535 lines
14 KiB
C++
535 lines
14 KiB
C++
/*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2009 Blender Foundation.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): André Pinto.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
/** \file blender/render/intern/raytrace/rayobject.cpp
|
|
* \ingroup render
|
|
*/
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "BLI_math.h"
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "DNA_material_types.h"
|
|
|
|
#include "rayintersection.h"
|
|
#include "rayobject.h"
|
|
#include "raycounter.h"
|
|
#include "render_types.h"
|
|
#include "renderdatabase.h"
|
|
|
|
/* RayFace
|
|
*
|
|
* note we force always inline here, because compiler refuses to otherwise
|
|
* because function is too long. Since this is code that is called billions
|
|
* of times we really do want to inline. */
|
|
|
|
MALWAYS_INLINE RayObject *rayface_from_coords(RayFace *rayface, void *ob, void *face,
|
|
float *v1, float *v2, float *v3, float *v4)
|
|
{
|
|
rayface->ob = ob;
|
|
rayface->face = face;
|
|
|
|
copy_v3_v3(rayface->v1, v1);
|
|
copy_v3_v3(rayface->v2, v2);
|
|
copy_v3_v3(rayface->v3, v3);
|
|
|
|
if (v4) {
|
|
copy_v3_v3(rayface->v4, v4);
|
|
rayface->quad = 1;
|
|
}
|
|
else {
|
|
rayface->quad = 0;
|
|
}
|
|
|
|
return RE_rayobject_unalignRayFace(rayface);
|
|
}
|
|
|
|
MALWAYS_INLINE void rayface_from_vlak(RayFace *rayface, ObjectInstanceRen *obi, VlakRen *vlr)
|
|
{
|
|
rayface_from_coords(rayface, obi, vlr, vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->v4 ? vlr->v4->co : NULL);
|
|
|
|
if (obi->transform_primitives) {
|
|
mul_m4_v3(obi->mat, rayface->v1);
|
|
mul_m4_v3(obi->mat, rayface->v2);
|
|
mul_m4_v3(obi->mat, rayface->v3);
|
|
|
|
if (RE_rayface_isQuad(rayface))
|
|
mul_m4_v3(obi->mat, rayface->v4);
|
|
}
|
|
}
|
|
|
|
RayObject *RE_rayface_from_vlak(RayFace *rayface, ObjectInstanceRen *obi, VlakRen *vlr)
|
|
{
|
|
return rayface_from_coords(rayface, obi, vlr, vlr->v1->co, vlr->v2->co, vlr->v3->co, vlr->v4 ? vlr->v4->co : NULL);
|
|
}
|
|
|
|
RayObject *RE_rayface_from_coords(RayFace *rayface, void *ob, void *face, float *v1, float *v2, float *v3, float *v4)
|
|
{
|
|
return rayface_from_coords(rayface, ob, face, v1, v2, v3, v4);
|
|
}
|
|
|
|
/* VlakPrimitive */
|
|
|
|
RayObject *RE_vlakprimitive_from_vlak(VlakPrimitive *face, struct ObjectInstanceRen *obi, struct VlakRen *vlr)
|
|
{
|
|
face->ob = obi;
|
|
face->face = vlr;
|
|
|
|
return RE_rayobject_unalignVlakPrimitive(face);
|
|
}
|
|
|
|
/* Checks for ignoring faces or materials */
|
|
|
|
MALWAYS_INLINE int vlr_check_intersect(Isect *is, ObjectInstanceRen *obi, VlakRen *vlr)
|
|
{
|
|
