This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/intern/rct.c
Campbell Barton 6cee6607a2 UI: avoid subtracting shadow from winrct
For popup interactions we need to know if events are in the region or not,
however subtracting the shadow isn't so reliable, since its not always added to all sides of a popup.

Instead, get the winrct value from a popup using the block rect, otherwise the winrct as-is.
2015-08-18 14:16:58 +10:00

657 lines
18 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*
*/
/** \file blender/blenlib/intern/rct.c
* \ingroup bli
*
* A minimalist lib for functions doing stuff with rectangle structs.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <float.h>
#include "DNA_vec_types.h"
#include "BLI_rect.h"
/**
* Determine if a rect is empty. An empty
* rect is one with a zero (or negative)
* width or height.
*
* \return True if \a rect is empty.
*/
bool BLI_rcti_is_empty(const rcti *rect)
{
return ((rect->xmax <= rect->xmin) || (rect->ymax <= rect->ymin));
}
bool BLI_rctf_is_empty(const rctf *rect)
{
return ((rect->xmax <= rect->xmin) || (rect->ymax <= rect->ymin));
}
bool BLI_rcti_isect_x(const rcti *rect, const int x)
{
if (x < rect->xmin) return false;
if (x > rect->xmax) return false;
return true;
}
bool BLI_rcti_isect_y(const rcti *rect, const int y)
{
if (y < rect->ymin) return false;
if (y > rect->ymax) return false;
return true;
}
bool BLI_rcti_isect_pt(const rcti *rect, const int x, const int y)
{
if (x < rect->xmin) return false;
if (x > rect->xmax) return false;
if (y < rect->ymin) return false;
if (y > rect->ymax) return false;
return true;
}
bool BLI_rcti_isect_pt_v(const rcti *rect, const int xy[2])
{
if (xy[0] < rect->xmin) return false;
if (xy[0] > rect->xmax) return false;
if (xy[1] < rect->ymin) return false;
if (xy[1] > rect->ymax) return false;
return true;
}
bool BLI_rctf_isect_x(const rctf *rect, const float x)
{
if (x < rect->xmin) return false;
if (x > rect->xmax) return false;
return true;
}
bool BLI_rctf_isect_y(const rctf *rect, const float y)
{
if (y < rect->ymin) return false;
if (y > rect->ymax) return false;
return true;
}
bool BLI_rctf_isect_pt(const rctf *rect, const float x, const float y)
{
if (x < rect->xmin) return false;
if (x > rect->xmax) return false;
if (y < rect->ymin) return false;
if (y > rect->ymax) return false;
return true;
}
bool BLI_rctf_isect_pt_v(const rctf *rect, const float xy[2])
{
if (xy[0] < rect->xmin) return false;
if (xy[0] > rect->xmax) return false;
if (xy[1] < rect->ymin) return false;
if (xy[1] > rect->ymax) return false;
return true;
}
/**
* \returns shortest distance from \a rect to x/y (0 if inside)
*/
int BLI_rcti_length_x(const rcti *rect, const int x)
{
if (x < rect->xmin) return rect->xmin - x;
if (x > rect->xmax) return x - rect->xmax;
return 0;
}
int BLI_rcti_length_y(const rcti *rect, const int y)
