHASE 1: do types have to be altered?
 | 
						|
	 *    Auto handles: become aligned when selection status is NOT(000 || 111)
 | 
						|
	 *    Vector handles: become 'nothing' when (one half selected AND other not)
 | 
						|
	 * PHASE 2: recalculate handles
 | 
						|
	 */
 | 
						|
	BezTriple *bezt;
 | 
						|
	short flag, a;
 | 
						|
 | 
						|
	if (nu->type != CU_BEZIER) return;
 | 
						|
 | 
						|
	bezt = nu->bezt;
 | 
						|
	a = nu->pntsu;
 | 
						|
	while (a--) {
 | 
						|
		flag = 0;
 | 
						|
		if (bezt->f1 & SELECT)
 | 
						|
			flag++;
 | 
						|
		if (bezt->f2 & SELECT)
 | 
						|
			flag += 2;
 | 
						|
		if (bezt->f3 & SELECT)
 | 
						|
			flag += 4;
 | 
						|
 | 
						|
		if (!(flag == 0 || flag == 7) ) {
 | 
						|
			if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) {   /* auto */
 | 
						|
				bezt->h1 = HD_ALIGN;
 | 
						|
			}
 | 
						|
			if (ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) {   /* auto */
 | 
						|
				bezt->h2 = HD_ALIGN;
 | 
						|
			}
 | 
						|
 | 
						|
			if (bezt->h1 == HD_VECT) {   /* vector */
 | 
						|
				if (flag < 4) bezt->h1 = 0;
 | 
						|
			}
 | 
						|
			if (bezt->h2 == HD_VECT) {   /* vector */
 | 
						|
				if (flag > 3) bezt->h2 = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		bezt++;
 | 
						|
	}
 | 
						|
 | 
						|
	BKE_nurb_handles_calc(nu);
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_handles_autocalc(Nurb *nu, int flag)
 | 
						|
{
 | 
						|
	/* checks handle coordinates and calculates type */
 | 
						|
 | 
						|
	BezTriple *bezt2, *bezt1, *bezt0;
 | 
						|
	int i, align, leftsmall, rightsmall;
 | 
						|
 | 
						|
	if (nu == NULL || nu->bezt == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	bezt2 = nu->bezt;
 | 
						|
	bezt1 = bezt2 + (nu->pntsu - 1);
 | 
						|
	bezt0 = bezt1 - 1;
 | 
						|
	i = nu->pntsu;
 | 
						|
 | 
						|
	while (i--) {
 | 
						|
		align = leftsmall = rightsmall = 0;
 | 
						|
 | 
						|
		/* left handle: */
 | 
						|
		if (flag == 0 || (bezt1->f1 & flag) ) {
 | 
						|
			bezt1->h1 = 0;
 | 
						|
			/* distance too short: vectorhandle */
 | 
						|
			if (len_v3v3(bezt1->vec[1], bezt0->vec[1]) < 0.0001f) {
 | 
						|
				bezt1->h1 = HD_VECT;
 | 
						|
				leftsmall = 1;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* aligned handle? */
 | 
						|
				if (dist_to_line_v2(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001f) {
 | 
						|
					align = 1;
 | 
						|
					bezt1->h1 = HD_ALIGN;
 | 
						|
				}
 | 
						|
				/* or vector handle? */
 | 
						|
				if (dist_to_line_v2(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001f)
 | 
						|
					bezt1->h1 = HD_VECT;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* right handle: */
 | 
						|
		if (flag == 0 || (bezt1->f3 & flag) ) {
 | 
						|
			bezt1->h2 = 0;
 | 
						|
			/* distance too short: vectorhandle */
 | 
						|
			if (len_v3v3(bezt1->vec[1], bezt2->vec[1]) < 0.0001f) {
 | 
						|
				bezt1->h2 = HD_VECT;
 | 
						|
				rightsmall = 1;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* aligned handle? */
 | 
						|
				if (align) bezt1->h2 = HD_ALIGN;
 | 
						|
 | 
						|
				/* or vector handle? */
 | 
						|
				if (dist_to_line_v2(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001f)
 | 
						|
