Includes preprocessed Mantaflow source files for both OpenMP and TBB (if OpenMP is not present, TBB files will be used instead). These files come directly from the Mantaflow repository. Future updates to the core fluid solver will take place by updating the files. Reviewed By: sergey, mont29 Maniphest Tasks: T59995 Differential Revision: https://developer.blender.org/D3850
205 lines
6.8 KiB
C++
205 lines
6.8 KiB
C++
/******************************************************************************
|
|
*
|
|
* MantaFlow fluid solver framework
|
|
* Copyright 2014 Tobias Pfaff, Nils Thuerey
|
|
*
|
|
* This program is free software, distributed under the terms of the
|
|
* Apache License, Version 2.0
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Helper functions for higher order interpolation
|
|
*
|
|
******************************************************************************/
|
|
|
|
#ifndef _INTERPOLHIGH_H
|
|
#define _INTERPOLHIGH_H
|
|
|
|
#include "vectorbase.h"
|
|
|
|
namespace Manta {
|
|
|
|
template<class T> inline T cubicInterp(const Real interp, const T *points)
|
|
{
|
|
T d0 = (points[2] - points[0]) * 0.5;
|
|
T d1 = (points[3] - points[1]) * 0.5;
|
|
T deltak = (points[2] - points[1]);
|
|
|
|
// disabled: if (deltak * d0 < 0.0) d0 = 0;
|
|
// disabled: if (deltak * d1 < 0.0) d1 = 0;
|
|
|
|
T a0 = points[1];
|
|
T a1 = d0;
|
|
T a2 = 3.0 * deltak - 2.0 * d0 - d1;
|
|
T a3 = -2.0 * deltak + d0 + d1;
|
|
|
|
Real squared = interp * interp;
|
|
Real cubed = squared * interp;
|
|
return a3 * cubed + a2 * squared + a1 * interp + a0;
|
|
}
|
|
|
|
template<class T> inline T interpolCubic2D(const T *data, const Vec3i &size, const Vec3 &pos)
|
|
{
|
|
const Real px = pos.x - 0.5f, py = pos.y - 0.5f;
|
|
|
|
const int x1 = (int)px;
|
|
const int x2 = x1 + 1;
|
|
const int x3 = x1 + 2;
|
|
const int x0 = x1 - 1;
|
|
|
|
const int y1 = (int)py;
|
|
const int y2 = y1 + 1;
|
|
const int y3 = y1 + 2;
|
|
const int y0 = y1 - 1;
|
|
|
|
if (x0 < 0 || y0 < 0 || x3 >= size[0] || y3 >= size[1]) {
|
|
return interpol(data, size, 0, pos);
|
|
}
|
|
|
|
const Real xInterp = px - x1;
|
|
const Real yInterp = py - y1;
|
|
|
|
const int y0x = y0 * size[0];
|
|
const int y1x = y1 * size[0];
|
|
const int y2x = y2 * size[0];
|
|
const int y3x = y3 * size[0];
|
|
|
|
const T p0[] = {data[x0 + y0x], data[x1 + y0x], data[x2 + y0x], data[x3 + y0x]};
|
|
const T p1[] = {data[x0 + y1x], data[x1 + y1x], data[x2 + y1x], data[x3 + y1x]};
|
|
const T p2[] = {data[x0 + y2x], data[x1 + y2x], data[x2 + y2x], data[x3 + y2x]};
|
|
const T p3[] = {data[x0 + y3x], data[x1 + y3x], data[x2 + y3x], data[x3 + y3x]};
|
|
|
|
const T finalPoints[] = {cubicInterp(xInterp, p0),
|
|
cubicInterp(xInterp, p1),
|
|
cubicInterp(xInterp, p2),
|
|
cubicInterp(xInterp, p3)};
|
|
|
|
return cubicInterp(yInterp, finalPoints);
|
|
}
|
|
|
|
template<class T>
|
|
inline T interpolCubic(const T *data, const Vec3i &size, const int Z, const Vec3 &pos)
|
|
{
|
|
if (Z == 0)
|
|
return interpolCubic2D(data, size, pos);
|
|
|
|
const Real px = pos.x - 0.5f, py = pos.y - 0.5f, pz = pos.z - 0.5f;
|
|
|
|
const int x1 = (int)px;
|
|
const int x2 = x1 + 1;
|
|
const int x3 = x1 + 2;
|
|
const int x0 = x1 - 1;
|
|
|
|
const int y1 = (int)py;
|
|
const int y2 = y1 + 1;
|
|
const int y3 = y1 + 2;
|
|
const int y0 = y1 - 1;
|
|
|
|
const int z1 = (int)pz;
|
|
const int z2 = z1 + 1;
|
|
const int z3 = z1 + 2;
|
|
const int z0 = z1 - 1;
|
|
|
|
if (x0 < 0 || y0 < 0 || z0 < 0 || x3 >= size[0] || y3 >= size[1] || z3 >= size[2]) {
|
|
return interpol(data, size, Z, pos);
|
|
}
|
|
|
|
const Real xInterp = px - x1;
|
|
const Real yInterp = py - y1;
|
|
const Real zInterp = pz - z1;
|
|
|
|
const int slabsize = size[0] * size[1];
|
|
const int z0Slab = z0 * slabsize;
|
|
const int z1Slab = z1 * slabsize;
|
|
const int z2Slab = z2 * slabsize;
|
|
const int z3Slab = z3 * slabsize;
|
|
|
|
const int y0x = y0 * size[0];
|
|
const int y1x = y1 * size[0];
|
|
const int y2x = y2 * size[0];
|
|
const int y3x = y3 * size[0];
|
|
|
|
const int y0z0 = y0x + z0Slab;
|
|
const int y1z0 = y1x + z0Slab;
|
|
const int y2z0 = y2x + z0Slab;
|
|
const int y3z0 = y3x + z0Slab;
|
|
|
|
const int y0z1 = y0x + z1Slab;
|
|
const int y1z1 = y1x + z1Slab;
|
|
const int y2z1 = y2x + z1Slab;
|
|
const int y3z1 = y3x + z1Slab;
|
|
|
|
const int y0z2 = y0x + z2Slab;
|
|
const int y1z2 = y1x + z2Slab;
|
|
const int y2z2 = y2x + z2Slab;
|
|
const int y3z2 = y3x + z2Slab;
|
|
|
|
const int y0z3 = y0x + z3Slab;
|
|
const int y1z3 = y1x + z3Slab;
|
|
const int y2z3 = y2x + z3Slab;
|
|
const int y3z3 = y3x + z3Slab;
|
|
|
|
// get the z0 slice
|
|
const T p0[] = {data[x0 + y0z0], data[x1 + y0z0], data[x2 + y0z0], data[x3 + y0z0]};
|
|
const T p1[] = {data[x0 + y1z0], data[x1 + y1z0], data[x2 + y1z0], data[x3 + y1z0]};
|
|
const T p2[] = {data[x0 + y2z0], data[x1 + y2z0], data[x2 + y2z0], data[x3 + y2z0]};
|
|
const T p3[] = {data[x0 + y3z0], data[x1 + y3z0], data[x2 + y3z0], data[x3 + y3z0]};
|
|
|
|
// get the z1 slice
|
|
const T p4[] = {data[x0 + y0z1], data[x1 + y0z1], data[x2 + y0z1], data[x3 + y0z1]};
|
|
const T p5[] = {data[x0 + y1z1], data[x1 + y1z1], data[x2 + y1z1], data[x3 + y1z1]};
|
|
const T p6[] = {data[x0 + y2z1], data[x1 + y2z1], data[x2 + y2z1], data[x3 + y2z1]};
|
|
const T p7[] = {data[x0 + y3z1], data[x1 + y3z1], data[x2 + y3z1], data[x3 + y3z1]};
|
|
|
|
// get the z2 slice
|
|
const T p8[] = {data[x0 + y0z2], data[x1 + y0z2], data[x2 + y0z2], data[x3 + y0z2]};
|
|
const T p9[] = {data[x0 + y1z2], data[x1 + y1z2], data[x2 + y1z2], data[x3 + y1z2]};
|
|
const T p10[] = {data[x0 + y2z2], data[x1 + y2z2], data[x2 + y2z2], data[x3 + y2z2]};
|
|
const T p11[] = {data[x0 + y3z2], data[x1 + y3z2], data[x2 + y3z2], data[x3 + y3z2]};
|
|
|
|
// get the z3 slice
|
|
const T p12[] = {data[x0 + y0z3], data[x1 + y0z3], data[x2 + y0z3], data[x3 + y0z3]};
|
|
const T p13[] = {data[x0 + y1z3], data[x1 + y1z3], data[x2 + y1z3], data[x3 + y1z3]};
|
|
const T p14[] = {data[x0 + y2z3], data[x1 + y2z3], data[x2 + y2z3], data[x3 + y2z3]};
|
|
const T p15[] = {data[x0 + y3z3], data[x1 + y3z3], data[x2 + y3z3], data[x3 + y3z3]};
|
|
|
|
// interpolate
|
|
const T z0Points[] = {cubicInterp(xInterp, p0),
|
|
cubicInterp(xInterp, p1),
|
|
cubicInterp(xInterp, p2),
|
|
cubicInterp(xInterp, p3)};
|
|
const T z1Points[] = {cubicInterp(xInterp, p4),
|
|
cubicInterp(xInterp, p5),
|
|
cubicInterp(xInterp, p6),
|
|
cubicInterp(xInterp, p7)};
|
|
const T z2Points[] = {cubicInterp(xInterp, p8),
|
|
cubicInterp(xInterp, p9),
|
|
cubicInterp(xInterp, p10),
|
|
cubicInterp(xInterp, p11)};
|
|
const T z3Points[] = {cubicInterp(xInterp, p12),
|
|
cubicInterp(xInterp, p13),
|
|
cubicInterp(xInterp, p14),
|
|
cubicInterp(xInterp, p15)};
|
|
|
|
const T finalPoints[] = {cubicInterp(yInterp, z0Points),
|
|
cubicInterp(yInterp, z1Points),
|
|
cubicInterp(yInterp, z2Points),
|
|
cubicInterp(yInterp, z3Points)};
|
|
|
|
return cubicInterp(zInterp, finalPoints);
|
|
}
|
|
|
|
inline Vec3 interpolCubicMAC(const Vec3 *data, const Vec3i &size, const int Z, const Vec3 &pos)
|
|
{
|
|
// warning - not yet optimized...
|
|
Real vx = interpolCubic<Vec3>(data, size, Z, pos + Vec3(0.5, 0, 0))[0];
|
|
Real vy = interpolCubic<Vec3>(data, size, Z, pos + Vec3(0, 0.5, 0))[1];
|
|
Real vz = 0.f;
|
|
if (Z != 0)
|
|
vz = interpolCubic<Vec3>(data, size, Z, pos + Vec3(0, 0, 0.5))[2];
|
|
return Vec3(vx, vy, vz);
|
|
}
|
|
|
|
} // namespace Manta
|
|
|
|
#endif
|