This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/sss.c
Campbell Barton 2e2dc9b9e3 Refactor translation code out of blenfont
- Add blentranslation `BLT_*` module.
- moved & split `BLF_translation.h` into (`BLT_translation.h`, `BLT_lang.h`).
- moved `BLF_*_unifont` functions from `blf_translation.c` to new source file `blf_font_i18n.c`.
2015-08-18 07:01:26 +10:00

1069 lines
27 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/sss.c
* \ingroup render
*/
/* Possible Improvements:
* - add fresnel terms
* - adapt Rd table to scale, now with small scale there are a lot of misses?
* - possible interesting method: perform sss on all samples in the tree,
* and then use those values interpolated somehow later. can also do this
* filtering on demand for speed. since we are doing things in screen
* space now there is an exact correspondence
* - avoid duplicate shading (filtering points in advance, irradiance cache
* like lookup?)
* - lower resolution samples
*/
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <string.h>
/* external modules: */
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "BLI_memarena.h"
#include "BLT_translation.h"
#include "DNA_material_types.h"
#include "BKE_global.h"
#include "BKE_main.h"
#include "BKE_scene.h"
/* this module */
#include "render_types.h"
#include "sss.h"
/* Generic Multiple Scattering API */
/* Relevant papers:
* [1] A Practical Model for Subsurface Light Transport
* [2] A Rapid Hierarchical Rendering Technique for Translucent Materials
* [3] Efficient Rendering of Local Subsurface Scattering
* [4] Implementing a skin BSSRDF (or several...)
*/
/* Defines */
#define RD_TABLE_RANGE 100.0f
#define RD_TABLE_RANGE_2 10000.0f
#define RD_TABLE_SIZE 10000
#define MAX_OCTREE_NODE_POINTS 8
#define MAX_OCTREE_DEPTH 15
/* Struct Definitions */
struct ScatterSettings {
float eta; /* index of refraction */
float sigma_a; /* absorption coefficient */
float sigma_s_; /* reduced scattering coefficient */
float sigma_t_; /* reduced extinction coefficient */
float sigma; /* effective extinction coefficient */
float Fdr; /* diffuse fresnel reflectance */
float D; /* diffusion constant */
float A;
float alpha_; /* reduced albedo */
float zr; /* distance of virtual lightsource above surface */
float zv; /* distance of virtual lightsource below surface */
float ld; /* mean free path */
float ro; /* diffuse reflectance */
float color;
float invsigma_t_;
float frontweight;
float backweight;
float *tableRd; /* lookup table to avoid computing Rd */
float *tableRd2; /* lookup table to avoid computing Rd for bigger values */
};
typedef struct ScatterPoint {
float co[3];
float rad[3];
float area;
int back;
} ScatterPoint;
typedef struct ScatterNode {
float co[3];
float rad[3];
float backrad[3];
float area, backarea;
int totpoint;
ScatterPoint *points;
float split[3];
struct ScatterNode *child[8];
} ScatterNode;
struct ScatterTree {
MemArena *arena;
ScatterSettings *ss[3];
float error, scale;
ScatterNode *root;
ScatterPoint *points;
ScatterPoint **refpoints;
ScatterPoint **tmppoints;
int totpoint;
float min[3], max[3];
};
typedef struct ScatterResult {
float rad[3];
