This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/freestyle/intern/geometry/VecMat.h

988 lines
19 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifndef __VECMAT_H__
#define __VECMAT_H__
/** \file blender/freestyle/intern/geometry/VecMat.h
* \ingroup freestyle
* \brief Vectors and Matrices definition and manipulation
* \author Sylvain Paris
* \author Emmanuel Turquin
* \author Stephane Grabli
* \date 12/06/2003
*/
#include <iostream>
#include <math.h>
#include <vector>
#ifdef WITH_CXX_GUARDEDALLOC
#include "MEM_guardedalloc.h"
#endif
namespace Freestyle {
namespace VecMat {
namespace Internal {
template <bool B>
struct is_false {};
template <>
struct is_false<false>
{
static inline void ensure() {}
};
} // end of namespace Internal
//
// Vector class
// - T: value type
// - N: dimension
//
/////////////////////////////////////////////////////////////////////////////
template <class T, unsigned N>
class Vec
{
public:
typedef T value_type;
// constructors
inline Vec()
{
for (unsigned int i = 0; i < N; i++)
this->_coord[i] = 0;
}
~Vec()
{
Internal::is_false<(N == 0)>::ensure();
}
template <class U>
explicit inline Vec(const U tab[N])
{
for (unsigned int i = 0; i < N; i++)
this->_coord[i] = (T)tab[i];
}
template <class U>
explicit inline Vec(const std::vector<U>& tab)
{
for (unsigned int i = 0; i < N; i++)
this->_coord[i] = (T)tab[i];
}
template <class U>
explicit inline Vec(const Vec<U, N>& v)
{
for (unsigned int i = 0; i < N; i++)
this->_coord[i] = (T)v[i];
}
// accessors
inline value_type operator[](const unsigned i) const
{
return this->_coord[i];
}
inline value_type& operator[](const unsigned i)
{
return this->_coord[i];
}
static inline unsigned dim()
{
return N;
}
// various useful methods
inline value_type norm() const
{
return (T)sqrt((float)squareNorm());
}
inline value_type squareNorm() const
{
return (*this) * (*this);
}
inline Vec<T, N>& normalize()
{
value_type n = norm();
for (unsigned int i = 0; i < N; i++)
this->_coord[i] /= n;
return *this;
}
inline Vec<T, N>& normalizeSafe()
{
value_type n = norm();
if (n) {
for (unsigned int i = 0; i < N; i++)
this->_coord[i] /= n;
}
return *this;
}
// classical operators
inline Vec<T, N> operator+(const Vec<T, N>& v) const
{
Vec<T, N> res(v);
res += *this;
return res;
}
inline Vec<T, N> operator-(const Vec<T, N>& v) const
{
Vec<T, N> res(*this);
res -= v;
return res;
}
inline Vec<T, N> operator*(const typename Vec<T, N>::value_type r) const
{
Vec<T, N> res(*this);
res *= r;
return res;
}
inline Vec<T, N> operator/(const typename Vec<T, N>::value_type r) const
{
Vec<T, N> res(*this);
if (r)
res /= r;
return res;
}
// dot product
inline value_type operator*(const Vec<T, N>& v) const
{
value_type sum = 0;
for (unsigned int i = 0; i < N; i++)
sum += (*this)[i] * v[i];
return sum;
}
template <class U>
inline Vec<T, N>& operator=(const Vec<U, N>& v)
{
if (this != &v) {
for (unsigned int i = 0; i < N; i++)
this->_coord[i] = (T)v[i];
}
return *this;
}
template <class U>
inline Vec<T, N>& operator+=(const Vec<U, N>& v)
{
for (unsigned int i = 0 ; i < N; i++)
this->_coord[i] += (T)v[i];
return *this;
}
template <class U>
inline Vec<T, N>& operator-=(const Vec<U, N>& v)
{
for (unsigned int i = 0 ; i < N; i++)
this->_coord[i] -= (T)v[i];
return *this;
}
template <class U>
inline Vec<T, N>& operator*=(const U r)
{
for (unsigned int i = 0 ; i < N; i++)
this->_coord[i] *= r;
return *this;
}
template <class U>
inline Vec<T, N>& operator/=(const U r)
{
if (r) {
for (unsigned int i = 0 ; i < N; i++)
this->_coord[i] /= r;
}
return *this;
}
inline bool operator==(const Vec<T, N>& v) const
{
for (unsigned int i = 0; i < N; i++) {
if (this->_coord[i] != v[i])
return false;
}
return true;
}
inline bool operator!=(const Vec<T, N>& v) const
{
for (unsigned int i = 0; i < N; i++) {
if (this->_coord[i] != v[i])
return true;
}
return false;
}
inline bool operator<(const Vec<T, N>& v) const
{
for (unsigned int i = 0; i < N; i++) {
if (this->_coord[i] < v[i])
return true;
if (this->_coord[i] > v[i])
return false;
if (this->_coord[i] == v[i])
continue;
}
return false;
}
inline bool operator>(const Vec<T, N>& v) const
{