{
if (y < rect->ymin) return rect->ymin - y;
if (y > rect->ymax) return y - rect->ymax;
return 0;
}
float BLI_rctf_length_x(const rctf *rect, const float x)
{
if (x < rect->xmin) return rect->xmin - x;
if (x > rect->xmax) return x - rect->xmax;
return 0.0f;
}
float BLI_rctf_length_y(const rctf *rect, const float y)
{
if (y < rect->ymin) return rect->ymin - y;
if (y > rect->ymax) return y - rect->ymax;
return 0.0f;
}
/**
* is \a rct_b inside \a rct_a
*/
bool BLI_rctf_inside_rctf(rctf *rct_a, const rctf *rct_b)
{
return ((rct_a->xmin <= rct_b->xmin) &&
(rct_a->xmax >= rct_b->xmax) &&
(rct_a->ymin <= rct_b->ymin) &&
(rct_a->ymax >= rct_b->ymax));
}
bool BLI_rcti_inside_rcti(rcti *rct_a, const rcti *rct_b)
{
return ((rct_a->xmin <= rct_b->xmin) &&
(rct_a->xmax >= rct_b->xmax) &&
(rct_a->ymin <= rct_b->ymin) &&
(rct_a->ymax >= rct_b->ymax));
}
/* based closely on 'isect_line_line_v2_int', but in modified so corner cases are treated as intersections */
static int isect_segments_i(const int v1[2], const int v2[2], const int v3[2], const int v4[2])
{
const double div = (double)((v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0]));
if (div == 0.0) {
return 1; /* co-linear */
}
else {
const double lambda = (double)((v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div;
const double mu = (double)((v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div;
return (lambda >= 0.0 && lambda <= 1.0 && mu >= 0.0 && mu <= 1.0);
}
}
static int isect_segments_fl(const float v1[2], const float v2[2], const float v3[2], const float v4[2])
{
const double div = (double)((v2[0] - v1[0]) * (v4[1] - v3[1]) - (v2[1] - v1[1]) * (v4[0] - v3[0]));
if (div == 0.0) {
return 1; /* co-linear */
}
else {
const double lambda = (double)((v1[1] - v3[1]) * (v4[0] - v3[0]) - (v1[0] - v3[0]) * (v4[1] - v3[1])) / div;
const double mu = (double)((v1[1] - v3[1]) * (v2[0] - v1[0]) - (v1[0] - v3[0]) * (v2[1] - v1[1])) / div;
return (lambda >= 0.0 && lambda <= 1.0 && mu >= 0.0 && mu <= 1.0);
}
}
bool BLI_rcti_isect_segment(const rcti *rect, const int s1[2], const int s2[2])
{
/* first do outside-bounds check for both points of the segment */
if (s1[0] < rect->xmin && s2[0] < rect->xmin) return false;
if (s1[0] > rect->xmax && s2[0] > rect->xmax) return false;
if (s1[1] < rect->ymin && s2[1] < rect->ymin) return false;
if (s1[1] > rect->ymax && s2[1] > rect->ymax) return false;
/* if either points intersect then we definetly intersect */
if (BLI_rcti_isect_pt_v(rect, s1) || BLI_rcti_isect_pt_v(rect, s2)) {
return true;
}
else {
/* both points are outside but may insersect the rect */
int tvec1[2];
int tvec2[2];
/* diagonal: [/] */
tvec1[0] = rect->xmin; tvec1[1] = rect->ymin;
tvec2[0] = rect->xmin; tvec2[1] = rect->ymax;
if (isect_segments_i(s1, s2, tvec1, tvec2)) {
return true;
}
/* diagonal: [\] */
tvec1[0] = rect->xmin; tvec1[1] = rect->ymax;