float backrad[3];
float rdsum[3];
float backrdsum[3];
} ScatterResult;
/* Functions for BSSRDF reparametrization in to more intuitive parameters,
* see [2] section 4 for more info. */
static float f_Rd(float alpha_, float A, float ro)
{
float sq;
sq = sqrtf(3.0f * (1.0f - alpha_));
return (alpha_/2.0f)*(1.0f + expf((-4.0f/3.0f)*A*sq))*expf(-sq) - ro;
}
static float compute_reduced_albedo(ScatterSettings *ss)
{
const float tolerance= 1e-8;
const int max_iteration_count= 20;
float d, fsub, xn_1= 0.0f, xn= 1.0f, fxn, fxn_1;
int i;
/* use secant method to compute reduced albedo using Rd function inverse
* with a given reflectance */
fxn= f_Rd(xn, ss->A, ss->ro);
fxn_1= f_Rd(xn_1, ss->A, ss->ro);
for (i= 0; i < max_iteration_count; i++) {
fsub= (fxn - fxn_1);
if (fabsf(fsub) < tolerance)
break;
d= ((xn - xn_1)/fsub)*fxn;
if (fabsf(d) < tolerance)
break;
xn_1= xn;
fxn_1= fxn;
xn= xn - d;
if (xn > 1.0f) xn= 1.0f;
if (xn_1 > 1.0f) xn_1= 1.0f;
fxn= f_Rd(xn, ss->A, ss->ro);
}
/* avoid division by zero later */
if (xn <= 0.0f)
xn= 0.00001f;
return xn;
}
/* Exponential falloff functions */
static float Rd_rsquare(ScatterSettings *ss, float rr)
{
float sr, sv, Rdr, Rdv;
sr = sqrtf(rr + ss->zr * ss->zr);
sv = sqrtf(rr + ss->zv * ss->zv);
Rdr= ss->zr*(1.0f + ss->sigma*sr)*expf(-ss->sigma*sr)/(sr*sr*sr);
Rdv= ss->zv*(1.0f + ss->sigma*sv)*expf(-ss->sigma*sv)/(sv*sv*sv);
return /*ss->alpha_*/(1.0f/(4.0f*(float)M_PI))*(Rdr + Rdv);
}
static float Rd(ScatterSettings *ss, float r)
{
return Rd_rsquare(ss, r*r);
}
/* table lookups for Rd. this avoids expensive exp calls. we use two
* separate tables as well for lower and higher numbers to improve
* precision, since the number are poorly distributed because we do
* a lookup with the squared distance for smaller distances, saving
* another sqrt. */
static void approximate_Rd_rgb(ScatterSettings **ss, float rr, float *rd)
{
float indexf, t, idxf;
int index;
if (rr > (RD_TABLE_RANGE_2 * RD_TABLE_RANGE_2)) {
/* pass */
}
else if (rr > RD_TABLE_RANGE) {
rr = sqrtf(rr);
indexf= rr*(RD_TABLE_SIZE/RD_TABLE_RANGE_2);
index= (int)indexf;
idxf= (float)index;
t= indexf - idxf;
if (index >= 0 && index < RD_TABLE_SIZE) {
rd[0]= (ss[0]->tableRd2[index]*(1-t) + ss[0]->tableRd2[index+1]*t);
rd[1]= (ss[1]->tableRd2[index]*(1-t) + ss[1]->tableRd2[index+1]*t);
rd[2]= (ss[2]->tableRd2[index]*(1-t) + ss[2]->tableRd2[index+1]*t);
return;
}
}
else {
indexf= rr*(RD_TABLE_SIZE/RD_TABLE_RANGE);
index= (int)indexf;
idxf= (float)index;
t= indexf - idxf;
if (index >= 0 && index < RD_TABLE_SIZE) {
rd[0]= (ss[0]->tableRd[index]*(1-t) + ss[0]->tableRd[index+1]*t);
rd[1]= (ss[1]->tableRd[index]*(1-t) + ss[1]->tableRd[index+1]*t);
rd[2]= (ss[2]->tableRd[index]*(1-t) + ss[2]->tableRd[index+1]*t);
return;
}
}
/* fallback to slow Rd computation */
rd[0]= Rd_rsquare(ss[0], rr);
rd[1]= Rd_rsquare(ss[1], rr);
rd[2]= Rd_rsquare(ss[2], rr);
}
static void build_Rd_table(ScatterSettings *ss)
{
float r;
int i, size = RD_TABLE_SIZE+1;
ss->tableRd= MEM_mallocN(sizeof(float)*size, "scatterTableRd");
ss->tableRd2= MEM_mallocN(sizeof(float)*size, "scatterTableRd");
for (i= 0; i < size; i++) {