for (unsigned int i = 0; i < N; i++) {
if (this->_coord[i] > v[i])
return true;
if (this->_coord[i] < v[i])
return false;
if (this->_coord[i] == v[i])
continue;
}
return false;
}
protected:
value_type _coord[N];
enum {
_dim = N,
};
#ifdef WITH_CXX_GUARDEDALLOC
MEM_CXX_CLASS_ALLOC_FUNCS("Freestyle:VecMat:Vec")
#endif
};
//
// Vec2 class (2D Vector)
// - T: value type
//
/////////////////////////////////////////////////////////////////////////////
template <class T>
class Vec2 : public Vec<T, 2>
{
public:
typedef typename Vec<T, 2>::value_type value_type;
inline Vec2() : Vec<T, 2>() {}
template <class U>
explicit inline Vec2(const U tab[2]) : Vec<T, 2>(tab) {}
template <class U>
explicit inline Vec2(const std::vector<U>& tab) : Vec<T, 2>(tab) {}
template <class U>
inline Vec2(const Vec<U, 2>& v) : Vec<T, 2>(v) {}
inline Vec2(const value_type x, const value_type y = 0) : Vec<T, 2>()
{
this->_coord[0] = (T)x;
this->_coord[1] = (T)y;
}
inline value_type x() const
{
return this->_coord[0];
}
inline value_type& x()
{
return this->_coord[0];
}
inline value_type y() const
{
return this->_coord[1];
}
inline value_type& y()
{
return this->_coord[1];
}
inline void setX(const value_type v)
{
this->_coord[0] = v;
}
inline void setY(const value_type v)
{
this->_coord[1] = v;
}
// FIXME: hack swig -- no choice
inline Vec2<T> operator+(const Vec2<T>& v) const
{
Vec2<T> res(v);
res += *this;
return res;
}
inline Vec2<T> operator-(const Vec2<T>& v) const
{
Vec2<T> res(*this);
res -= v;
return res;
}
inline Vec2<T> operator*(const value_type r) const
{
Vec2<T> res(*this);
res *= r;
return res;
}
inline Vec2<T> operator/(const value_type r) const
{
Vec2<T> res(*this);
if (r)
res /= r;
return res;
}
// dot product
inline value_type operator*(const Vec2<T>& v) const
{
value_type sum = 0;
for (unsigned int i = 0; i < 2; i++)
sum += (*this)[i] * v[i];
return sum;
}
};
//
// HVec3 class (3D Vector in homogeneous coordinates)
// - T: value type
//
/////////////////////////////////////////////////////////////////////////////
template <class T>
class HVec3 : public Vec<T, 4>
{
public:
typedef typename Vec<T, 4>::value_type value_type;
inline HVec3() : Vec<T, 4>() {}
template <class U>
explicit inline HVec3(const U tab[4]) : Vec<T, 4>(tab) {}
template <class U>
explicit inline HVec3(const std::vector<U>& tab) : Vec<T, 4>(tab) {}
template<class U>
inline HVec3(const Vec<U, 4>& v) : Vec<T, 4>(v) {}
inline HVec3(const value_type sx, const value_type sy = 0, const value_type sz = 0, const value_type s = 1)
{
this->_coord[0] = sx;
this->_coord[1] = sy;
this->_coord[2] = sz;
this->_coord[3] = s;
}
template <class U>
inline HVec3(const Vec<U, 3>& sv, const U s = 1)
{
this->_coord[0] = (T)sv[0];
this->_coord[1] = (T)sv[1];
this->_coord[2] = (T)sv[2];
this->_coord[3] = (T)s;
}
inline value_type sx() const
{
return this->_coord[0];
}
inline value_type& sx()
{
return this->_coord[0];
}
inline value_type sy() const
{
return this->_coord[1];
}
inline value_type& sy()
{
return this->_coord[1];
}
inline value_type sz() const
{
return this->_coord[2];
}
inline value_type& sz()
{
return this->_coord[2];
}
inline value_type s() const
{
return this->_coord[3];
}
inline value_type& s()
{
return this->_coord[3];
}
// Acces to non-homogeneous coordinates in 3D
inline value_type x() const
{
return this->_coord[0] / this->_coord[3];
}
inline value_type y() const
{
return this->_coord[1] / this->_coord[3];
}
inline value_type z() const
{
return this->_coord[2] / this->_coord[3];
}
};
//
// Vec3 class (3D Vec)
// - T: value type
//
/////////////////////////////////////////////////////////////////////////////
template <class T>
class Vec3 : public Vec<T, 3>
{
public:
typedef typename Vec<T, 3>::value_type value_type;
inline Vec3() : Vec<T, 3>() {}
template <class U>
explicit inline Vec3(const U tab[3]) : Vec<T, 3>(tab) {}
template <class U>
explicit inline Vec3(const std::vector<U>& tab) : Vec<T, 3>(tab) {}
template<class U>
inline Vec3(const Vec<U, 3>& v) : Vec<T, 3>(v) {}
template<class U>
inline Vec3(const HVec3<U>& v)
{
this->_coord[0] = (T)v.x();
this->_coord[1] = (T)v.y();
this->_coord[2] = (T)v.z();
}