/* for baking selected to active non-traceable materials might still
|
|
* be in the raytree */
|
|
if (!(vlr->flag & R_TRACEBLE))
|
|
return 0;
|
|
|
|
/* I know... cpu cycle waste, might do smarter once */
|
|
if (is->mode == RE_RAY_MIRROR)
|
|
return !(vlr->mat->mode & MA_ONLYCAST);
|
|
else
|
|
return (vlr->mat->mode2 & MA_CASTSHADOW) && (is->lay & obi->lay);
|
|
}
|
|
|
|
MALWAYS_INLINE int vlr_check_intersect_solid(Isect *UNUSED(is), ObjectInstanceRen *UNUSED(obi), VlakRen *vlr)
|
|
{
|
|
/* solid material types only */
|
|
if (vlr->mat->material_type == MA_TYPE_SURFACE)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
MALWAYS_INLINE int vlr_check_bake(Isect *is, ObjectInstanceRen *obi, VlakRen *UNUSED(vlr))
|
|
{
|
|
return (obi->obr->ob != is->userdata) && (obi->obr->ob->flag & SELECT);
|
|
}
|
|
|
|
/* Ray Triangle/Quad Intersection */
|
|
|
|
static bool isect_ray_tri_watertight_no_sign_check_v3(
|
|
const float ray_origin[3], const struct IsectRayPrecalc *isect_precalc,
|
|
const float v0[3], const float v1[3], const float v2[3],
|
|
float *r_lambda, float r_uv[2])
|
|
{
|
|
const int kx = isect_precalc->kx;
|
|
const int ky = isect_precalc->ky;
|
|
const int kz = isect_precalc->kz;
|
|
const float sx = isect_precalc->sx;
|
|
const float sy = isect_precalc->sy;
|
|
const float sz = isect_precalc->sz;
|
|
|
|
/* Calculate vertices relative to ray origin. */
|
|
const float a[3] = {v0[0] - ray_origin[0], v0[1] - ray_origin[1], v0[2] - ray_origin[2]};
|
|
const float b[3] = {v1[0] - ray_origin[0], v1[1] - ray_origin[1], v1[2] - ray_origin[2]};
|
|
const float c[3] = {v2[0] - ray_origin[0], v2[1] - ray_origin[1], v2[2] - ray_origin[2]};
|
|
|
|
const float a_kx = a[kx], a_ky = a[ky], a_kz = a[kz];
|
|
const float b_kx = b[kx], b_ky = b[ky], b_kz = b[kz];
|
|
const float c_kx = c[kx], c_ky = c[ky], c_kz = c[kz];
|
|
|
|
/* Perform shear and scale of vertices. */
|
|
const float ax = a_kx - sx * a_kz;
|
|
const float ay = a_ky - sy * a_kz;
|
|
const float bx = b_kx - sx * b_kz;
|
|
const float by = b_ky - sy * b_kz;
|
|
const float cx = c_kx - sx * c_kz;
|
|
const float cy = c_ky - sy * c_kz;
|
|
|
|
/* Calculate scaled barycentric coordinates. */
|
|
const float u = cx * by - cy * bx;
|
|
const float v = ax * cy - ay * cx;
|
|
const float w = bx * ay - by * ax;
|
|
float det;
|
|
|
|
if ((u < 0.0f || v < 0.0f || w < 0.0f) &&
|
|
(u > 0.0f || v > 0.0f || w > 0.0f))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* Calculate determinant. */
|
|
det = u + v + w;
|
|
if (UNLIKELY(det == 0.0f)) {
|
|
return false;
|
|
}
|
|
else {
|
|
/* Calculate scaled z-coordinates of vertices and use them to calculate
|
|
* the hit distance.