					bezt1->h2 = HD_VECT;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (leftsmall && bezt1->h2 == HD_ALIGN)
 | 
						|
			bezt1->h2 = 0;
 | 
						|
		if (rightsmall && bezt1->h1 == HD_ALIGN)
 | 
						|
			bezt1->h1 = 0;
 | 
						|
 | 
						|
		/* undesired combination: */
 | 
						|
		if (bezt1->h1 == HD_ALIGN && bezt1->h2 == HD_VECT)
 | 
						|
			bezt1->h1 = 0;
 | 
						|
		if (bezt1->h2 == HD_ALIGN && bezt1->h1 == HD_VECT)
 | 
						|
			bezt1->h2 = 0;
 | 
						|
 | 
						|
		bezt0 = bezt1;
 | 
						|
		bezt1 = bezt2;
 | 
						|
		bezt2++;
 | 
						|
	}
 | 
						|
 | 
						|
	BKE_nurb_handles_calc(nu);
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurbList_handles_autocalc(ListBase *editnurb, int flag)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
 | 
						|
	nu = editnurb->first;
 | 
						|
	while (nu) {
 | 
						|
		BKE_nurb_handles_autocalc(nu, flag);
 | 
						|
		nu = nu->next;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurbList_handles_set(ListBase *editnurb, short code)
 | 
						|
{
 | 
						|
	/* code==1: set autohandle */
 | 
						|
	/* code==2: set vectorhandle */
 | 
						|
	/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
 | 
						|
	/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
 | 
						|
	/* code==5: Set align, like 3 but no toggle */
 | 
						|
	/* code==6: Clear align, like 3 but no toggle */
 | 
						|
	Nurb *nu;
 | 
						|
	BezTriple *bezt;
 | 
						|
	short a, ok = 0;
 | 
						|
 | 
						|
	if (code == 1 || code == 2) {
 | 
						|
		nu = editnurb->first;
 | 
						|
		while (nu) {
 | 
						|
			if (nu->type == CU_BEZIER) {
 | 
						|
				bezt = nu->bezt;
 | 
						|
				a = nu->pntsu;
 | 
						|
				while (a--) {
 | 
						|
					if ((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
 | 
						|
						if (bezt->f1 & SELECT)
 | 
						|
							bezt->h1 = code;
 | 
						|
						if (bezt->f3 & SELECT)
 | 
						|
							bezt->h2 = code;
 | 
						|
						if (bezt->h1 != bezt->h2) {
 | 
						|
							if (ELEM(bezt->h1, HD_ALIGN, HD_AUTO))
 | 
						|
								bezt->h1 = HD_FREE;
 | 
						|
							if (ELEM(bezt->h2, HD_ALIGN, HD_AUTO))
 | 
						|
								bezt->h2 = HD_FREE;
 | 
						|
						}
 | 
						|
					}
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
				BKE_nurb_handles_calc(nu);
 | 
						|
			}
 | 
						|
			nu = nu->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* there is 1 handle not FREE: FREE it all, else make ALIGNED  */
 | 
						|
		nu = editnurb->first;
 | 
						|
		if (code == 5) {
 | 
						|
			ok = HD_ALIGN;
 | 
						|
		}
 | 
						|
		else if (code == 6) {
 | 
						|
			ok = HD_FREE;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* Toggle */
 | 
						|
			while (nu) {
 | 
						|
				if (nu->type == CU_BEZIER) {
 | 
						|
					bezt = nu->bezt;
 | 
						|
					a = nu->pntsu;
 | 
						|
					while (a--) {
 | 
						|
						if ((bezt->f1 & SELECT) && bezt->h1) ok = 1;
 | 
						|
						if ((bezt->f3 & SELECT) && bezt->h2) ok = 1;
 | 
						|
						if (ok) break;
 | 
						|
						bezt++;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				nu = nu->next;
 | 
						|
			}
 | 
						|
			if (ok) ok = HD_FREE;
 | 
						|
			else ok = HD_ALIGN;
 | 
						|
		}
 | 
						|
		nu = editnurb->first;
 | 
						|
		while (nu) {
 | 
						|
			if (nu->type == CU_BEZIER) {
 | 
						|
				bezt = nu->bezt;
 | 
						|
				a = nu->pntsu;
