This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/texture_procedural.c

1763 lines
52 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2001-2002 NaN Holding BV. All rights reserved. */
/** \file
* \ingroup render
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "BLI_math.h"
#include "BLI_noise.h"
#include "BLI_rand.h"
#include "BLI_utildefines.h"
#include "DNA_anim_types.h"
#include "DNA_image_types.h"
#include "DNA_light_types.h"
#include "DNA_material_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_texture_types.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf_types.h"
#include "BKE_colorband.h"
#include "BKE_image.h"
#include "BKE_material.h"
#include "BKE_node.h"
#include "BKE_scene.h"
#include "BKE_texture.h"
#include "NOD_texture.h"
#include "MEM_guardedalloc.h"
#include "render_types.h"
#include "texture_common.h"
#include "RE_texture.h"
static RNG_THREAD_ARRAY *random_tex_array;
void RE_texture_rng_init(void)
{
random_tex_array = BLI_rng_threaded_new();
}
void RE_texture_rng_exit(void)
{
if (random_tex_array == NULL) {
return;
}
BLI_rng_threaded_free(random_tex_array);
random_tex_array = NULL;
}
/* ------------------------------------------------------------------------- */
/* This allows color-banded textures to control normals as well. */
static void tex_normal_derivate(const Tex *tex, TexResult *texres)
{
if (tex->flag & TEX_COLORBAND) {
float col[4];
if (BKE_colorband_evaluate(tex->coba, texres->tin, col)) {
float fac0, fac1, fac2, fac3;
fac0 = (col[0] + col[1] + col[2]);
BKE_colorband_evaluate(tex->coba, texres->nor[0], col);
fac1 = (col[0] + col[1] + col[2]);
BKE_colorband_evaluate(tex->coba, texres->nor[1], col);
fac2 = (col[0] + col[1] + col[2]);
BKE_colorband_evaluate(tex->coba, texres->nor[2], col);
fac3 = (col[0] + col[1] + col[2]);
texres->nor[0] = (fac0 - fac1) / 3.0f;
texres->nor[1] = (fac0 - fac2) / 3.0f;
texres->nor[2] = (fac0 - fac3) / 3.0f;
return;
}
}
texres->nor[0] = texres->tin - texres->nor[0];
texres->nor[1] = texres->tin - texres->nor[1];
texres->nor[2] = texres->tin - texres->nor[2];
}
static int blend(const Tex *tex, const float texvec[3], TexResult *texres)
{
float x, y, t;
if (tex->flag & TEX_FLIPBLEND) {
x = texvec[1];
y = texvec[0];
}
else {
x = texvec[0];
y = texvec[1];
}
if (tex->stype == TEX_LIN) { /* Linear. */
texres->tin = (1.0f + x) / 2.0f;
}
else if (tex->stype == TEX_QUAD) { /* Quadratic. */
texres->tin = (1.0f + x) / 2.0f;
if (texres->tin < 0.0f) {
texres->tin = 0.0f;
}
else {
texres->tin *= texres->tin;
}
}
else if (tex->stype == TEX_EASE) { /* Ease. */
texres->tin = (1.0f + x) / 2.0f;
if (texres->tin <= 0.0f) {
texres->tin = 0.0f;
}
else if (texres->tin >= 1.0f) {
texres->tin = 1.0f;
}
else {
t = texres->tin * texres->tin;
texres->tin = (3.0f * t - 2.0f * t * texres->tin);
}
}
else if (tex->stype == TEX_DIAG) { /* Diagonal. */
texres->tin = (2.0f + x + y) / 4.0f;
}
else if (tex->stype == TEX_RAD) { /* Radial. */
texres->tin = (atan2f(y, x) / (float)(2 * M_PI) + 0.5f);
}
else { /* sphere TEX_SPHERE */
texres->tin = 1.0f - sqrtf(x * x + y * y + texvec[2] * texvec[2]);
if (texres->tin < 0.0f) {
texres->tin = 0.0f;
}
if (tex->stype == TEX_HALO) {
texres->tin *= texres->tin; /* Halo. */
}
}
BRICONT;
return TEX_INT;
}
/* ------------------------------------------------------------------------- */
/* ************************************************************************* */
/* newnoise: all noise-based types now have different noise-bases to choose from. */
static int clouds(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
texres->tin = BLI_noise_generic_turbulence(tex->noisesize,
texvec[0],
texvec[1],
texvec[2],
tex->noisedepth,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
if (texres->nor != NULL) {
/* calculate bumpnormal */
texres->nor[0] = BLI_noise_generic_turbulence(tex->noisesize,
texvec[0] + tex->nabla,
texvec[1],
texvec[2],
tex->noisedepth,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
texres->nor[1] = BLI_noise_generic_turbulence(tex->noisesize,
texvec[0],
texvec[1] + tex->nabla,
texvec[2],
tex->noisedepth,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
texres->nor[2] = BLI_noise_generic_turbulence(tex->noisesize,
texvec[0],
texvec[1],
texvec[2] + tex->nabla,
tex->noisedepth,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
if (tex->stype == TEX_COLOR) {
/* in this case, int. value should really be computed from color,
* and bumpnormal from that, would be too slow, looks ok as is */
texres->trgba[0] = texres->tin;
texres->trgba[1] = BLI_noise_generic_turbulence(tex->noisesize,
texvec[1],
texvec[0],
texvec[2],
tex->noisedepth,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
texres->trgba[2] = BLI_noise_generic_turbulence(tex->noisesize,
texvec[1],
texvec[2],
texvec[0],
tex->noisedepth,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
BRICONTRGB;
texres->trgba[3] = 1.0;
return (rv | TEX_RGB);
}
BRICONT;
return rv;
}
/* creates a sine wave */
static float tex_sin(float a)
{
a = 0.5f + 0.5f * sinf(a);
return a;
}
/* creates a saw wave */
static float tex_saw(float a)
{
const float b = 2 * M_PI;
int n = (int)(a / b);