tvec2[0] = rect->xmax; tvec2[1] = rect->ymin;
if (isect_segments_i(s1, s2, tvec1, tvec2)) {
return true;
}
/* no intersection */
return false;
}
}
bool BLI_rctf_isect_segment(const rctf *rect, const float s1[2], const float s2[2])
{
/* first do outside-bounds check for both points of the segment */
if (s1[0] < rect->xmin && s2[0] < rect->xmin) return false;
if (s1[0] > rect->xmax && s2[0] > rect->xmax) return false;
if (s1[1] < rect->ymin && s2[1] < rect->ymin) return false;
if (s1[1] > rect->ymax && s2[1] > rect->ymax) return false;
/* if either points intersect then we definetly intersect */
if (BLI_rctf_isect_pt_v(rect, s1) || BLI_rctf_isect_pt_v(rect, s2)) {
return true;
}
else {
/* both points are outside but may insersect the rect */
float tvec1[2];
float tvec2[2];
/* diagonal: [/] */
tvec1[0] = rect->xmin; tvec1[1] = rect->ymin;
tvec2[0] = rect->xmin; tvec2[1] = rect->ymax;
if (isect_segments_fl(s1, s2, tvec1, tvec2)) {
return true;
}
/* diagonal: [\] */
tvec1[0] = rect->xmin; tvec1[1] = rect->ymax;
tvec2[0] = rect->xmax; tvec2[1] = rect->ymin;
if (isect_segments_fl(s1, s2, tvec1, tvec2)) {
return true;
}
/* no intersection */
return false;
}
}
bool BLI_rcti_isect_circle(const rcti *rect, const float xy[2], const float radius)
{
float dx, dy;
if (xy[0] >= rect->xmin && xy[0] <= rect->xmax) dx = 0;
else dx = (xy[0] < rect->xmin) ? (rect->xmin - xy[0]) : (xy[0] - rect->xmax);
if (xy[1] >= rect->ymin && xy[1] <= rect->ymax) dy = 0;
else dy = (xy[1] < rect->ymin) ? (rect->ymin - xy[1]) : (xy[1] - rect->ymax);
return dx * dx + dy * dy <= radius * radius;
}
bool BLI_rctf_isect_circle(const rctf *rect, const float xy[2], const float radius)
{
float dx, dy;
if (xy[0] >= rect->xmin && xy[0] <= rect->xmax) dx = 0;
else dx = (xy[0] < rect->xmin) ? (rect->xmin - xy[0]) : (xy[0] - rect->xmax);
if (xy[1] >= rect->ymin && xy[1] <= rect->ymax) dy = 0;
else dy = (xy[1] < rect->ymin) ? (rect->ymin - xy[1]) : (xy[1] - rect->ymax);
return dx * dx + dy * dy <= radius * radius;
}
void BLI_rctf_union(rctf *rct1, const rctf *rct2)
{
if (rct1->xmin > rct2->xmin) rct1->xmin = rct2->xmin;
if (rct1->xmax < rct2->xmax) rct1->xmax = rct2->xmax;
if (rct1->ymin > rct2->ymin) rct1->ymin = rct2->ymin;
if (rct1->ymax < rct2->ymax) rct1->ymax = rct2->ymax;
}
void BLI_rcti_union(rcti *rct1, const rcti *rct2)
{
if (rct1->xmin > rct2->xmin) rct1->xmin = rct2->xmin;
if (rct1->xmax < rct2->xmax) rct1->xmax = rct2->xmax;
if (rct1->ymin > rct2->ymin) rct1->ymin = rct2->ymin;
if (rct1->ymax < rct2->ymax) rct1->ymax = rct2->ymax;
}
void BLI_rctf_init(rctf *rect, float xmin, float xmax, float ymin, float ymax)
{
if (xmin <= xmax) {
rect->xmin = xmin;
rect->xmax = xmax;
}
else {
rect->xmax = xmin;
rect->xmin = xmax;
}
if (ymin <= ymax) {
rect->ymin = ymin;
rect->ymax = ymax;
}
else {
rect->ymax = ymin;
rect->ymin = ymax;