 | 
						|
				while (a--) {
 | 
						|
					if (bezt->f1 & SELECT) bezt->h1 = ok;
 | 
						|
					if (bezt->f3 & SELECT) bezt->h2 = ok;
 | 
						|
 | 
						|
					bezt++;
 | 
						|
				}
 | 
						|
				BKE_nurb_handles_calc(nu);
 | 
						|
			}
 | 
						|
			nu = nu->next;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_nurb_direction_switch(Nurb *nu)
 | 
						|
{
 | 
						|
	BezTriple *bezt1, *bezt2;
 | 
						|
	BPoint *bp1, *bp2;
 | 
						|
	float *fp1, *fp2, *tempf;
 | 
						|
	int a, b;
 | 
						|
 | 
						|
	if (nu->pntsu == 1 && nu->pntsv == 1) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nu->type == CU_BEZIER) {
 | 
						|
		a = nu->pntsu;
 | 
						|
		bezt1 = nu->bezt;
 | 
						|
		bezt2 = bezt1 + (a - 1);
 | 
						|
		if (a & 1) a += 1;  /* if odd, also swap middle content */
 | 
						|
		a /= 2;
 | 
						|
		while (a > 0) {
 | 
						|
			if (bezt1 != bezt2) {
 | 
						|
				SWAP(BezTriple, *bezt1, *bezt2);
 | 
						|
			}
 | 
						|
 | 
						|
			swap_v3_v3(bezt1->vec[0], bezt1->vec[2]);
 | 
						|
 | 
						|
			if (bezt1 != bezt2) {
 | 
						|
				swap_v3_v3(bezt2->vec[0], bezt2->vec[2]);
 | 
						|
			}
 | 
						|
 | 
						|
			SWAP(char, bezt1->h1, bezt1->h2);
 | 
						|
			SWAP(char, bezt1->f1, bezt1->f3);
 | 
						|
 | 
						|
			if (bezt1 != bezt2) {
 | 
						|
				SWAP(char, bezt2->h1, bezt2->h2);
 | 
						|
				SWAP(char, bezt2->f1, bezt2->f3);
 | 
						|
				bezt1->alfa = -bezt1->alfa;
 | 
						|
				bezt2->alfa = -bezt2->alfa;
 | 
						|
			}
 | 
						|
			a--;
 | 
						|
			bezt1++;
 | 
						|
			bezt2--;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (nu->pntsv == 1) {
 | 
						|
		a = nu->pntsu;
 | 
						|
		bp1 = nu->bp;
 | 
						|
		bp2 = bp1 + (a - 1);
 | 
						|
		a /= 2;
 | 
						|
		while (bp1 != bp2 && a > 0) {
 | 
						|
			SWAP(BPoint, *bp1, *bp2);
 | 
						|
			a--;
 | 
						|
			bp1->alfa = -bp1->alfa;
 | 
						|
			bp2->alfa = -bp2->alfa;
 | 
						|
			bp1++;
 | 
						|
			bp2--;
 | 
						|
		}
 | 
						|
		if (nu->type == CU_NURBS) {
 | 
						|
			/* no knots for too short paths */
 | 
						|
			if (nu->knotsu) {
 | 
						|
				/* inverse knots */
 | 
						|
				a = KNOTSU(nu);
 | 
						|
				fp1 = nu->knotsu;
 | 
						|
				fp2 = fp1 + (a - 1);
 | 
						|
				a /= 2;
 | 
						|
				while (fp1 != fp2 && a > 0) {
 | 
						|
					SWAP(float, *fp1, *fp2);
 | 
						|
					a--;
 | 
						|
					fp1++;
 | 
						|
					fp2--;
 | 
						|
				}
 | 
						|
				/* and make in increasing order again */
 | 
						|
				a = KNOTSU(nu);
 | 
						|
				fp1 = nu->knotsu;
 | 
						|
				fp2 = tempf = MEM_mallocN(sizeof(float) * a, "switchdirect");
 | 
						|
				while (a--) {
 | 
						|
					fp2[0] = fabs(fp1[1] - fp1[0]);
 | 
						|
					fp1++;
 | 
						|
					fp2++;
 | 
						|
				}
 | 
						|
 | 
						|
				a = KNOTSU(nu) - 1;
 | 
						|
				fp1 = nu->knotsu;
 | 
						|
				fp2 = tempf;
 | 
						|
				fp1[0] = 0.0;
 | 
						|
				fp1++;
 | 
						|
				while (a--) {
 | 
						|
					fp1[0] = fp1[-1] + fp2[0];
 | 
						|
					fp1++;
 | 
						|
					fp2++;
 | 
						|
				}
 | 
						|
				MEM_freeN(tempf);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		for (b = 0; b < nu->pntsv; b++) {
 | 
						|
			bp1 = nu->bp + b * nu->pntsu;
 | 
						|
			a = nu->pntsu;
 | 
						|
			bp2 = bp1 + (a - 1);
 | 
						|
			a /= 2;
 | 