r= i*(RD_TABLE_RANGE/RD_TABLE_SIZE);
/*if (r < ss->invsigma_t_*ss->invsigma_t_)
r= ss->invsigma_t_*ss->invsigma_t_;*/
ss->tableRd[i]= Rd(ss, sqrtf(r));
r= i*(RD_TABLE_RANGE_2/RD_TABLE_SIZE);
/*if (r < ss->invsigma_t_)
r= ss->invsigma_t_;*/
ss->tableRd2[i]= Rd(ss, r);
}
}
ScatterSettings *scatter_settings_new(float refl, float radius, float ior, float reflfac, float frontweight, float backweight)
{
ScatterSettings *ss;
ss= MEM_callocN(sizeof(ScatterSettings), "ScatterSettings");
/* see [1] and [3] for these formulas */
ss->eta= ior;
ss->Fdr= -1.440f/ior*ior + 0.710f/ior + 0.668f + 0.0636f*ior;
ss->A= (1.0f + ss->Fdr)/(1.0f - ss->Fdr);
ss->ld= radius;
ss->ro= min_ff(refl, 0.99f);
ss->color= ss->ro*reflfac + (1.0f-reflfac);
ss->alpha_= compute_reduced_albedo(ss);
ss->sigma= 1.0f/ss->ld;
ss->sigma_t_= ss->sigma/sqrtf(3.0f*(1.0f - ss->alpha_));
ss->sigma_s_= ss->alpha_*ss->sigma_t_;
ss->sigma_a= ss->sigma_t_ - ss->sigma_s_;
ss->D= 1.0f/(3.0f*ss->sigma_t_);
ss->zr= 1.0f/ss->sigma_t_;
ss->zv= ss->zr + 4.0f*ss->A*ss->D;
ss->invsigma_t_= 1.0f/ss->sigma_t_;
ss->frontweight= frontweight;
ss->backweight= backweight;
/* precompute a table of Rd values for quick lookup */
build_Rd_table(ss);
return ss;
}
void scatter_settings_free(ScatterSettings *ss)
{
MEM_freeN(ss->tableRd);
MEM_freeN(ss->tableRd2);
MEM_freeN(ss);
}
/* Hierarchical method as in [2]. */
/* traversal */
#define SUBNODE_INDEX(co, split) \
((co[0]>=split[0]) + (co[1]>=split[1])*2 + (co[2]>=split[2])*4)
static void add_radiance(ScatterTree *tree, float *frontrad, float *backrad, float area, float backarea, float rr, ScatterResult *result)
{
float rd[3], frontrd[3], backrd[3];
approximate_Rd_rgb(tree->ss, rr, rd);
if (frontrad && area) {
frontrd[0] = rd[0]*area;
frontrd[1] = rd[1]*area;
frontrd[2] = rd[2]*area;
result->rad[0] += frontrad[0]*frontrd[0];
result->rad[1] += frontrad[1]*frontrd[1];
result->rad[2] += frontrad[2]*frontrd[2];
result->rdsum[0] += frontrd[0];
result->rdsum[1] += frontrd[1];
result->rdsum[2] += frontrd[2];
}
if (backrad && backarea) {
backrd[0] = rd[0]*backarea;
backrd[1] = rd[1]*backarea;
backrd[2] = rd[2]*backarea;
result->backrad[0] += backrad[0]*backrd[0];
result->backrad[1] += backrad[1]*backrd[1];
result->backrad[2] += backrad[2]*backrd[2];
result->backrdsum[0] += backrd[0];
result->backrdsum[1] += backrd[1];
result->backrdsum[2] += backrd[2];
}
}
static void traverse_octree(ScatterTree *tree, ScatterNode *node, const float co[3], int self, ScatterResult *result)
{
float sub[3], dist;
int i, index = 0;
if (node->totpoint > 0) {
/* leaf - add radiance from all samples */
for (i=0; i<node->totpoint; i++) {
ScatterPoint *p= &node->points[i];
sub_v3_v3v3(sub, co, p->co);
dist= dot_v3v3(sub, sub);
if (p->back)
add_radiance(tree, NULL, p->rad, 0.0f, p->area, dist, result);
else
add_radiance(tree, p->rad, NULL, p->area, 0.0f, dist, result);
}
}
else {
/* branch */
if (self)
index = SUBNODE_INDEX(co, node->split);
for (i=0; i<8; i++) {
if (node->child[i]) {
ScatterNode *subnode= node->child[i];
if (self && index == i) {
/* always traverse node containing the point */
traverse_octree(tree, subnode, co, 1, result);
}
else {