a -= n * b;
if (a < 0) {
a += b;
}
return a / b;
}
/* creates a triangle wave */
static float tex_tri(float a)
{
const float b = 2 * M_PI;
const float rmax = 1.0;
a = rmax - 2.0f * fabsf(floorf((a * (1.0f / b)) + 0.5f) - (a * (1.0f / b)));
return a;
}
/* computes basic wood intensity value at x,y,z */
static float wood_int(const Tex *tex, float x, float y, float z)
{
float wi = 0;
/* wave form: TEX_SIN=0, TEX_SAW=1, TEX_TRI=2 */
short wf = tex->noisebasis2;
/* wood type: TEX_BAND=0, TEX_RING=1, TEX_BANDNOISE=2, TEX_RINGNOISE=3 */
short wt = tex->stype;
float (*waveform[3])(float); /* create array of pointers to waveform functions */
waveform[0] = tex_sin; /* assign address of tex_sin() function to pointer array */
waveform[1] = tex_saw;
waveform[2] = tex_tri;
if ((wf > TEX_TRI) || (wf < TEX_SIN)) {
wf = 0; /* check to be sure noisebasis2 is initialized ahead of time */
}
if (wt == TEX_BAND) {
wi = waveform[wf]((x + y + z) * 10.0f);
}
else if (wt == TEX_RING) {
wi = waveform[wf](sqrtf(x * x + y * y + z * z) * 20.0f);
}
else if (wt == TEX_BANDNOISE) {
wi = tex->turbul *
BLI_noise_generic_noise(
tex->noisesize, x, y, z, (tex->noisetype != TEX_NOISESOFT), tex->noisebasis);
wi = waveform[wf]((x + y + z) * 10.0f + wi);
}
else if (wt == TEX_RINGNOISE) {
wi = tex->turbul *
BLI_noise_generic_noise(
tex->noisesize, x, y, z, (tex->noisetype != TEX_NOISESOFT), tex->noisebasis);
wi = waveform[wf](sqrtf(x * x + y * y + z * z) * 20.0f + wi);
}
return wi;
}
static int wood(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
texres->tin = wood_int(tex, texvec[0], texvec[1], texvec[2]);
if (texres->nor != NULL) {
/* calculate bumpnormal */
texres->nor[0] = wood_int(tex, texvec[0] + tex->nabla, texvec[1], texvec[2]);
texres->nor[1] = wood_int(tex, texvec[0], texvec[1] + tex->nabla, texvec[2]);
texres->nor[2] = wood_int(tex, texvec[0], texvec[1], texvec[2] + tex->nabla);
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
BRICONT;
return rv;
}
/* computes basic marble intensity at x,y,z */
static float marble_int(const Tex *tex, float x, float y, float z)
{
float n, mi;
short wf = tex->noisebasis2; /* wave form: TEX_SIN=0, TEX_SAW=1, TEX_TRI=2 */
short mt = tex->stype; /* marble type: TEX_SOFT=0, TEX_SHARP=1, TEX_SHAPER=2 */
float (*waveform[3])(float); /* create array of pointers to waveform functions */
waveform[0] = tex_sin; /* assign address of tex_sin() function to pointer array */
waveform[1] = tex_saw;
waveform[2] = tex_tri;
if ((wf > TEX_TRI) || (wf < TEX_SIN)) {
wf = 0; /* check to be sure noisebasis2 isn't initialized ahead of time */
}
n = 5.0f * (x + y + z);
mi = n + tex->turbul * BLI_noise_generic_turbulence(tex->noisesize,
x,
y,
z,
tex->noisedepth,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
if (mt >= TEX_SOFT) { /* TEX_SOFT always true */
mi = waveform[wf](mi);
if (mt == TEX_SHARP) {
mi = sqrtf(mi);
}
else if (mt == TEX_SHARPER) {
mi = sqrtf(sqrtf(mi));
}
}
return mi;
}
static int marble(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
texres->tin = marble_int(tex, texvec[0], texvec[1], texvec[2]);
if (texres->nor != NULL) {
/* calculate bumpnormal */
texres->nor[0] = marble_int(tex, texvec[0] + tex->nabla, texvec[1], texvec[2]);
texres->nor[1] = marble_int(tex, texvec[0], texvec[1] + tex->nabla, texvec[2]);
texres->nor[2] = marble_int(tex, texvec[0], texvec[1], texvec[2] + tex->nabla);
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
BRICONT;
return rv;
}
/* ------------------------------------------------------------------------- */
static int magic(const Tex *tex, const float texvec[3], TexResult *texres)
{
float x, y, z, turb;
int n;
n = tex->noisedepth;
turb = tex->turbul / 5.0f;
x = sinf((texvec[0] + texvec[1] + texvec[2]) * 5.0f);
y = cosf((-texvec[0] + texvec[1] - texvec[2]) * 5.0f);
z = -cosf((-texvec[0] - texvec[1] + texvec[2]) * 5.0f);
if (n > 0) {
x *= turb;
y *= turb;
z *= turb;
y = -cosf(x - y + z);
y *= turb;
if (n > 1) {
x = cosf(x - y - z);
x *= turb;
if (n > 2) {
z = sinf(-x - y - z);
z *= turb;
if (n > 3) {
x = -cosf(-x + y - z);
x *= turb;
if (n > 4) {
y = -sinf(-x + y + z);
y *= turb;
if (n > 5) {
y = -cosf(-x + y + z);
y *= turb;
if (n > 6) {
x = cosf(x + y + z);
x *= turb;
if (n > 7) {
z = sinf(x + y - z);
z *= turb;
if (n > 8) {
x = -cosf(-x - y + z);
x *= turb;
if (n > 9) {
y = -sinf(x - y + z);
y *= turb;
}
}
}
}
}
}
}
}
}
}
if (turb != 0.0f) {
turb *= 2.0f;
x /= turb;
y /= turb;
z /= turb;
}
texres->trgba[0] = 0.5f - x;
texres->trgba[1] = 0.5f - y;
texres->trgba[2] = 0.5f - z;
texres->tin = (1.0f / 3.0f) * (texres->trgba[0] + texres->trgba[1] + texres->trgba[2]);
BRICONTRGB;
texres->trgba[3] = 1.0f;
return TEX_RGB;
}
/* ------------------------------------------------------------------------- */
/* newnoise: stucci also modified to use different noisebasis */
static int stucci(const Tex *tex, const float texvec[3], TexResult *texres)
{
float nor[3], b2, ofs;
int retval = TEX_INT;
b2 = BLI_noise_generic_noise(tex->noisesize,
texvec[0],
texvec[1],
texvec[2],
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
ofs = tex->turbul / 200.0f;
if (tex->stype) {
ofs *= (b2 * b2);
}