						|
 | 
						|
			while (bp1 != bp2 && a > 0) {
 | 
						|
				SWAP(BPoint, *bp1, *bp2);
 | 
						|
				a--;
 | 
						|
				bp1++;
 | 
						|
				bp2--;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
float (*BKE_curve_vertexCos_get(Curve * UNUSED(cu), ListBase * lb, int *numVerts_r))[3]
 | 
						|
{
 | 
						|
	int i, numVerts = *numVerts_r = BKE_nurbList_verts_count(lb);
 | 
						|
	float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "cu_vcos");
 | 
						|
	Nurb *nu;
 | 
						|
 | 
						|
	co = cos[0];
 | 
						|
	for (nu = lb->first; nu; nu = nu->next) {
 | 
						|
		if (nu->type == CU_BEZIER) {
 | 
						|
			BezTriple *bezt = nu->bezt;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | 
						|
				copy_v3_v3(co, bezt->vec[0]); co += 3;
 | 
						|
				copy_v3_v3(co, bezt->vec[1]); co += 3;
 | 
						|
				copy_v3_v3(co, bezt->vec[2]); co += 3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			BPoint *bp = nu->bp;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | 
						|
				copy_v3_v3(co, bp->vec); co += 3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return cos;
 | 
						|
}
 | 
						|
 | 
						|
void BK_curve_vertexCos_apply(Curve *UNUSED(cu), ListBase *lb, float (*vertexCos)[3])
 | 
						|
{
 | 
						|
	float *co = vertexCos[0];
 | 
						|
	Nurb *nu;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (nu = lb->first; nu; nu = nu->next) {
 | 
						|
		if (nu->type == CU_BEZIER) {
 | 
						|
			BezTriple *bezt = nu->bezt;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | 
						|
				copy_v3_v3(bezt->vec[0], co); co += 3;
 | 
						|
				copy_v3_v3(bezt->vec[1], co); co += 3;
 | 
						|
				copy_v3_v3(bezt->vec[2], co); co += 3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			BPoint *bp = nu->bp;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | 
						|
				copy_v3_v3(bp->vec, co); co += 3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		calchandlesNurb_intern(nu, TRUE);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
float (*BKE_curve_keyVertexCos_get(Curve * UNUSED(cu), ListBase * lb, float *key))[3]
 | 
						|
{
 | 
						|
	int i, numVerts = BKE_nurbList_verts_count(lb);
 | 
						|
	float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "cu_vcos");
 | 
						|
	Nurb *nu;
 | 
						|
 | 
						|
	co = cos[0];
 | 
						|
	for (nu = lb->first; nu; nu = nu->next) {
 | 
						|
		if (nu->type == CU_BEZIER) {
 | 
						|
			BezTriple *bezt = nu->bezt;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | 
						|
				copy_v3_v3(co, key); co += 3; key += 3;
 | 
						|
				copy_v3_v3(co, key); co += 3; key += 3;
 | 
						|
				copy_v3_v3(co, key); co += 3; key += 3;
 | 
						|
				key += 3; /* skip tilt */
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			BPoint *bp = nu->bp;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | 
						|
				copy_v3_v3(co, key); co += 3; key += 3;
 | 
						|
				key++; /* skip tilt */
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return cos;
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_keyVertexTilts_apply(Curve *UNUSED(cu), ListBase *lb, float *key)
 | 
						|
{
 | 
						|
	Nurb *nu;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (nu = lb->first; nu; nu = nu->next) {
 | 
						|
		if (nu->type == CU_BEZIER) {
 | 
						|
			BezTriple *bezt = nu->bezt;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu; i++, bezt++) {