|
|
*/
|
|
const float t = (u * a_kz + v * b_kz + w * c_kz) * sz;
|
|
/* Normalize u, v and t. */
|
|
const float inv_det = 1.0f / det;
|
|
if (r_uv) {
|
|
r_uv[0] = u * inv_det;
|
|
r_uv[1] = v * inv_det;
|
|
}
|
|
*r_lambda = t * inv_det;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
MALWAYS_INLINE int isec_tri_quad(const float start[3],
|
|
const struct IsectRayPrecalc *isect_precalc,
|
|
const RayFace *face,
|
|
float r_uv[2], float *r_lambda)
|
|
{
|
|
float uv[2], l;
|
|
|
|
if (isect_ray_tri_watertight_v3(start, isect_precalc, face->v1, face->v2, face->v3, &l, uv)) {
|
|
/* check if intersection is within ray length */
|
|
if (l > -RE_RAYTRACE_EPSILON && l < *r_lambda) {
|
|
r_uv[0] = -uv[0];
|
|
r_uv[1] = -uv[1];
|
|
*r_lambda = l;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* intersect second triangle in quad */
|
|
if (RE_rayface_isQuad(face)) {
|
|
if (isect_ray_tri_watertight_v3(start, isect_precalc, face->v1, face->v3, face->v4, &l, uv)) {
|
|
/* check if intersection is within ray length */
|
|
if (l > -RE_RAYTRACE_EPSILON && l < *r_lambda) {
|
|
r_uv[0] = -uv[0];
|
|
r_uv[1] = -uv[1];
|
|
*r_lambda = l;
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Simpler yes/no Ray Triangle/Quad Intersection */
|
|
|
|
MALWAYS_INLINE int isec_tri_quad_neighbour(const float start[3],
|
|
const float dir[3],
|
|
const RayFace *face)
|
|
{
|
|
float r[3];
|
|
struct IsectRayPrecalc isect_precalc;
|
|
float uv[2], l;
|
|
|
|
negate_v3_v3(r, dir); /* note, different than above function */
|
|
|
|
isect_ray_tri_watertight_v3_precalc(&isect_precalc, r);
|
|
|
|
if (isect_ray_tri_watertight_no_sign_check_v3(start, &isect_precalc, face->v1, face->v2, face->v3, &l, uv)) {
|
|
return 1;
|
|
}
|
|
|
|
/* intersect second triangle in quad */
|
|
if (RE_rayface_isQuad(face)) {
|
|
if (isect_ray_tri_watertight_no_sign_check_v3(start, &isect_precalc, face->v1, face->v3, face->v4, &l, uv)) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* RayFace intersection with checks and neighbor verifaction included,
|
|
* Isect is modified if the face is hit. */
|
|
|
|
MALWAYS_INLINE int intersect_rayface(RayObject *hit_obj, RayFace *face, Isect *is)
|
|
{
|
|
float dist, uv[2];
|
|
int ok = 0;
|
|
|
|
/* avoid self-intersection */
|
|
if (is->orig.ob == face->ob && is->orig.face == face->face)
|
|
return 0;
|
|
|
|
/* check if we should intersect this face */
|
|
if (is->check == RE_CHECK_VLR_RENDER) {
|
|
if (vlr_check_intersect(is, (ObjectInstanceRen *)face->ob, (VlakRen *)face->face) == 0)
|
|
return 0;
|
|
}
|
|
else if (is->check == RE_CHECK_VLR_NON_SOLID_MATERIAL) {
|
|
if (vlr_check_intersect(is, (ObjectInstanceRen *)face->ob, (VlakRen *)face->face) == 0)
|
|
return 0;
|
|
if (vlr_check_intersect_solid(is, (ObjectInstanceRen *)face->ob, (VlakRen *)face->face) == 0)
|
|
return 0;
|
|
}
|
|
else if (is->check == RE_CHECK_VLR_BAKE) {
|
|
if (vlr_check_bake(is, (ObjectInstanceRen *)face->ob, (VlakRen *)face->face) == 0)
|
|
return 0;
|
|
}
|
|
|
|
/* ray counter */
|
|
RE_RC_COUNT(is->raycounter->faces.test);
|
|
|
|
dist = is->dist;
|
|
ok = isec_tri_quad(is->start, &is->isect_precalc, face, uv, &dist);
|
|
|
|