nor[0] = BLI_noise_generic_noise(tex->noisesize,
texvec[0] + ofs,
texvec[1],
texvec[2],
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
nor[1] = BLI_noise_generic_noise(tex->noisesize,
texvec[0],
texvec[1] + ofs,
texvec[2],
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
nor[2] = BLI_noise_generic_noise(tex->noisesize,
texvec[0],
texvec[1],
texvec[2] + ofs,
(tex->noisetype != TEX_NOISESOFT),
tex->noisebasis);
texres->tin = nor[2];
if (texres->nor) {
copy_v3_v3(texres->nor, nor);
tex_normal_derivate(tex, texres);
if (tex->stype == TEX_WALLOUT) {
texres->nor[0] = -texres->nor[0];
texres->nor[1] = -texres->nor[1];
texres->nor[2] = -texres->nor[2];
}
retval |= TEX_NOR;
}
if (tex->stype == TEX_WALLOUT) {
texres->tin = 1.0f - texres->tin;
}
if (texres->tin < 0.0f) {
texres->tin = 0.0f;
}
return retval;
}
/* ------------------------------------------------------------------------- */
/* newnoise: musgrave terrain noise types */
static int mg_mFractalOrfBmTex(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
float (*mgravefunc)(float, float, float, float, float, float, int);
if (tex->stype == TEX_MFRACTAL) {
mgravefunc = BLI_noise_mg_multi_fractal;
}
else {
mgravefunc = BLI_noise_mg_fbm;
}
texres->tin = tex->ns_outscale * mgravefunc(texvec[0],
texvec[1],
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->noisebasis);
if (texres->nor != NULL) {
float ofs = tex->nabla / tex->noisesize; /* also scaling of texvec */
/* calculate bumpnormal */
texres->nor[0] = tex->ns_outscale * mgravefunc(texvec[0] + ofs,
texvec[1],
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->noisebasis);
texres->nor[1] = tex->ns_outscale * mgravefunc(texvec[0],
texvec[1] + ofs,
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->noisebasis);
texres->nor[2] = tex->ns_outscale * mgravefunc(texvec[0],
texvec[1],
texvec[2] + ofs,
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->noisebasis);
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
BRICONT;
return rv;
}
static int mg_ridgedOrHybridMFTex(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
float (*mgravefunc)(float, float, float, float, float, float, float, float, int);
if (tex->stype == TEX_RIDGEDMF) {
mgravefunc = BLI_noise_mg_ridged_multi_fractal;
}
else {
mgravefunc = BLI_noise_mg_hybrid_multi_fractal;
}
texres->tin = tex->ns_outscale * mgravefunc(texvec[0],
texvec[1],
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->mg_gain,
tex->noisebasis);
if (texres->nor != NULL) {
float ofs = tex->nabla / tex->noisesize; /* also scaling of texvec */
/* calculate bumpnormal */
texres->nor[0] = tex->ns_outscale * mgravefunc(texvec[0] + ofs,
texvec[1],
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->mg_gain,
tex->noisebasis);
texres->nor[1] = tex->ns_outscale * mgravefunc(texvec[0],
texvec[1] + ofs,
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->mg_gain,
tex->noisebasis);
texres->nor[2] = tex->ns_outscale * mgravefunc(texvec[0],
texvec[1],
texvec[2] + ofs,
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->mg_gain,
tex->noisebasis);
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
BRICONT;
return rv;
}
static int mg_HTerrainTex(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
texres->tin = tex->ns_outscale * BLI_noise_mg_hetero_terrain(texvec[0],
texvec[1],
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->noisebasis);
if (texres->nor != NULL) {
float ofs = tex->nabla / tex->noisesize; /* also scaling of texvec */
/* calculate bumpnormal */
texres->nor[0] = tex->ns_outscale * BLI_noise_mg_hetero_terrain(texvec[0] + ofs,
texvec[1],
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->noisebasis);
texres->nor[1] = tex->ns_outscale * BLI_noise_mg_hetero_terrain(texvec[0],
texvec[1] + ofs,
texvec[2],
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->noisebasis);
texres->nor[2] = tex->ns_outscale * BLI_noise_mg_hetero_terrain(texvec[0],
texvec[1],
texvec[2] + ofs,
tex->mg_H,
tex->mg_lacunarity,
tex->mg_octaves,
tex->mg_offset,
tex->noisebasis);
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
BRICONT;
return rv;
}
static int mg_distNoiseTex(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
texres->tin = BLI_noise_mg_variable_lacunarity(
texvec[0], texvec[1], texvec[2], tex->dist_amount, tex->noisebasis, tex->noisebasis2);
if (texres->nor != NULL) {
float ofs = tex->nabla / tex->noisesize; /* also scaling of texvec */
/* calculate bumpnormal */
texres->nor[0] = BLI_noise_mg_variable_lacunarity(texvec[0] + ofs,
texvec[1],
texvec[2],
tex->dist_amount,
tex->noisebasis,
tex->noisebasis2);
texres->nor[1] = BLI_noise_mg_variable_lacunarity(texvec[0],
texvec[1] + ofs,
texvec[2],
tex->dist_amount,
tex->noisebasis,
tex->noisebasis2);
texres->nor[2] = BLI_noise_mg_variable_lacunarity(texvec[0],
texvec[1],
texvec[2] + ofs,
tex->dist_amount,
tex->noisebasis,
tex->noisebasis2);
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
BRICONT;
return rv;
}
/* ------------------------------------------------------------------------- */
/* newnoise: Voronoi texture type
*
* probably the slowest, especially with minkovsky, bump-mapping, could be done another way.