 | 
						|
				key += 3 * 3;
 | 
						|
				bezt->alfa = *key;
 | 
						|
				key += 3;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			BPoint *bp = nu->bp;
 | 
						|
 | 
						|
			for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
 | 
						|
				key += 3;
 | 
						|
				bp->alfa = *key;
 | 
						|
				key++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int BKE_nurb_check_valid_u(struct Nurb *nu)
 | 
						|
{
 | 
						|
	if (nu == NULL)
 | 
						|
		return 0;
 | 
						|
	if (nu->pntsu <= 1)
 | 
						|
		return 0;
 | 
						|
	if (nu->type != CU_NURBS)
 | 
						|
		return 1;           /* not a nurb, lets assume its valid */
 | 
						|
 | 
						|
	if (nu->pntsu < nu->orderu) return 0;
 | 
						|
	if (((nu->flag & CU_NURB_CYCLIC) == 0) && (nu->flagu & CU_NURB_BEZIER)) { /* Bezier U Endpoints */
 | 
						|
		if (nu->orderu == 4) {
 | 
						|
			if (nu->pntsu < 5)
 | 
						|
				return 0;          /* bezier with 4 orderu needs 5 points */
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (nu->orderu != 3)
 | 
						|
				return 0;       /* order must be 3 or 4 */
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
int BKE_nurb_check_valid_v(struct Nurb *nu)
 | 
						|
{
 | 
						|
	if (nu == NULL)
 | 
						|
		return 0;
 | 
						|
	if (nu->pntsv <= 1)
 | 
						|
		return 0;
 | 
						|
	if (nu->type != CU_NURBS)
 | 
						|
		return 1;           /* not a nurb, lets assume its valid */
 | 
						|
 | 
						|
	if (nu->pntsv < nu->orderv)
 | 
						|
		return 0;
 | 
						|
	if (((nu->flag & CU_NURB_CYCLIC) == 0) && (nu->flagv & CU_NURB_BEZIER)) { /* Bezier V Endpoints */
 | 
						|
		if (nu->orderv == 4) {
 | 
						|
			if (nu->pntsv < 5)
 | 
						|
				return 0;          /* bezier with 4 orderu needs 5 points */
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (nu->orderv != 3)
 | 
						|
				return 0;       /* order must be 3 or 4 */
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
int BKE_nurb_order_clamp_u(struct Nurb *nu)
 | 
						|
{
 | 
						|
	int change = 0;
 | 
						|
	if (nu->pntsu < nu->orderu) {
 | 
						|
		nu->orderu = nu->pntsu;
 | 
						|
		change = 1;
 | 
						|
	}
 | 
						|
	if (((nu->flagu & CU_NURB_CYCLIC) == 0) && (nu->flagu & CU_NURB_BEZIER)) {
 | 
						|
		CLAMP(nu->orderu, 3, 4);
 | 
						|
		change = 1;
 | 
						|
	}
 | 
						|
	return change;
 | 
						|
}
 | 
						|
 | 
						|
int BKE_nurb_order_clamp_v(struct Nurb *nu)
 | 
						|
{
 | 
						|
	int change = 0;
 | 
						|
	if (nu->pntsv < nu->orderv) {
 | 
						|
		nu->orderv = nu->pntsv;
 | 
						|
		change = 1;
 | 
						|
	}
 | 
						|
	if (((nu->flagv & CU_NURB_CYCLIC) == 0) && (nu->flagv & CU_NURB_BEZIER)) {
 | 
						|
		CLAMP(nu->orderv, 3, 4);
 | 
						|
		change = 1;
 | 
						|
	}
 | 
						|
	return change;
 | 
						|
}
 | 
						|
 | 
						|
/* Get edit nurbs or normal nurbs list */
 | 
						|
ListBase *BKE_curve_nurbs_get(Curve *cu)
 | 
						|
{
 | 
						|
	if (cu->editnurb) {
 | 
						|
		return BKE_curve_editNurbs_get(cu);
 | 
						|
	}
 | 
						|
 | 
						|
	return &cu->nurb;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* basic vertex data functions */
 | 
						|
int BKE_curve_minmax(Curve *cu, float min[3], float max[3])
 | 
						|
{
 | 
						|
	ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
 | 
						|
	Nurb *nu;
 | 
						|
 | 