}
}
void BLI_rcti_init(rcti *rect, int xmin, int xmax, int ymin, int ymax)
{
if (xmin <= xmax) {
rect->xmin = xmin;
rect->xmax = xmax;
}
else {
rect->xmax = xmin;
rect->xmin = xmax;
}
if (ymin <= ymax) {
rect->ymin = ymin;
rect->ymax = ymax;
}
else {
rect->ymax = ymin;
rect->ymin = ymax;
}
}
void BLI_rcti_init_minmax(rcti *rect)
{
rect->xmin = rect->ymin = INT_MAX;
rect->xmax = rect->ymax = INT_MIN;
}
void BLI_rctf_init_minmax(rctf *rect)
{
rect->xmin = rect->ymin = FLT_MAX;
rect->xmax = rect->ymax = -FLT_MAX;
}
void BLI_rcti_do_minmax_v(rcti *rect, const int xy[2])
{
if (xy[0] < rect->xmin) rect->xmin = xy[0];
if (xy[0] > rect->xmax) rect->xmax = xy[0];
if (xy[1] < rect->ymin) rect->ymin = xy[1];
if (xy[1] > rect->ymax) rect->ymax = xy[1];
}
void BLI_rctf_do_minmax_v(rctf *rect, const float xy[2])
{
if (xy[0] < rect->xmin) rect->xmin = xy[0];
if (xy[0] > rect->xmax) rect->xmax = xy[0];
if (xy[1] < rect->ymin) rect->ymin = xy[1];
if (xy[1] > rect->ymax) rect->ymax = xy[1];
}
/* given 2 rectangles - transform a point from one to another */
void BLI_rctf_transform_pt_v(const rctf *dst, const rctf *src, float xy_dst[2], const float xy_src[2])
{
xy_dst[0] = ((xy_src[0] - src->xmin) / (src->xmax - src->xmin));
xy_dst[0] = dst->xmin + ((dst->xmax - dst->xmin) * xy_dst[0]);
xy_dst[1] = ((xy_src[1] - src->ymin) / (src->ymax - src->ymin));
xy_dst[1] = dst->ymin + ((dst->ymax - dst->ymin) * xy_dst[1]);
}
void BLI_rcti_translate(rcti *rect, int x, int y)
{
rect->xmin += x;
rect->ymin += y;
rect->xmax += x;
rect->ymax += y;
}
void BLI_rctf_translate(rctf *rect, float x, float y)
{
rect->xmin += x;
rect->ymin += y;
rect->xmax += x;
rect->ymax += y;
}
void BLI_rcti_recenter(rcti *rect, int x, int y)
{
const int dx = x - BLI_rcti_cent_x(rect);
const int dy = y - BLI_rcti_cent_y(rect);
BLI_rcti_translate(rect, dx, dy);
}
void BLI_rctf_recenter(rctf *rect, float x, float y)
{
const float dx = x - BLI_rctf_cent_x(rect);
const float dy = y - BLI_rctf_cent_y(rect);
BLI_rctf_translate(rect, dx, dy);
}
/* change width & height around the central location */
void BLI_rcti_resize(rcti *rect, int x, int y)
{
rect->xmin = rect->xmax = BLI_rcti_cent_x(rect);
rect->ymin = rect->ymax = BLI_rcti_cent_y(rect);
rect->xmin -= x / 2;
rect->ymin -= y / 2;
rect->xmax = rect->xmin + x;
rect->ymax = rect->ymin + y;
}
void BLI_rctf_resize(rctf *rect, float x, float y)
{
rect->xmin = rect->xmax = BLI_rctf_cent_x(rect);
rect->ymin = rect->ymax = BLI_rctf_cent_y(rect);
rect->xmin -= x * 0.5f;
rect->ymin -= y * 0.5f;
rect->xmax = rect->xmin + x;
rect->ymax = rect->ymin + y;
}
void BLI_rcti_scale(rcti *rect, const float scale)
{
const int cent_x = BLI_rcti_cent_x(rect);
const int cent_y = BLI_rcti_cent_y(rect);
const int size_x_half = BLI_rcti_size_x(rect) * (scale * 0.5f);
const int size_y_half = BLI_rcti_size_y(rect) * (scale * 0.5f);