*/
static int voronoiTex(const Tex *tex, const float texvec[3], TexResult *texres)
{
int rv = TEX_INT;
float da[4], pa[12]; /* distance and point coordinate arrays of 4 nearest neighbors */
float aw1 = fabsf(tex->vn_w1);
float aw2 = fabsf(tex->vn_w2);
float aw3 = fabsf(tex->vn_w3);
float aw4 = fabsf(tex->vn_w4);
float sc = (aw1 + aw2 + aw3 + aw4);
if (sc != 0.0f) {
sc = tex->ns_outscale / sc;
}
BLI_noise_voronoi(texvec[0], texvec[1], texvec[2], da, pa, tex->vn_mexp, tex->vn_distm);
texres->tin = sc * fabsf(dot_v4v4(&tex->vn_w1, da));
if (tex->vn_coltype) {
float ca[3]; /* cell color */
BLI_noise_cell_v3(pa[0], pa[1], pa[2], ca);
texres->trgba[0] = aw1 * ca[0];
texres->trgba[1] = aw1 * ca[1];
texres->trgba[2] = aw1 * ca[2];
BLI_noise_cell_v3(pa[3], pa[4], pa[5], ca);
texres->trgba[0] += aw2 * ca[0];
texres->trgba[1] += aw2 * ca[1];
texres->trgba[2] += aw2 * ca[2];
BLI_noise_cell_v3(pa[6], pa[7], pa[8], ca);
texres->trgba[0] += aw3 * ca[0];
texres->trgba[1] += aw3 * ca[1];
texres->trgba[2] += aw3 * ca[2];
BLI_noise_cell_v3(pa[9], pa[10], pa[11], ca);
texres->trgba[0] += aw4 * ca[0];
texres->trgba[1] += aw4 * ca[1];
texres->trgba[2] += aw4 * ca[2];
if (tex->vn_coltype >= 2) {
float t1 = (da[1] - da[0]) * 10;
if (t1 > 1) {
t1 = 1;
}
if (tex->vn_coltype == 3) {
t1 *= texres->tin;
}
else {
t1 *= sc;
}
texres->trgba[0] *= t1;
texres->trgba[1] *= t1;
texres->trgba[2] *= t1;
}
else {
texres->trgba[0] *= sc;
texres->trgba[1] *= sc;
texres->trgba[2] *= sc;
}
}
if (texres->nor != NULL) {
float ofs = tex->nabla / tex->noisesize; /* also scaling of texvec */
/* calculate bumpnormal */
BLI_noise_voronoi(texvec[0] + ofs, texvec[1], texvec[2], da, pa, tex->vn_mexp, tex->vn_distm);
texres->nor[0] = sc * fabsf(dot_v4v4(&tex->vn_w1, da));
BLI_noise_voronoi(texvec[0], texvec[1] + ofs, texvec[2], da, pa, tex->vn_mexp, tex->vn_distm);
texres->nor[1] = sc * fabsf(dot_v4v4(&tex->vn_w1, da));
BLI_noise_voronoi(texvec[0], texvec[1], texvec[2] + ofs, da, pa, tex->vn_mexp, tex->vn_distm);
texres->nor[2] = sc * fabsf(dot_v4v4(&tex->vn_w1, da));
tex_normal_derivate(tex, texres);
rv |= TEX_NOR;
}
if (tex->vn_coltype) {
BRICONTRGB;
texres->trgba[3] = 1.0;
return (rv | TEX_RGB);
}
BRICONT;
return rv;
}
/* ------------------------------------------------------------------------- */
static int texnoise(const Tex *tex, TexResult *texres, int thread)
{
float div = 3.0;
int val, ran, loop, shift = 29;
ran = BLI_rng_thread_rand(random_tex_array, thread);
loop = tex->noisedepth;
/* start from top bits since they have more variance */
val = ((ran >> shift) & 3);
while (loop--) {
shift -= 2;
val *= ((ran >> shift) & 3);
div *= 3.0f;
}
texres->tin = ((float)val) / div;
BRICONT;
return TEX_INT;
}
/* ------------------------------------------------------------------------- */
static int cubemap_glob(const float n[3], float x, float y, float z, float *adr1, float *adr2)
{
float x1, y1, z1, nor[3];
int ret;
if (n == NULL) {
nor[0] = x;
nor[1] = y;
nor[2] = z; /* use local render coord */
}
else {
copy_v3_v3(nor, n);
}
x1 = fabsf(nor[0]);
y1 = fabsf(nor[1]);
z1 = fabsf(nor[2]);
if (z1 >= x1 && z1 >= y1) {
*adr1 = (x + 1.0f) / 2.0f;
*adr2 = (y + 1.0f) / 2.0f;
ret = 0;
}
else if (y1 >= x1 && y1 >= z1) {
*adr1 = (x + 1.0f) / 2.0f;
*adr2 = (z + 1.0f) / 2.0f;
ret = 1;
}
else {
*adr1 = (y + 1.0f) / 2.0f;
*adr2 = (z + 1.0f) / 2.0f;
ret = 2;
}
return ret;
}
/* ------------------------------------------------------------------------- */
static void do_2d_mapping(
const MTex *mtex, float texvec[3], const float n[3], float dxt[3], float dyt[3])
{
Tex *tex;
float fx, fy, fac1, area[8];
int ok, proj, areaflag = 0, wrap;
/* #MTex variables localized, only cube-map doesn't cooperate yet. */
wrap = mtex->mapping;
tex = mtex->tex;
if (!(dxt && dyt)) {
if (wrap == MTEX_FLAT) {
fx = (texvec[0] + 1.0f) / 2.0f;
fy = (texvec[1] + 1.0f) / 2.0f;
}
else if (wrap == MTEX_TUBE) {
map_to_tube(&fx, &fy, texvec[0], texvec[1], texvec[2]);
}
else if (wrap == MTEX_SPHERE) {
map_to_sphere(&fx, &fy, texvec[0], texvec[1], texvec[2]);
}
else {
cubemap_glob(n, texvec[0], texvec[1], texvec[2], &fx, &fy);
}
/* repeat */
if (tex->extend == TEX_REPEAT) {
if (tex->xrepeat > 1) {
float origf = fx *= tex->xrepeat;
if (fx > 1.0f) {
fx -= (int)(fx);
}
else if (fx < 0.0f) {
fx += 1 - (int)(fx);
}
if (tex->flag & TEX_REPEAT_XMIR) {
int orig = (int)floor(origf);
if (orig & 1) {
fx = 1.0f - fx;
}
}
}
if (tex->yrepeat > 1) {
float origf = fy *= tex->yrepeat;
if (fy > 1.0f) {
fy -= (int)(fy);
}
else if (fy < 0.0f) {
fy += 1 - (int)(fy);
}
if (tex->flag & TEX_REPEAT_YMIR) {
int orig = (int)floor(origf);
if (orig & 1) {
fy = 1.0f - fy;
}
}
}
}
/* crop */
if (tex->cropxmin != 0.0f || tex->cropxmax != 1.0f) {
fac1 = tex->cropxmax - tex->cropxmin;
fx = tex->cropxmin + fx * fac1;
}
if (tex->cropymin != 0.0f || tex->cropymax != 1.0f) {
fac1 = tex->cropymax - tex->cropymin;
fy = tex->cropymin + fy * fac1;
}
texvec[0] = fx;
texvec[1] = fy;
}
else {
if (wrap == MTEX_FLAT) {
fx = (texvec[0] + 1.0f) / 2.0f;
fy = (texvec[1] + 1.0f) / 2.0f;
dxt[0] /= 2.0f;
dxt[1] /= 2.0f;
dxt[2] /= 2.0f;
dyt[0] /= 2.0f;
dyt[1] /= 2.0f;
dyt[2] /= 2.0f;
}
else if (ELEM(wrap, MTEX_TUBE, MTEX_SPHERE)) {
/* exception: the seam behind (y<0.0) */
ok = 1;
if (texvec[1] <= 0.0f) {
fx = texvec[0] + dxt[0];
fy = texvec[0] + dyt[0];
if (fx >= 0.0f && fy >= 0.0f && texvec[0] >= 0.0f) {
/* pass */
}
else if (fx <= 0.0f && fy <= 0.0f && texvec[0] <= 0.0f) {
/* pass */
}
else {
ok = 0;
}
}
if (ok) {
if (wrap == MTEX_TUBE) {
map_to_tube(area, area + 1, texvec[0], texvec[1], texvec[2]);
map_to_tube(
area + 2, area + 3, texvec[0] + dxt[0], texvec[1] + dxt[1], texvec[2] + dxt[2]);
map_to_tube(
area + 4, area + 5, texvec[0] + dyt[0], texvec[1] + dyt[1], texvec[2] + dyt[2]);
}
else {
map_to_sphere(area, area + 1, texvec[0], texvec[1], texvec[2]);
map_to_sphere(
area + 2, area + 3, texvec[0] + dxt[0], texvec[1] + dxt[1], texvec[2] + dxt[2]);
map_to_sphere(
area + 4, area + 5, texvec[0] + dyt[0], texvec[1] + dyt[1], texvec[2] + dyt[2]);
}
areaflag = 1;
}
else {
if (wrap == MTEX_TUBE) {
map_to_tube(&fx, &fy, texvec[0], texvec[1], texvec[2]);
}
else {
map_to_sphere(&fx, &fy, texvec[0], texvec[1], texvec[2]);
}
dxt[0] /= 2.0f;
dxt[1] /= 2.0f;
dyt[0] /= 2.0f;
dyt[1] /= 2.0f;
}
}
else {
proj = cubemap_glob(n, texvec[0], texvec[1], texvec[2], &fx, &fy);
if (proj == 1) {
SWAP(float, dxt[1], dxt[2]);
SWAP(float, dyt[1], dyt[2]);
}
else if (proj == 2) {
float f1 = dxt[0], f2 = dyt[0];
dxt[0] = dxt[1];
dyt[0] = dyt[1];
dxt[1] = dxt[2];
dyt[1] = dyt[2];
dxt[2] = f1;
dyt[2] = f2;
}
dxt[0] *= 0.5f;
dxt[1] *= 0.5f;
dxt[2] *= 0.5f;
dyt[0] *= 0.5f;
dyt[1] *= 0.5f;
dyt[2] *= 0.5f;
}
/* If area, then recalculate `dxt[]` and `dyt[]` */
if (areaflag) {
fx = area[0];
fy = area[1];
dxt[0] = area[2] - fx;
dxt[1] = area[3] - fy;
dyt[0] = area[4] - fx;
dyt[1] = area[5] - fy;
}
/* repeat */
if (tex->extend == TEX_REPEAT) {
float max = 1.0f;
if (tex->xrepeat > 1) {
float origf = fx *= tex->xrepeat;
/* TXF: omit mirror here, see comments in do_material_tex() after do_2d_mapping() call */
if (tex->texfilter == TXF_BOX) {
if (fx > 1.0f) {
fx -= (int)(fx);
}
else if (fx < 0.0f) {
fx += 1 - (int)(fx);
}
if (tex->flag & TEX_REPEAT_XMIR) {
int orig = (int)floor(origf);
if (orig & 1) {
fx = 1.0f - fx;
}
}
}
max = tex->xrepeat;
dxt[0] *= tex->xrepeat;
dyt[0] *= tex->xrepeat;
}
if (tex->yrepeat > 1) {
float origf = fy *= tex->yrepeat;
/* TXF: omit mirror here, see comments in do_material_tex() after do_2d_mapping() call */
if (tex->texfilter == TXF_BOX) {
if (fy > 1.0f) {
fy -= (int)(fy);
}
else if (fy < 0.0f) {
fy += 1 - (int)(fy);
}
if (tex->flag & TEX_REPEAT_YMIR) {
int orig = (int)floor(origf);
if (orig & 1) {
fy = 1.0f - fy;
}
}
}
if (max < tex->yrepeat) {
max = tex->yrepeat;
}
dxt[1] *= tex->yrepeat;
dyt[1] *= tex->yrepeat;
}
if (max != 1.0f) {
dxt[2] *= max;
dyt[2] *= max;
}
}
/* crop */
if (tex->cropxmin != 0.0f || tex->cropxmax != 1.0f) {
fac1 = tex->cropxmax - tex->cropxmin;
fx = tex->cropxmin + fx * fac1;
dxt[0] *= fac1;
dyt[0] *= fac1;
}
if (tex->cropymin != 0.0f || tex->cropymax != 1.0f) {
fac1 = tex->cropymax - tex->cropymin;
fy = tex->cropymin + fy * fac1;
dxt[1] *= fac1;
dyt[1] *= fac1;
}
texvec[0] = fx;
texvec[1] = fy;
}
}
/* ************************************** */
static int multitex(Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
const short which_output,
struct ImagePool *pool,
const bool skip_load_image,
const bool texnode_preview,
const bool use_nodes)
{
float tmpvec[3];
int retval = 0; /* return value, int:0, col:1, nor:2, everything:3 */
texres->talpha = false; /* is set when image texture returns alpha (considered premul) */
if (use_nodes && tex->use_nodes && tex->nodetree) {
const float cfra = 1.0f; /* This was only set for Blender Internal render before. */
retval = ntreeTexExecTree(tex->nodetree,
texres,
texvec,
dxt,
dyt,
osatex,
thread,
tex,
which_output,
cfra,
texnode_preview,
NULL);
}
else {
switch (tex->type) {
case 0:
texres->tin = 0.0f;
return 0;
case TEX_CLOUDS:
retval = clouds(tex, texvec, texres);
break;
case TEX_WOOD:
retval = wood(tex, texvec, texres);
break;
case TEX_MARBLE:
retval = marble(tex, texvec, texres);
break;
case TEX_MAGIC:
retval = magic(tex, texvec, texres);
break;
case TEX_BLEND:
retval = blend(tex, texvec, texres);
break;
case TEX_STUCCI:
retval = stucci(tex, texvec, texres);
break;
case TEX_NOISE:
retval = texnoise(tex, texres, thread);
break;
case TEX_IMAGE:
if (osatex) {
retval = imagewraposa(
tex, tex->ima, NULL, texvec, dxt, dyt, texres, pool, skip_load_image);
}
else {
retval = imagewrap(tex, tex->ima, texvec, texres, pool, skip_load_image);
}
if (tex->ima) {
BKE_image_tag_time(tex->ima);
}
break;
case TEX_MUSGRAVE:
/* newnoise: musgrave types */
/* ton: added this, for Blender convention reason.
* artificer: added the use of tmpvec to avoid scaling texvec
*/
copy_v3_v3(tmpvec, texvec);
mul_v3_fl(tmpvec, 1.0f / tex->noisesize);
switch (tex->stype) {
case TEX_MFRACTAL:
case TEX_FBM:
retval = mg_mFractalOrfBmTex(tex, tmpvec, texres);
break;
case TEX_RIDGEDMF:
case TEX_HYBRIDMF:
retval = mg_ridgedOrHybridMFTex(tex, tmpvec, texres);
break;
case TEX_HTERRAIN:
retval = mg_HTerrainTex(tex, tmpvec, texres);
break;
}
break;
/* newnoise: voronoi type */
case TEX_VORONOI:
/* ton: added this, for Blender convention reason.
* artificer: added the use of tmpvec to avoid scaling texvec
*/
copy_v3_v3(tmpvec, texvec);
mul_v3_fl(tmpvec, 1.0f / tex->noisesize);
retval = voronoiTex(tex, tmpvec, texres);
break;
case TEX_DISTNOISE:
/* ton: added this, for Blender convention reason.
* artificer: added the use of tmpvec to avoid scaling texvec
*/
copy_v3_v3(tmpvec, texvec);
mul_v3_fl(tmpvec, 1.0f / tex->noisesize);
retval = mg_distNoiseTex(tex, tmpvec, texres);
break;
}
}
if (tex->flag & TEX_COLORBAND) {
float col[4];
if (BKE_colorband_evaluate(tex->coba, texres->tin, col)) {
texres->talpha = true;
copy_v4_v4(texres->trgba, col);
retval |= TEX_RGB;
}
}
return retval;
}
static int multitex_nodes_intern(Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
short which_output,
MTex *mtex,
struct ImagePool *pool,
const bool scene_color_manage,
const bool skip_load_image,
const bool texnode_preview,
const bool use_nodes)
{
if (tex == NULL) {
memset(texres, 0, sizeof(TexResult));
return 0;
}
if (mtex) {
which_output = mtex->which_output;
}
if (tex->type == TEX_IMAGE) {
int rgbnor;
if (mtex) {
float texvec_l[3];
copy_v3_v3(texvec_l, texvec);
/* we have mtex, use it for 2d mapping images only */
do_2d_mapping(mtex, texvec_l, NULL, dxt, dyt);
rgbnor = multitex(tex,
texvec_l,
dxt,
dyt,
osatex,
texres,
thread,
which_output,
pool,
skip_load_image,
texnode_preview,
use_nodes);
if (mtex->mapto & MAP_COL) {
ImBuf *ibuf = BKE_image_pool_acquire_ibuf(tex->ima, &tex->iuser, pool);
/* don't linearize float buffers, assumed to be linear */
if (ibuf != NULL && ibuf->rect_float == NULL && (rgbnor & TEX_RGB) && scene_color_manage) {
IMB_colormanagement_colorspace_to_scene_linear_v3(texres->trgba, ibuf->rect_colorspace);
}
BKE_image_pool_release_ibuf(tex->ima, ibuf, pool);
}
}
else {
/* we don't have mtex, do default flat 2d projection */
MTex localmtex;
float texvec_l[3], dxt_l[3], dyt_l[3];
localmtex.mapping = MTEX_FLAT;
localmtex.tex = tex;
localmtex.object = NULL;
localmtex.texco = TEXCO_ORCO;
copy_v3_v3(texvec_l, texvec);
if (dxt && dyt) {
copy_v3_v3(dxt_l, dxt);
copy_v3_v3(dyt_l, dyt);
}
else {
zero_v3(dxt_l);
zero_v3(dyt_l);
}
do_2d_mapping(&localmtex, texvec_l, NULL, dxt_l, dyt_l);
rgbnor = multitex(tex,
texvec_l,
dxt_l,
dyt_l,
osatex,
texres,
thread,
which_output,
pool,
skip_load_image,
texnode_preview,
use_nodes);
{
ImBuf *ibuf = BKE_image_pool_acquire_ibuf(tex->ima, &tex->iuser, pool);
/* don't linearize float buffers, assumed to be linear */
if (ibuf != NULL && ibuf->rect_float == NULL && (rgbnor & TEX_RGB) && scene_color_manage) {
IMB_colormanagement_colorspace_to_scene_linear_v3(texres->trgba, ibuf->rect_colorspace);
}
BKE_image_pool_release_ibuf(tex->ima, ibuf, pool);
}
}
return rgbnor;
}
return multitex(tex,
texvec,
dxt,
dyt,
osatex,
texres,
thread,
which_output,
pool,
skip_load_image,
texnode_preview,
use_nodes);
}
int multitex_nodes(Tex *tex,
const float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
short which_output,
MTex *mtex,
struct ImagePool *pool)
{
return multitex_nodes_intern(tex,
texvec,
dxt,
dyt,
osatex,
texres,
thread,
which_output,
mtex,
pool,
true,
false,
false,
true);
}
int multitex_ext(Tex *tex,
float texvec[3],
float dxt[3],
float dyt[3],
int osatex,
TexResult *texres,
const short thread,
struct ImagePool *pool,
bool scene_color_manage,
const bool skip_load_image)
{
return multitex_nodes_intern(tex,
texvec,
dxt,
dyt,
osatex,
texres,
thread,
0,
NULL,
pool,
scene_color_manage,
skip_load_image,
false,
true);
}
int multitex_ext_safe(Tex *tex,
const float texvec[3],
TexResult *texres,
struct ImagePool *pool,
bool scene_color_manage,
const bool skip_load_image)
{
return multitex_nodes_intern(tex,
texvec,
NULL,
NULL,
0,
texres,
0,
0,
NULL,
pool,
scene_color_manage,
skip_load_image,
false,
false);
}
/* ------------------------------------------------------------------------- */
void texture_rgb_blend(
float in[3], const float tex[3], const float out[3], float fact, float facg, int blendtype)
{
float facm;
switch (blendtype) {
case MTEX_BLEND:
fact *= facg;
facm = 1.0f - fact;
in[0] = (fact * tex[0] + facm * out[0]);
in[1] = (fact * tex[1] + facm * out[1]);
in[2] = (fact * tex[2] + facm * out[2]);
break;
case MTEX_MUL:
fact *= facg;
facm = 1.0f - fact;
in[0] = (facm + fact * tex[0]) * out[0];
in[1] = (facm + fact * tex[1]) * out[1];
in[2] = (facm + fact * tex[2]) * out[2];
break;
case MTEX_SCREEN:
fact *= facg;
facm = 1.0f - fact;
in[0] = 1.0f - (facm + fact * (1.0f - tex[0])) * (1.0f - out[0]);
in[1] = 1.0f - (facm + fact * (1.0f - tex[1])) * (1.0f - out[1]);
in[2] = 1.0f - (facm + fact * (1.0f - tex[2])) * (1.0f - out[2]);
break;
case MTEX_OVERLAY:
fact *= facg;
facm = 1.0f - fact;
if (out[0] < 0.5f) {
in[0] = out[0] * (facm + 2.0f * fact * tex[0]);
}
else {
in[0] = 1.0f - (facm + 2.0f * fact * (1.0f - tex[0])) * (1.0f - out[0]);
}
if (out[1] < 0.5f) {
in[1] = out[1] * (facm + 2.0f * fact * tex[1]);
}
else {
in[1] = 1.0f - (facm + 2.0f * fact * (1.0f - tex[1])) * (1.0f - out[1]);
}
if (out[2] < 0.5f) {
in[2] = out[2] * (facm + 2.0f * fact * tex[2]);
}
else {
in[2] = 1.0f - (facm + 2.0f * fact * (1.0f - tex[2])) * (1.0f - out[2]);
}
break;
case MTEX_SUB:
fact = -fact;
ATTR_FALLTHROUGH;
case MTEX_ADD:
fact *= facg;
in[0] = (fact * tex[0] + out[0]);
in[1] = (fact * tex[1] + out[1]);
in[2] = (fact * tex[2] + out[2]);
break;
case MTEX_DIV:
fact *= facg;
facm = 1.0f - fact;
if (tex[0] != 0.0f) {
in[0] = facm * out[0] + fact * out[0] / tex[0];
}
if (tex[1] != 0.0f) {
in[1] = facm * out[1] + fact * out[1] / tex[1];
}
if (tex[2] != 0.0f) {
in[2] = facm * out[2] + fact * out[2] / tex[2];
}
break;
case MTEX_DIFF:
fact *= facg;
facm = 1.0f - fact;
in[0] = facm * out[0] + fact * fabsf(tex[0] - out[0]);
in[1] = facm * out[1] + fact * fabsf(tex[1] - out[1]);
in[2] = facm * out[2] + fact * fabsf(tex[2] - out[2]);
break;
case MTEX_DARK:
fact *= facg;
facm = 1.0f - fact;
in[0] = min_ff(out[0], tex[0]) * fact + out[0] * facm;
in[1] = min_ff(out[1], tex[1]) * fact + out[1] * facm;
in[2] = min_ff(out[2], tex[2]) * fact + out[2] * facm;
break;
case MTEX_LIGHT:
fact *= facg;
in[0] = max_ff(fact * tex[0], out[0]);
in[1] = max_ff(fact * tex[1], out[1]);
in[2] = max_ff(fact * tex[2], out[2]);
break;
case MTEX_BLEND_HUE:
fact *= facg;
copy_v3_v3(in, out);
ramp_blend(MA_RAMP_HUE, in, fact, tex);
break;
case MTEX_BLEND_SAT:
fact *= facg;
copy_v3_v3(in, out);
ramp_blend(MA_RAMP_SAT, in, fact, tex);
break;
case MTEX_BLEND_VAL:
fact *= facg;
copy_v3_v3(in, out);
ramp_blend(MA_RAMP_VAL, in, fact, tex);
break;
case MTEX_BLEND_COLOR:
fact *= facg;
copy_v3_v3(in, out);
ramp_blend(MA_RAMP_COLOR, in, fact, tex);
break;
case MTEX_SOFT_LIGHT:
fact *= facg;
copy_v3_v3(in, out);
ramp_blend(MA_RAMP_SOFT, in, fact, tex);
break;
case MTEX_LIN_LIGHT:
fact *= facg;
copy_v3_v3(in, out);
ramp_blend(MA_RAMP_LINEAR, in, fact, tex);
break;
}
}
float texture_value_blend(float tex, float out, float fact, float facg, int blendtype)
{
float in = 0.0, facm, col, scf;
int flip = (facg < 0.0f);
facg = fabsf(facg);
fact *= facg;
facm = 1.0f - fact;
if (flip) {
SWAP(float, fact, facm);
}
switch (blendtype) {
case MTEX_BLEND:
in = fact * tex + facm * out;
break;
case MTEX_MUL:
facm = 1.0f - facg;
in = (facm + fact * tex) * out;
break;
case MTEX_SCREEN:
facm = 1.0f - facg;
in = 1.0f - (facm + fact * (1.0f - tex)) * (1.0f - out);
break;
case MTEX_OVERLAY:
facm = 1.0f - facg;
if (out < 0.5f) {
in = out * (facm + 2.0f * fact * tex);
}
else {
in = 1.0f - (facm + 2.0f * fact * (1.0f - tex)) * (1.0f - out);
}
break;
case MTEX_SUB:
fact = -fact;
ATTR_FALLTHROUGH;
case MTEX_ADD:
in = fact * tex + out;
break;
case MTEX_DIV:
if (tex != 0.0f) {
in = facm * out + fact * out / tex;
}
break;
case MTEX_DIFF:
in = facm * out + fact * fabsf(tex - out);
break;
case MTEX_DARK:
in = min_ff(out, tex) * fact + out * facm;
break;
case MTEX_LIGHT:
col = fact * tex;
if (col > out) {
in = col;
}
else {
in = out;
}
break;
case MTEX_SOFT_LIGHT:
scf = 1.0f - (1.0f - tex) * (1.0f - out);
in = facm * out + fact * ((1.0f - out) * tex * out) + (out * scf);
break;
case MTEX_LIN_LIGHT:
if (tex > 0.5f) {
in = out + fact * (2.0f * (tex - 0.5f));
}
else {
in = out + fact * (2.0f * tex - 1.0f);
}
break;
}
return in;
}
/* ------------------------------------------------------------------------- */
bool RE_texture_evaluate(const MTex *mtex,
const float vec[3],
const int thread,
struct ImagePool *pool,
const bool skip_load_image,
const bool texnode_preview,
/* Return arguments. */
float *r_intensity,
float r_rgba[4])
{
Tex *tex;
TexResult texr;
float dxt[3], dyt[3], texvec[3];
int rgb;
tex = mtex->tex;
if (tex == NULL) {
return 0;
}
texr.nor = NULL;
/* placement */
if (mtex->projx) {
texvec[0] = mtex->size[0] * (vec[mtex->projx - 1] + mtex->ofs[0]);
}
else {
texvec[0] = mtex->size[0] * (mtex->ofs[0]);
}
if (mtex->projy) {
texvec[1] = mtex->size[1] * (vec[mtex->projy - 1] + mtex->ofs[1]);
}
else {
texvec[1] = mtex->size[1] * (mtex->ofs[1]);
}
if (mtex->projz) {
texvec[2] = mtex->size[2] * (vec[mtex->projz - 1] + mtex->ofs[2]);
}
else {
texvec[2] = mtex->size[2] * (mtex->ofs[2]);
}
/* texture */
if (tex->type == TEX_IMAGE) {
do_2d_mapping(mtex, texvec, NULL, dxt, dyt);
}
rgb = multitex(tex,
texvec,
dxt,
dyt,
0,
&texr,
thread,
mtex->which_output,
pool,
skip_load_image,
texnode_preview,
true);
if (rgb) {
texr.tin = IMB_colormanagement_get_luminance(texr.trgba);
}
else {
copy_v3_fl3(texr.trgba, mtex->r, mtex->g, mtex->b);
}
*r_intensity = texr.tin;
copy_v4_v4(r_rgba, texr.trgba);
return (rgb != 0);
}