if (ok) {
|
|
|
|
/* when a shadow ray leaves a face, it can be little outside the edges
|
|
* of it, causing intersection to be detected in its neighbor face */
|
|
if (is->skip & RE_SKIP_VLR_NEIGHBOUR) {
|
|
if (dist < 0.1f && is->orig.ob == face->ob) {
|
|
VlakRen *a = (VlakRen *)is->orig.face;
|
|
VlakRen *b = (VlakRen *)face->face;
|
|
ObjectRen *obr = ((ObjectInstanceRen *)face->ob)->obr;
|
|
|
|
VertRen **va, **vb;
|
|
int *org_idx_a, *org_idx_b;
|
|
int i, j;
|
|
bool is_neighbor = false;
|
|
|
|
/* "same" vertex means either the actual same VertRen, or the same 'final org index', if available
|
|
* (autosmooth only, currently). */
|
|
for (i = 0, va = &a->v1; !is_neighbor && i < 4 && *va; ++i, ++va) {
|
|
org_idx_a = RE_vertren_get_origindex(obr, *va, false);
|
|
for (j = 0, vb = &b->v1; !is_neighbor && j < 4 && *vb; ++j, ++vb) {
|
|
if (*va == *vb) {
|
|
is_neighbor = true;
|
|
}
|
|
else if (org_idx_a) {
|
|
org_idx_b = RE_vertren_get_origindex(obr, *vb, 0);
|
|
if (org_idx_b && *org_idx_a == *org_idx_b) {
|
|
is_neighbor = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* So there's a shared edge or vertex, let's intersect ray with self, if that's true
|
|
* we can safely return 1, otherwise we assume the intersection is invalid, 0 */
|
|
if (is_neighbor) {
|
|
/* create RayFace from original face, transformed if necessary */
|
|
RayFace origface;
|
|
ObjectInstanceRen *ob = (ObjectInstanceRen *)is->orig.ob;
|
|
rayface_from_vlak(&origface, ob, (VlakRen *)is->orig.face);
|
|
|
|
if (!isec_tri_quad_neighbour(is->start, is->dir, &origface)) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
RE_RC_COUNT(is->raycounter->faces.hit);
|
|
|
|
is->isect = ok; // which half of the quad
|
|
is->dist = dist;
|
|
is->u = uv[0]; is->v = uv[1];
|
|
|
|
is->hit.ob = face->ob;
|
|
is->hit.face = face->face;
|
|
#ifdef RT_USE_LAST_HIT
|
|
is->last_hit = hit_obj;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Intersection */
|
|
|
|
int RE_rayobject_raycast(RayObject *r, Isect *isec)
|
|
{
|
|
int i;
|
|
|
|
/* Pre-calculate orientation for watertight intersection checks. */
|
|
isect_ray_tri_watertight_v3_precalc(&isec->isect_precalc, isec->dir);
|
|
|
|
RE_RC_COUNT(isec->raycounter->raycast.test);
|
|
|
|
/* setup vars used on raycast */
|
|
for (i = 0; i < 3; i++) {
|
|
isec->idot_axis[i] = 1.0f / isec->dir[i];
|
|
|
|
isec->bv_index[2 * i] = isec->idot_axis[i] < 0.0f ? 1 : 0;
|
|
isec->bv_index[2 * i + 1] = 1 - isec->bv_index[2 * i];
|
|
|
|
isec->bv_index[2 * i] = i + 3 * isec->bv_index[2 * i];
|
|
isec->bv_index[2 * i + 1] = i + 3 * isec->bv_index[2 * i + 1];
|
|
}
|
|
|
|
#ifdef RT_USE_LAST_HIT
|
|
/* last hit heuristic */
|
|
if (isec->mode == RE_RAY_SHADOW && isec->last_hit) {
|
|
RE_RC_COUNT(isec->raycounter->rayshadow_last_hit.test);
|
|
|
|
if (RE_rayobject_intersect(isec->last_hit, isec)) {
|
|
RE_RC_COUNT(isec->raycounter->raycast.hit);
|
|
RE_RC_COUNT(isec->raycounter->rayshadow_last_hit.hit);
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RT_USE_HINT
|
|
isec->hit_hint = 0;
|
|
#endif
|
|
|
|
if (RE_rayobject_intersect(r, isec)) {
|
|
RE_RC_COUNT(isec->raycounter->raycast.hit);
|
|
|
|