/* decide subnode traversal based on maximum solid angle */
sub_v3_v3v3(sub, co, subnode->co);
dist= dot_v3v3(sub, sub);
/* actually area/dist > error, but this avoids division */
if (subnode->area+subnode->backarea>tree->error*dist) {
traverse_octree(tree, subnode, co, 0, result);
}
else {
add_radiance(tree, subnode->rad, subnode->backrad,
subnode->area, subnode->backarea, dist, result);
}
}
}
}
}
}
static void compute_radiance(ScatterTree *tree, const float co[3], float *rad)
{
ScatterResult result;
float rdsum[3], backrad[3], backrdsum[3];
memset(&result, 0, sizeof(result));
traverse_octree(tree, tree->root, co, 1, &result);
/* the original paper doesn't do this, but we normalize over the
* sampled area and multiply with the reflectance. this is because
* our point samples are incomplete, there are no samples on parts
* of the mesh not visible from the camera. this can not only make
* it darker, but also lead to ugly color shifts */
mul_v3_fl(result.rad, tree->ss[0]->frontweight);
mul_v3_fl(result.backrad, tree->ss[0]->backweight);
copy_v3_v3(rad, result.rad);
add_v3_v3v3(backrad, result.rad, result.backrad);
copy_v3_v3(rdsum, result.rdsum);
add_v3_v3v3(backrdsum, result.rdsum, result.backrdsum);
if (rdsum[0] > 1e-16f) rad[0]= tree->ss[0]->color*rad[0]/rdsum[0];
if (rdsum[1] > 1e-16f) rad[1]= tree->ss[1]->color*rad[1]/rdsum[1];
if (rdsum[2] > 1e-16f) rad[2]= tree->ss[2]->color*rad[2]/rdsum[2];
if (backrdsum[0] > 1e-16f) backrad[0]= tree->ss[0]->color*backrad[0]/backrdsum[0];
if (backrdsum[1] > 1e-16f) backrad[1]= tree->ss[1]->color*backrad[1]/backrdsum[1];
if (backrdsum[2] > 1e-16f) backrad[2]= tree->ss[2]->color*backrad[2]/backrdsum[2];
rad[0]= MAX2(rad[0], backrad[0]);
rad[1]= MAX2(rad[1], backrad[1]);
rad[2]= MAX2(rad[2], backrad[2]);
}
/* building */
static void sum_leaf_radiance(ScatterTree *UNUSED(tree), ScatterNode *node)
{
ScatterPoint *p;
float rad, totrad= 0.0f, inv;
int i;
node->co[0]= node->co[1]= node->co[2]= 0.0;
node->rad[0]= node->rad[1]= node->rad[2]= 0.0;
node->backrad[0]= node->backrad[1]= node->backrad[2]= 0.0;
/* compute total rad, rad weighted average position,
* and total area */
for (i=0; i<node->totpoint; i++) {
p= &node->points[i];
rad= p->area*fabsf(p->rad[0] + p->rad[1] + p->rad[2]);
totrad += rad;
node->co[0] += rad*p->co[0];
node->co[1] += rad*p->co[1];
node->co[2] += rad*p->co[2];
if (p->back) {
node->backrad[0] += p->rad[0]*p->area;
node->backrad[1] += p->rad[1]*p->area;
node->backrad[2] += p->rad[2]*p->area;
node->backarea += p->area;
}
else {
node->rad[0] += p->rad[0]*p->area;
node->rad[1] += p->rad[1]*p->area;
node->rad[2] += p->rad[2]*p->area;
node->area += p->area;
}
}
if (node->area > 1e-16f) {
inv= 1.0f/node->area;
node->rad[0] *= inv;
node->rad[1] *= inv;
node->rad[2] *= inv;
}
if (node->backarea > 1e-16f) {
inv= 1.0f/node->backarea;
node->backrad[0] *= inv;
node->backrad[1] *= inv;
node->backrad[2] *= inv;
}
if (totrad > 1e-16f) {
inv= 1.0f/totrad;
node->co[0] *= inv;
node->co[1] *= inv;
node->co[2] *= inv;
}
else {
/* make sure that if radiance is 0.0f, we still have these points in
* the tree at a good position, they count for rdsum too */
for (i=0; i<node->totpoint; i++) {
p= &node->points[i];
node->co[0] += p->co[0];
node->co[1] += p->co[1];
node->co[2] += p->co[2];
}
node->co[0] /= node->totpoint;
node->co[1] /= node->totpoint;
node->co[2] /= node->totpoint;
}
}
static void sum_branch_radiance(ScatterTree *UNUSED(tree), ScatterNode *node)
{
ScatterNode *subnode;
float rad, totrad= 0.0f, inv;
int i, totnode;
node->co[0]= node->co[1]= node->co[2]= 0.0;
node->rad[0]= node->rad[1]= node->rad[2]= 0.0;
node->backrad[0]= node->backrad[1]= node->backrad[2]= 0.0;
/* compute total rad, rad weighted average position,
* and total area */
for (i=0; i<8; i++) {
if (node->child[i] == NULL)
continue;
subnode= node->child[i];
rad= subnode->area*fabsf(subnode->rad[0] + subnode->rad[1] + subnode->rad[2]);
rad += subnode->backarea*fabsf(subnode->backrad[0] + subnode->backrad[1] + subnode->backrad[2]);
totrad += rad;
node->co[0] += rad*subnode->co[0];
node->co[1] += rad*subnode->co[1];
node->co[2] += rad*subnode->co[2];
node->rad[0] += subnode->rad[0]*subnode->area;
node->rad[1] += subnode->rad[1]*subnode->area;
node->rad[2] += subnode->rad[2]*subnode->area;
node->backrad[0] += subnode->backrad[0]*subnode->backarea;
node->backrad[1] += subnode->backrad[1]*subnode->backarea;
node->backrad[2] += subnode->backrad[2]*subnode->backarea;
node->area += subnode->area;
node->backarea += subnode->backarea;
}
if (node->area > 1e-16f) {
inv= 1.0f/node->area;
node->rad[0] *= inv;
node->rad[1] *= inv;
node->rad[2] *= inv;
}
if (node->backarea > 1e-16f) {
inv= 1.0f/node->backarea;
node->backrad[0] *= inv;
node->backrad[1] *= inv;
node->backrad[2] *= inv;
}
if (totrad > 1e-16f) {
inv= 1.0f/totrad;
node->co[0] *= inv;
node->co[1] *= inv;
node->co[2] *= inv;
}
else {
/* make sure that if radiance is 0.0f, we still have these points in
* the tree at a good position, they count for rdsum too */
totnode= 0;
for (i=0; i<8; i++) {
if (node->child[i]) {
subnode= node->child[i];
node->co[0] += subnode->co[0];
node->co[1] += subnode->co[1];
node->co[2] += subnode->co[2];
totnode++;
}
}
node->co[0] /= totnode;
node->co[1] /= totnode;
node->co[2] /= totnode;
}
}
static void sum_radiance(ScatterTree *tree, ScatterNode *node)
{
if (node->totpoint > 0) {
sum_leaf_radiance(tree, node);
}
else {
int i;
for (i=0; i<8; i++)
if (node->child[i])
sum_radiance(tree, node->child[i]);
sum_branch_radiance(tree, node);
}
}
static void subnode_middle(int i, float *mid, float *subsize, float *submid)
{
int x= i & 1, y= i & 2, z= i & 4;
submid[0]= mid[0] + ((x)? subsize[0]: -subsize[0]);
submid[1]= mid[1] + ((y)? subsize[1]: -subsize[1]);
submid[2]= mid[2] + ((z)? subsize[2]: -subsize[2]);
}
static void create_octree_node(ScatterTree *tree, ScatterNode *node, float *mid, float *size, ScatterPoint **refpoints, int depth)
{
ScatterNode *subnode;
ScatterPoint **subrefpoints, **tmppoints= tree->tmppoints;
int index, nsize[8], noffset[8], i, subco, used_nodes, usedi;
float submid[3], subsize[3];
/* stopping condition */
if (node->totpoint <= MAX_OCTREE_NODE_POINTS || depth == MAX_OCTREE_DEPTH) {
for (i=0; i<node->totpoint; i++)
node->points[i]= *(refpoints[i]);
return;
}
subsize[0]= size[0]*0.5f;
subsize[1]= size[1]*0.5f;
subsize[2]= size[2]*0.5f;
node->split[0]= mid[0];
node->split[1]= mid[1];
node->split[2]= mid[2];
memset(nsize, 0, sizeof(nsize));
memset(noffset, 0, sizeof(noffset));
/* count points in subnodes */
for (i=0; i<node->totpoint; i++) {
index= SUBNODE_INDEX(refpoints[i]->co, node->split);
tmppoints[i]= refpoints[i];
nsize[index]++;
}
/* here we check if only one subnode is used. if this is the case, we don't
* create a new node, but rather call this function again, with different
* size and middle position for the same node. */
for (usedi=0, used_nodes=0, i=0; i<8; i++) {
if (nsize[i]) {
used_nodes++;
usedi = i;
}
if (i != 0)
noffset[i]= noffset[i-1]+nsize[i-1];
}
if (used_nodes <= 1) {
subnode_middle(usedi, mid, subsize, submid);
create_octree_node(tree, node, submid, subsize, refpoints, depth+1);
return;
}
/* reorder refpoints by subnode */
for (i=0; i<node->totpoint; i++) {
index= SUBNODE_INDEX(tmppoints[i]->co, node->split);
refpoints[noffset[index]]= tmppoints[i];
noffset[index]++;
}
/* create subnodes */
for (subco=0, i=0; i<8; subco+=nsize[i], i++) {
if (nsize[i] > 0) {
subnode= BLI_memarena_alloc(tree->arena, sizeof(ScatterNode));
node->child[i]= subnode;
subnode->points= node->points + subco;
subnode->totpoint= nsize[i];
subrefpoints= refpoints + subco;
subnode_middle(i, mid, subsize, submid);
create_octree_node(tree, subnode, submid, subsize, subrefpoints,
depth+1);
}
else
node->child[i]= NULL;
}
node->points= NULL;
node->totpoint= 0;
}
/* public functions */
ScatterTree *scatter_tree_new(ScatterSettings *ss[3], float scale, float error,
float (*co)[3], float (*color)[3], float *area, int totpoint)
{
ScatterTree *tree;
ScatterPoint *points, **refpoints;
int i;
/* allocate tree */
tree= MEM_callocN(sizeof(ScatterTree), "ScatterTree");
tree->scale= scale;
tree->error= error;
tree->totpoint= totpoint;
tree->ss[0]= ss[0];
tree->ss[1]= ss[1];
tree->ss[2]= ss[2];
points = MEM_callocN(sizeof(ScatterPoint) * totpoint, "ScatterPoints");
refpoints = MEM_callocN(sizeof(ScatterPoint *) * totpoint, "ScatterRefPoints");
tree->points= points;
tree->refpoints= refpoints;
/* build points */
INIT_MINMAX(tree->min, tree->max);
for (i=0; i<totpoint; i++) {
copy_v3_v3(points[i].co, co[i]);
copy_v3_v3(points[i].rad, color[i]);
points[i].area= fabsf(area[i])/(tree->scale*tree->scale);
points[i].back= (area[i] < 0.0f);
mul_v3_fl(points[i].co, 1.0f / tree->scale);
minmax_v3v3_v3(tree->min, tree->max, points[i].co);
refpoints[i]= points + i;
}
return tree;
}
void scatter_tree_build(ScatterTree *tree)
{
ScatterPoint *newpoints, **tmppoints;
float mid[3], size[3];
int totpoint= tree->totpoint;
newpoints = MEM_callocN(sizeof(ScatterPoint) * totpoint, "ScatterPoints");
tmppoints = MEM_callocN(sizeof(ScatterPoint *) * totpoint, "ScatterTmpPoints");
tree->tmppoints= tmppoints;
tree->arena= BLI_memarena_new(0x8000 * sizeof(ScatterNode), "sss tree arena");
BLI_memarena_use_calloc(tree->arena);
/* build tree */
tree->root= BLI_memarena_alloc(tree->arena, sizeof(ScatterNode));
tree->root->points= newpoints;
tree->root->totpoint= totpoint;
mid[0]= (tree->min[0]+tree->max[0])*0.5f;
mid[1]= (tree->min[1]+tree->max[1])*0.5f;
mid[2]= (tree->min[2]+tree->max[2])*0.5f;
size[0]= (tree->max[0]-tree->min[0])*0.5f;
size[1]= (tree->max[1]-tree->min[1])*0.5f;
size[2]= (tree->max[2]-tree->min[2])*0.5f;
create_octree_node(tree, tree->root, mid, size, tree->refpoints, 0);
MEM_freeN(tree->points);
MEM_freeN(tree->refpoints);
MEM_freeN(tree->tmppoints);
tree->refpoints= NULL;
tree->tmppoints= NULL;
tree->points= newpoints;
/* sum radiance at nodes */
sum_radiance(tree, tree->root);
}
void scatter_tree_sample(ScatterTree *tree, const float co[3], float color[3])
{
float sco[3];
copy_v3_v3(sco, co);
mul_v3_fl(sco, 1.0f / tree->scale);
compute_radiance(tree, sco, color);
}
void scatter_tree_free(ScatterTree *tree)
{
if (tree->arena) BLI_memarena_free(tree->arena);
if (tree->points) MEM_freeN(tree->points);
if (tree->refpoints) MEM_freeN(tree->refpoints);
MEM_freeN(tree);
}
/* Internal Renderer API */
/* sss tree building */
typedef struct SSSData {
ScatterTree *tree;
ScatterSettings *ss[3];
} SSSData;
typedef struct SSSPoints {
struct SSSPoints *next, *prev;
float (*co)[3];
float (*color)[3];
float *area;
int totpoint;
} SSSPoints;
static void sss_create_tree_mat(Render *re, Material *mat)
{
SSSPoints *p;
RenderResult *rr;
ListBase points;
float (*co)[3] = NULL, (*color)[3] = NULL, *area = NULL;
int totpoint = 0, osa, osaflag, frsflag, partsdone;
if (re->test_break(re->tbh))
return;
points.first= points.last= NULL;
/* TODO: this is getting a bit ugly, copying all those variables and
* setting them back, maybe we need to create our own Render? */
/* do SSS preprocessing render */
BLI_rw_mutex_lock(&re->resultmutex, THREAD_LOCK_WRITE);
rr= re->result;
osa= re->osa;
osaflag= re->r.mode & R_OSA;
frsflag= re->r.mode & R_EDGE_FRS;
partsdone= re->i.partsdone;
re->osa= 0;
re->r.mode &= ~(R_OSA | R_EDGE_FRS);
re->sss_points= &points;
re->sss_mat= mat;
re->i.partsdone = 0;
if (!(re->r.scemode & (R_BUTS_PREVIEW|R_VIEWPORT_PREVIEW)))
re->result= NULL;
BLI_rw_mutex_unlock(&re->resultmutex);
RE_TileProcessor(re);
BLI_rw_mutex_lock(&re->resultmutex, THREAD_LOCK_WRITE);
if (!(re->r.scemode & (R_BUTS_PREVIEW|R_VIEWPORT_PREVIEW))) {
RE_FreeRenderResult(re->result);
re->result= rr;
}
BLI_rw_mutex_unlock(&re->resultmutex);
re->i.partsdone= partsdone;
re->sss_mat= NULL;
re->sss_points= NULL;
re->osa= osa;
if (osaflag) re->r.mode |= R_OSA;
if (frsflag) re->r.mode |= R_EDGE_FRS;
/* no points? no tree */
if (!points.first)
return;
/* merge points together into a single buffer */
if (!re->test_break(re->tbh)) {
for (totpoint=0, p=points.first; p; p=p->next)
totpoint += p->totpoint;
co= MEM_mallocN(sizeof(*co)*totpoint, "SSSCo");
color= MEM_mallocN(sizeof(*color)*totpoint, "SSSColor");
area= MEM_mallocN(sizeof(*area)*totpoint, "SSSArea");
for (totpoint=0, p=points.first; p; p=p->next) {
memcpy(co+totpoint, p->co, sizeof(*co)*p->totpoint);
memcpy(color+totpoint, p->color, sizeof(*color)*p->totpoint);
memcpy(area+totpoint, p->area, sizeof(*area)*p->totpoint);
totpoint += p->totpoint;
}
}
/* free points */
for (p=points.first; p; p=p->next) {
MEM_freeN(p->co);
MEM_freeN(p->color);
MEM_freeN(p->area);
}
BLI_freelistN(&points);
/* build tree */
if (!re->test_break(re->tbh)) {
SSSData *sss= MEM_callocN(sizeof(*sss), "SSSData");
float ior= mat->sss_ior, cfac= mat->sss_colfac;
const float *radius = mat->sss_radius;
float fw= mat->sss_front, bw= mat->sss_back;
float error = mat->sss_error;
error= get_render_aosss_error(&re->r, error);
if ((re->r.scemode & (R_BUTS_PREVIEW|R_VIEWPORT_PREVIEW)) && error < 0.5f)
error= 0.5f;
sss->ss[0]= scatter_settings_new(mat->sss_col[0], radius[0], ior, cfac, fw, bw);
sss->ss[1]= scatter_settings_new(mat->sss_col[1], radius[1], ior, cfac, fw, bw);
sss->ss[2]= scatter_settings_new(mat->sss_col[2], radius[2], ior, cfac, fw, bw);
sss->tree= scatter_tree_new(sss->ss, mat->sss_scale, error,
co, color, area, totpoint);
MEM_freeN(co);
MEM_freeN(color);
MEM_freeN(area);
scatter_tree_build(sss->tree);
BLI_ghash_insert(re->sss_hash, mat, sss);
}
else {
if (co) MEM_freeN(co);
if (color) MEM_freeN(color);
if (area) MEM_freeN(area);
}
}
void sss_add_points(Render *re, float (*co)[3], float (*color)[3], float *area, int totpoint)
{
SSSPoints *p;
if (totpoint > 0) {
p= MEM_callocN(sizeof(SSSPoints), "SSSPoints");
p->co= co;
p->color= color;
p->area= area;
p->totpoint= totpoint;
BLI_lock_thread(LOCK_CUSTOM1);
BLI_addtail(re->sss_points, p);
BLI_unlock_thread(LOCK_CUSTOM1);
}
}
static void sss_free_tree(SSSData *sss)
{
scatter_tree_free(sss->tree);
scatter_settings_free(sss->ss[0]);
scatter_settings_free(sss->ss[1]);
scatter_settings_free(sss->ss[2]);
MEM_freeN(sss);
}
/* public functions */
void make_sss_tree(Render *re)
{
Material *mat;
bool infostr_set = false;
const char *prevstr = NULL;
free_sss(re);
re->sss_hash= BLI_ghash_ptr_new("make_sss_tree gh");
re->stats_draw(re->sdh, &re->i);
for (mat= re->main->mat.first; mat; mat= mat->id.next) {
if (mat->id.us && (mat->flag & MA_IS_USED) && (mat->sss_flag & MA_DIFF_SSS)) {
if (!infostr_set) {
prevstr = re->i.infostr;
re->i.infostr = IFACE_("SSS preprocessing");
infostr_set = true;
}
sss_create_tree_mat(re, mat);
}
}
/* XXX preview exception */
/* localizing preview render data is not fun for node trees :( */
if (re->main!=G.main) {
for (mat= G.main->mat.first; mat; mat= mat->id.next) {
if (mat->id.us && (mat->flag & MA_IS_USED) && (mat->sss_flag & MA_DIFF_SSS)) {
if (!infostr_set) {
prevstr = re->i.infostr;
re->i.infostr = IFACE_("SSS preprocessing");
infostr_set = true;
}
sss_create_tree_mat(re, mat);
}
}
}
if (infostr_set)
re->i.infostr = prevstr;
}
void free_sss(Render *re)
{
if (re->sss_hash) {
GHashIterator gh_iter;
GHASH_ITER (gh_iter, re->sss_hash) {
sss_free_tree(BLI_ghashIterator_getValue(&gh_iter));
}
BLI_ghash_free(re->sss_hash, NULL, NULL);
re->sss_hash= NULL;
}
}
int sample_sss(Render *re, Material *mat, const float co[3], float color[3])
{
if (re->sss_hash) {
SSSData *sss= BLI_ghash_lookup(re->sss_hash, mat);
if (sss) {
scatter_tree_sample(sss->tree, co, color);
return 1;
}
else {
color[0]= 0.0f;
color[1]= 0.0f;
color[2]= 0.0f;
}
}
return 0;
}
int sss_pass_done(struct Render *re, struct Material *mat)
{
return ((re->flag & R_BAKING) || !(re->r.mode & R_SSS) || (re->sss_hash && BLI_ghash_lookup(re->sss_hash, mat)));
}