rect->xmin = cent_x - size_x_half;
rect->ymin = cent_y - size_y_half;
rect->xmax = cent_x + size_x_half;
rect->ymax = cent_y + size_y_half;
}
void BLI_rctf_scale(rctf *rect, const float scale)
{
const float cent_x = BLI_rctf_cent_x(rect);
const float cent_y = BLI_rctf_cent_y(rect);
const float size_x_half = BLI_rctf_size_x(rect) * (scale * 0.5f);
const float size_y_half = BLI_rctf_size_y(rect) * (scale * 0.5f);
rect->xmin = cent_x - size_x_half;
rect->ymin = cent_y - size_y_half;
rect->xmax = cent_x + size_x_half;
rect->ymax = cent_y + size_y_half;
}
void BLI_rctf_interp(rctf *rect, const rctf *rect_a, const rctf *rect_b, const float fac)
{
const float ifac = 1.0f - fac;
rect->xmin = (rect_a->xmin * ifac) + (rect_b->xmin * fac);
rect->xmax = (rect_a->xmax * ifac) + (rect_b->xmax * fac);
rect->ymin = (rect_a->ymin * ifac) + (rect_b->ymin * fac);
rect->ymax = (rect_a->ymax * ifac) + (rect_b->ymax * fac);
}
/* BLI_rcti_interp() not needed yet */
bool BLI_rctf_clamp_pt_v(const struct rctf *rect, float xy[2])
{
bool changed = false;
if (xy[0] < rect->xmin) { xy[0] = rect->xmin; changed = true; }
if (xy[0] > rect->xmax) { xy[0] = rect->xmax; changed = true; }
if (xy[1] < rect->ymin) { xy[1] = rect->ymin; changed = true; }
if (xy[1] > rect->ymax) { xy[1] = rect->ymax; changed = true; }
return changed;
}
bool BLI_rcti_clamp_pt_v(const struct rcti *rect, int xy[2])
{
bool changed = false;
if (xy[0] < rect->xmin) { xy[0] = rect->xmin; changed = true; }
if (xy[0] > rect->xmax) { xy[0] = rect->xmax; changed = true; }
if (xy[1] < rect->ymin) { xy[1] = rect->ymin; changed = true; }
if (xy[1] > rect->ymax) { xy[1] = rect->ymax; changed = true; }
return changed;
}
bool BLI_rctf_compare(const struct rctf *rect_a, const struct rctf *rect_b, const float limit)
{
if (fabsf(rect_a->xmin - rect_b->xmin) < limit)
if (fabsf(rect_a->xmax - rect_b->xmax) < limit)
if (fabsf(rect_a->ymin - rect_b->ymin) < limit)
if (fabsf(rect_a->ymax - rect_b->ymax) < limit)
return true;
return false;
}
bool BLI_rcti_compare(const struct rcti *rect_a, const struct rcti *rect_b)
{
if (rect_a->xmin == rect_b->xmin)
if (rect_a->xmax == rect_b->xmax)
if (rect_a->ymin == rect_b->ymin)
if (rect_a->ymax == rect_b->ymax)
return true;
return false;
}
bool BLI_rctf_isect(const rctf *src1, const rctf *src2, rctf *dest)
{
float xmin, xmax;
float ymin, ymax;
xmin = (src1->xmin) > (src2->xmin) ? (src1->xmin) : (src2->xmin);
xmax = (src1->xmax) < (src2->xmax) ? (src1->xmax) : (src2->xmax);
ymin = (src1->ymin) > (src2->ymin) ? (src1->ymin) : (src2->ymin);
ymax = (src1->ymax) < (src2->ymax) ? (src1->ymax) : (src2->ymax);
if (xmax >= xmin && ymax >= ymin) {
if (dest) {
dest->xmin = xmin;
dest->xmax = xmax;
dest->ymin = ymin;
dest->ymax = ymax;
}
return true;
}
else {
if (dest) {
dest->xmin = 0;
dest->xmax = 0;
dest->ymin = 0;
dest->ymax = 0;
}
return false;
}
}
bool BLI_rcti_isect(const rcti *src1, const rcti *src2, rcti *dest)
{
int xmin, xmax;
int ymin, ymax;
xmin = (src1->xmin) > (src2->xmin) ? (src1->xmin) : (src2->xmin);
xmax = (src1->xmax) < (src2->xmax) ? (src1->xmax) : (src2->xmax);
ymin = (src1->ymin) > (src2->ymin) ? (src1->ymin) : (src2->ymin);
ymax = (src1->ymax) < (src2->ymax) ? (src1->ymax) : (src2->ymax);
if (xmax >= xmin && ymax >= ymin) {
if (dest) {
dest->xmin = xmin;
dest->xmax = xmax;
dest->ymin = ymin;
dest->ymax = ymax;
}
return true;
}
else {
if (dest) {
dest->xmin = 0;
dest->xmax = 0;
dest->ymin = 0;
dest->ymax = 0;
}
return false;
}
}
void BLI_rcti_rctf_copy(rcti *dst, const rctf *src)
{
dst->xmin = floorf(src->xmin + 0.5f);
dst->xmax = dst->xmin + floorf(BLI_rctf_size_x(src) + 0.5f);
dst->ymin = floorf(src->ymin + 0.5f);
dst->ymax = dst->ymin + floorf(BLI_rctf_size_y(src) + 0.5f);
}
void BLI_rcti_rctf_copy_floor(rcti *dst, const rctf *src)
{
dst->xmin = floorf(src->xmin);
dst->xmax = floorf(src->xmax);
dst->ymin = floorf(src->ymin);
dst->ymax = floorf(src->ymax);
}
void BLI_rctf_rcti_copy(rctf *dst, const rcti *src)
{
dst->xmin = src->xmin;
dst->xmax = src->xmax;
dst->ymin = src->ymin;
dst->ymax = src->ymax;
}
void print_rctf(const char *str, const rctf *rect)
{
printf("%s: xmin %.8f, xmax %.8f, ymin %.8f, ymax %.8f (%.12fx%.12f)\n", str,
rect->xmin, rect->xmax, rect->ymin, rect->ymax, BLI_rctf_size_x(rect), BLI_rctf_size_y(rect));
}
void print_rcti(const char *str, const rcti *rect)
{
printf("%s: xmin %d, xmax %d, ymin %d, ymax %d (%dx%d)\n", str,
rect->xmin, rect->xmax, rect->ymin, rect->ymax, BLI_rcti_size_x(rect), BLI_rcti_size_y(rect));
}
/* -------------------------------------------------------------------- */
/* Comprehensive math (float only) */
/** \name Rect math functions
* \{ */
#define ROTATE_SINCOS(r_vec, mat2, vec) { \
(r_vec)[0] = (mat2)[1] * (vec)[0] + (+(mat2)[0]) * (vec)[1]; \
(r_vec)[1] = (mat2)[0] * (vec)[0] + (-(mat2)[1]) * (vec)[1]; \
} ((void)0)
/**
* Expand the rectangle to fit a rotated \a src.
*/
void BLI_rctf_rotate_expand(rctf *dst, const rctf *src, const float angle)
{
const float mat2[2] = {sinf(angle), cosf(angle)};
const float cent[2] = {BLI_rctf_cent_x(src), BLI_rctf_cent_y(src)};
float corner[2], corner_rot[2], corder_max[2];
/* x is same for both corners */
corner[0] = src->xmax - cent[0];
corner[1] = src->ymax - cent[1];
ROTATE_SINCOS(corner_rot, mat2, corner);
corder_max[0] = fabsf(corner_rot[0]);
corder_max[1] = fabsf(corner_rot[1]);
corner[1] *= -1;
ROTATE_SINCOS(corner_rot, mat2, corner);
corder_max[0] = MAX2(corder_max[0], fabsf(corner_rot[0]));
corder_max[1] = MAX2(corder_max[1], fabsf(corner_rot[1]));
dst->xmin = cent[0] - corder_max[0];
dst->xmax = cent[0] + corder_max[0];
dst->ymin = cent[1] - corder_max[1];
dst->ymax = cent[1] + corder_max[1];
}
#undef ROTATE_SINCOS
/** \} */