#ifdef RT_USE_HINT
|
|
isec->hint = isec->hit_hint;
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int RE_rayobject_intersect(RayObject *r, Isect *i)
|
|
{
|
|
if (RE_rayobject_isRayFace(r)) {
|
|
return intersect_rayface(r, (RayFace *) RE_rayobject_align(r), i);
|
|
}
|
|
else if (RE_rayobject_isVlakPrimitive(r)) {
|
|
//TODO optimize (useless copy to RayFace to avoid duplicate code)
|
|
VlakPrimitive *face = (VlakPrimitive *) RE_rayobject_align(r);
|
|
RayFace nface;
|
|
rayface_from_vlak(&nface, face->ob, face->face);
|
|
|
|
return intersect_rayface(r, &nface, i);
|
|
}
|
|
else if (RE_rayobject_isRayAPI(r)) {
|
|
r = RE_rayobject_align(r);
|
|
return r->api->raycast(r, i);
|
|
}
|
|
else {
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Building */
|
|
|
|
void RE_rayobject_add(RayObject *r, RayObject *o)
|
|
{
|
|
r = RE_rayobject_align(r);
|
|
return r->api->add(r, o);
|
|
}
|
|
|
|
void RE_rayobject_done(RayObject *r)
|
|
{
|
|
r = RE_rayobject_align(r);
|
|
r->api->done(r);
|
|
}
|
|
|
|
void RE_rayobject_free(RayObject *r)
|
|
{
|
|
r = RE_rayobject_align(r);
|
|
r->api->free(r);
|
|
}
|
|
|
|
float RE_rayobject_cost(RayObject *r)
|
|
{
|
|
if (RE_rayobject_isRayFace(r) || RE_rayobject_isVlakPrimitive(r)) {
|
|
return 1.0f;
|
|
}
|
|
else if (RE_rayobject_isRayAPI(r)) {
|
|
r = RE_rayobject_align(r);
|
|
return r->api->cost(r);
|
|
}
|
|
else {
|
|
assert(0);
|
|
return 1.0f;
|
|
}
|
|
}
|
|
|
|
/* Bounding Boxes */
|
|
|
|
void RE_rayobject_merge_bb(RayObject *r, float min[3], float max[3])
|
|
{
|
|
if (RE_rayobject_isRayFace(r)) {
|
|
RayFace *face = (RayFace *) RE_rayobject_align(r);
|
|
|
|
DO_MINMAX(face->v1, min, max);
|
|
DO_MINMAX(face->v2, min, max);
|
|
DO_MINMAX(face->v3, min, max);
|
|
if (RE_rayface_isQuad(face)) DO_MINMAX(face->v4, min, max);
|
|
}
|
|
else if (RE_rayobject_isVlakPrimitive(r)) {
|
|
VlakPrimitive *face = (VlakPrimitive *) RE_rayobject_align(r);
|
|
RayFace nface;
|
|
rayface_from_vlak(&nface, face->ob, face->face);
|
|
|
|
DO_MINMAX(nface.v1, min, max);
|
|
DO_MINMAX(nface.v2, min, max);
|
|
DO_MINMAX(nface.v3, min, max);
|
|
if (RE_rayface_isQuad(&nface)) DO_MINMAX(nface.v4, min, max);
|
|
}
|
|
else if (RE_rayobject_isRayAPI(r)) {
|
|
r = RE_rayobject_align(r);
|
|
r->api->bb(r, min, max);
|
|
}
|
|
else
|
|
assert(0);
|
|
}
|
|
|
|
/* Hints */
|
|
|
|
void RE_rayobject_hint_bb(RayObject *r, RayHint *hint, float *min, float *max)
|
|
{
|
|
if (RE_rayobject_isRayFace(r) || RE_rayobject_isVlakPrimitive(r)) {
|
|
return;
|
|
}
|
|
else if (RE_rayobject_isRayAPI(r)) {
|
|
r = RE_rayobject_align(r);
|
|
return r->api->hint_bb(r, hint, min, max);
|
|
}
|
|
else
|
|
assert(0);
|
|
}
|
|
|
|
/* RayObjectControl */
|
|
|
|
int RE_rayobjectcontrol_test_break(RayObjectControl *control)
|
|
{
|
|
if (control->test_break)
|
|
return control->test_break(control->data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void RE_rayobject_set_control(RayObject *r, void *data, RE_rayobjectcontrol_test_break_callback test_break)
|
|
{
|
|
if (RE_rayobject_isRayAPI(r)) {
|
|
r = RE_rayobject_align(r);
|
|
r->control.data = data;
|
|
r->control.test_break = test_break;
|
|
}
|
|
}
|
|
|