						|
	for (nu = nurb_lb->first; nu; nu = nu->next)
 | 
						|
		BKE_nurb_minmax(nu, min, max);
 | 
						|
 | 
						|
	return (nurb_lb->first != NULL);
 | 
						|
}
 | 
						|
 | 
						|
int BKE_curve_center_median(Curve *cu, float cent[3])
 | 
						|
{
 | 
						|
	ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
 | 
						|
	Nurb *nu;
 | 
						|
	int total = 0;
 | 
						|
 | 
						|
	zero_v3(cent);
 | 
						|
 | 
						|
	for (nu = nurb_lb->first; nu; nu = nu->next) {
 | 
						|
		int i;
 | 
						|
 | 
						|
		if (nu->type == CU_BEZIER) {
 | 
						|
			BezTriple *bezt;
 | 
						|
			i = nu->pntsu;
 | 
						|
			total += i * 3;
 | 
						|
			for (bezt = nu->bezt; i--; bezt++) {
 | 
						|
				add_v3_v3(cent, bezt->vec[0]);
 | 
						|
				add_v3_v3(cent, bezt->vec[1]);
 | 
						|
				add_v3_v3(cent, bezt->vec[2]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			BPoint *bp;
 | 
						|
			i = nu->pntsu * nu->pntsv;
 | 
						|
			total += i;
 | 
						|
			for (bp = nu->bp; i--; bp++) {
 | 
						|
				add_v3_v3(cent, bp->vec);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	mul_v3_fl(cent, 1.0f / (float)total);
 | 
						|
 | 
						|
	return (total != 0);
 | 
						|
}
 | 
						|
 | 
						|
int BKE_curve_center_bounds(Curve *cu, float cent[3])
 | 
						|
{
 | 
						|
	float min[3], max[3];
 | 
						|
	INIT_MINMAX(min, max);
 | 
						|
	if (BKE_curve_minmax(cu, min, max)) {
 | 
						|
		mid_v3_v3v3(cent, min, max);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_translate(Curve *cu, float offset[3], int do_keys)
 | 
						|
{
 | 
						|
	ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
 | 
						|
	Nurb *nu;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (nu = nurb_lb->first; nu; nu = nu->next) {
 | 
						|
		BezTriple *bezt;
 | 
						|
		BPoint *bp;
 | 
						|
 | 
						|
		if (nu->type == CU_BEZIER) {
 | 
						|
			i = nu->pntsu;
 | 
						|
			for (bezt = nu->bezt; i--; bezt++) {
 | 
						|
				add_v3_v3(bezt->vec[0], offset);
 | 
						|
				add_v3_v3(bezt->vec[1], offset);
 | 
						|
				add_v3_v3(bezt->vec[2], offset);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			i = nu->pntsu * nu->pntsv;
 | 
						|
			for (bp = nu->bp; i--; bp++) {
 | 
						|
				add_v3_v3(bp->vec, offset);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (do_keys && cu->key) {
 | 
						|
		KeyBlock *kb;
 | 
						|
		for (kb = cu->key->block.first; kb; kb = kb->next) {
 | 
						|
			float *fp = kb->data;
 | 
						|
			for (i = kb->totelem; i--; fp += 3) {
 | 
						|
				add_v3_v3(fp, offset);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void BKE_curve_delete_material_index(Curve *cu, int index)
 | 
						|
{
 | 
						|
	const int curvetype = BKE_curve_type_get(cu);
 | 
						|
 | 
						|
	if (curvetype == OB_FONT) {
 | 
						|
		struct CharInfo *info = cu->strinfo;
 | 
						|
		int i;
 | 
						|
		for (i = cu->len - 1; i >= 0; i--, info++) {
 | 
						|
			if (info->mat_nr && info->mat_nr >= index) {
 | 
						|
				info->mat_nr--;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		Nurb *nu;
 | 
						|
 | 
						|
		for (nu = cu->nurb.first; nu; nu = nu->next) {
 | 
						|
			if (nu->mat_nr && nu->mat_nr >= index) {
 | 
						|
				nu->mat_nr--;
 | 
						|
				if (curvetype == OB_CURVE)
 | 
						|
					nu->charidx--;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |