This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_base_inline.c
Bastien Montagne 7837f0e833 BLI_math 'compare' cleanup & enhancements.
This commit:
* Adds a 'compare_ff' function for absolute 'almost equal' comparison of floats.
* Makes 'compare_vxvx' functions use that new 'compare_ff' one.
* Adds a 'compare_ff_relative' function for secured ulp-based relative comparison of floats.
* Adds matching 'compare_vxvx_relative' functions.
* Adds some basic tests for compare_ff_relative.

See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

Note that we could replace our python/mathutils' EXPP_FloatsAreEqual() by BLI's compare_ff_relative
(using a very small absolute max_diff), but these do not have exact same behavior...
Left a comment there for now, we can do it later if/when we are sure it won't break anything!
2015-07-10 15:02:43 +02:00

315 lines
6.9 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*
* ***** END GPL LICENSE BLOCK *****
* */
/** \file blender/blenlib/intern/math_base_inline.c
* \ingroup bli
*/
#ifndef __MATH_BASE_INLINE_C__
#define __MATH_BASE_INLINE_C__
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "BLI_math_base.h"
/* copied from BLI_utildefines.h */
#ifdef __GNUC__
# define UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
# define UNLIKELY(x) (x)
#endif
/* powf is really slow for raising to integer powers. */
MINLINE float pow2f(float x)
{
return x * x;
}
MINLINE float pow3f(float x)
{
return pow2f(x) * x;
}
MINLINE float pow4f(float x)
{
return pow2f(pow2f(x));
}
MINLINE float pow7f(float x)
{
return pow2f(pow3f(x)) * x;
}
MINLINE float sqrt3f(float f)
{
if (UNLIKELY(f == 0.0f)) return 0.0f;
else if (UNLIKELY(f < 0.0f)) return -(float)(exp(log(-f) / 3.0));
else return (float)(exp(log( f) / 3.0));
}
MINLINE double sqrt3d(double d)
{
if (UNLIKELY(d == 0.0)) return 0.0;
else if (UNLIKELY(d < 0.0)) return -exp(log(-d) / 3.0);
else return exp(log( d) / 3.0);
}
MINLINE float sqrtf_signed(float f)
{
return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f);
}
MINLINE float saacos(float fac)
{
if (UNLIKELY(fac <= -1.0f)) return (float)M_PI;
else if (UNLIKELY(fac >= 1.0f)) return 0.0f;
else return acosf(fac);
}
MINLINE float saasin(float fac)
{
if (UNLIKELY(fac <= -1.0f)) return (float)-M_PI / 2.0f;
else if (UNLIKELY(fac >= 1.0f)) return (float) M_PI / 2.0f;
else return asinf(fac);
}
MINLINE float sasqrt(float fac)
{
if (UNLIKELY(fac <= 0.0f)) return 0.0f;
else return sqrtf(fac);
}
MINLINE float saacosf(float fac)
{
if (UNLIKELY(fac <= -1.0f)) return (float)M_PI;
else if (UNLIKELY(fac >= 1.0f)) return 0.0f;
else return acosf(fac);
}
MINLINE float saasinf(float fac)
{
if (UNLIKELY(fac <= -1.0f)) return (float)-M_PI / 2.0f;
else if (UNLIKELY(fac >= 1.0f)) return (float) M_PI / 2.0f;
else return asinf(fac);
}
MINLINE float sasqrtf(float fac)
{
if (UNLIKELY(fac <= 0.0f)) return 0.0f;
else return sqrtf(fac);
}
MINLINE float interpf(float target, float origin, float fac)
{
return (fac * target) + (1.0f - fac) * origin;
}
/* used for zoom values*/
MINLINE float power_of_2(float val)
{
return (float)pow(2.0, ceil(log((double)val) / M_LN2));
}
MINLINE int is_power_of_2_i(int n)
{
return (n & (n - 1)) == 0;
}
MINLINE int power_of_2_max_i(int n)
{
if (is_power_of_2_i(n))
return n;
do {
n = n & (n - 1);
} while (!is_power_of_2_i(n));
return n * 2;
}
MINLINE int power_of_2_min_i(int n)
{
while (!is_power_of_2_i(n))
n = n & (n - 1);
return n;
}
MINLINE unsigned int power_of_2_max_u(unsigned int x)
{
x -= 1;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
MINLINE unsigned power_of_2_min_u(unsigned x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x - (x >> 1);
}
MINLINE int iroundf(float a)
{
return (int)floorf(a + 0.5f);
}
/* integer division that rounds 0.5 up, particularly useful for color blending
* with integers, to avoid gradual darkening when rounding down */
MINLINE int divide_round_i(int a, int b)
{
return (2 * a + b) / (2 * b);
}
/**
* modulo that handles negative numbers, works the same as Python's.
*/
MINLINE int mod_i(int i, int n)
{
return (i % n + n) % n;
}
MINLINE float min_ff(float a, float b)
{
return (a < b) ? a : b;
}
MINLINE float max_ff(float a, float b)
{
return (a > b) ? a : b;
}
MINLINE int min_ii(int a, int b)
{
return (a < b) ? a : b;
}
MINLINE int max_ii(int a, int b)
{
return (b < a) ? a : b;
}
MINLINE float min_fff(float a, float b, float c)
{
return min_ff(min_ff(a, b), c);
}
MINLINE float max_fff(float a, float b, float c)
{
return max_ff(max_ff(a, b), c);
}
MINLINE int min_iii(int a, int b, int c)
{
return min_ii(min_ii(a, b), c);
}
MINLINE int max_iii(int a, int b, int c)
{
return max_ii(max_ii(a, b), c);
}
MINLINE float min_ffff(float a, float b, float c, float d)
{
return min_ff(min_fff(a, b, c), d);
}
MINLINE float max_ffff(float a, float b, float c, float d)
{
return max_ff(max_fff(a, b, c), d);
}
MINLINE int min_iiii(int a, int b, int c, int d)
{
return min_ii(min_iii(a, b, c), d);
}
MINLINE int max_iiii(int a, int b, int c, int d)
{
return max_ii(max_iii(a, b, c), d);
}
/**
* Almost-equal for IEEE floats, using absolute difference method.
*
* \param max_diff the maximum absolute difference.
*/
MINLINE int compare_ff(float a, float b, const float max_diff)
{
return fabsf(a - b) <= max_diff;
}
/**
* Almost-equal for IEEE floats, using their integer representation (mixing ULP and absolute difference methods).
*
* \param max_diff is the maximum absolute difference (allows to take care of the near-zero area,
* where relative difference methods cannot really work).
* \param max_ulps is the 'maximum number of floats + 1' allowed between \a a and \a b to consider them equal.
*
* \see https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
*/
MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps)
{
union {float f; int i;} ua, ub;
#if 0 /* No BLI_assert in INLINE :/ */
BLI_assert(sizeof(float) == sizeof(int));
BLI_assert(max_ulps < (1 << 22));
#endif
if (fabsf(a - b) <= max_diff) {
return 1;
}
ua.f = a;
ub.f = b;
/* Important to compare sign from integers, since (-0.0f < 0) is false
* (though this shall not be an issue in common cases)... */
return ((ua.i < 0) != (ub.i < 0)) ? 0 : (abs(ua.i - ub.i) <= max_ulps) ? 1 : 0;
}
MINLINE float signf(float f)
{
return (f < 0.f) ? -1.f : 1.f;
}
MINLINE int signum_i_ex(float a, float eps)
{
if (a > eps) return 1;
if (a < -eps) return -1;
else return 0;
}
MINLINE int signum_i(float a)
{
if (a > 0.0f) return 1;
if (a < 0.0f) return -1;
else return 0;
}
#endif /* __MATH_BASE_INLINE_C__ */