inline Vec3(const value_type x, const value_type y = 0, const value_type z = 0) : Vec<T, 3>()
{
this->_coord[0] = x;
this->_coord[1] = y;
this->_coord[2] = z;
}
inline value_type x() const
{
return this->_coord[0];
}
inline value_type& x()
{
return this->_coord[0];
}
inline value_type y() const
{
return this->_coord[1];
}
inline value_type& y()
{
return this->_coord[1];
}
inline value_type z() const
{
return this->_coord[2];
}
inline value_type& z()
{
return this->_coord[2];
}
inline void setX(const value_type v)
{
this->_coord[0] = v;
}
inline void setY(const value_type v)
{
this->_coord[1] = v;
}
inline void setZ(const value_type v)
{
this->_coord[2] = v;
}
// classical operators
// FIXME: hack swig -- no choice
inline Vec3<T> operator+(const Vec3<T>& v) const
{
Vec3<T> res(v);
res += *this;
return res;
}
inline Vec3<T> operator-(const Vec3<T>& v) const
{
Vec3<T> res(*this);
res -= v;
return res;
}
inline Vec3<T> operator*(const value_type r) const
{
Vec3<T> res(*this);
res *= r;
return res;
}
inline Vec3<T> operator/(const value_type r) const
{
Vec3<T> res(*this);
if (r)
res /= r;
return res;
}
// dot product
inline value_type operator*(const Vec3<T>& v) const
{
value_type sum = 0;
for (unsigned int i = 0; i < 3; i++)
sum += (*this)[i] * v[i];
return sum;
}
// cross product for 3D Vectors
// FIXME: hack swig -- no choice
inline Vec3<T> operator^(const Vec3<T>& v) const
{
Vec3<T> res((*this)[1] * v[2] - (*this)[2] * v[1],
(*this)[2] * v[0] - (*this)[0] * v[2],
(*this)[0] * v[1] - (*this)[1] * v[0]);
return res;
}
// cross product for 3D Vectors
template <typename U>
inline Vec3<T> operator^(const Vec<U, 3>& v) const
{
Vec3<T> res((*this)[1] * v[2] - (*this)[2] * v[1],
(*this)[2] * v[0] - (*this)[0] * v[2],
(*this)[0] * v[1] - (*this)[1] * v[0]);
return res;
}
};
//
// Matrix class
// - T: value type
// - M: rows
// - N: cols
//
/////////////////////////////////////////////////////////////////////////////
// Dirty, but icc under Windows needs this
#define _SIZE (M * N)
template <class T, unsigned M, unsigned N>
class Matrix
{
public:
typedef T value_type;
inline Matrix()
{
for (unsigned int i = 0; i < _SIZE; i++)
this->_coord[i] = 0;
}
~Matrix()
{
Internal::is_false<(M == 0)>::ensure();
Internal::is_false<(N == 0)>::ensure();
}
template <class U>
explicit inline Matrix(const U tab[_SIZE])
{
for (unsigned int i = 0; i < _SIZE; i++)
this->_coord[i] = tab[i];
}
template <class U>
explicit inline Matrix(const std::vector<U>& tab)
{
for (unsigned int i = 0; i < _SIZE; i++)
this->_coord[i] = tab[i];
}
template <class U>
inline Matrix(const Matrix<U, M, N>& m)
{
for (unsigned int i = 0; i < M; i++) {
for (unsigned int j = 0; j < N; j++)
this->_coord[i * N + j] = (T)m(i, j);
}
}
inline value_type operator()(const unsigned i, const unsigned j) const
{
return this->_coord[i * N + j];
}
inline value_type& operator()(const unsigned i, const unsigned j)
{
return this->_coord[i * N + j];
}
static inline unsigned rows()
{
return M;
}
static inline unsigned cols()
{
return N;
}
inline Matrix<T, M, N>& transpose() const
{
Matrix<T, N, M> res;
for (unsigned int i = 0; i < M; i++) {
for (unsigned int j = 0; j < N; j++)
res(j, i) = this->_coord[i * N + j];
}
*this = res;
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator=(const Matrix<U, M, N>& m)
{
if (this != &m) {
for (unsigned int i = 0; i < M; i++) {
for (unsigned int j = 0; j < N; j++)
this->_coord[i * N + j] = (T)m(i, j);
}
}
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator+=(const Matrix<U, M, N>& m)
{
for (unsigned int i = 0; i < M; i++) {
for (unsigned int j = 0; j < N; j++)
this->_coord[i * N + j] += (T)m(i, j);
}
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator-=(const Matrix<U, M, N>& m)
{
for (unsigned int i = 0; i < M; i++) {
for (unsigned int j = 0; j < N; j++)
this->_coord[i * N + j] -= (T)m(i, j);
}
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator*=(const U lambda)
{
for (unsigned int i = 0; i < M; i++) {
for (unsigned int j = 0; j < N; j++)
this->_coord[i * N + j] *= lambda;
}
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator/=(const U lambda)
{
if (lambda) {
for (unsigned int i = 0; i < M; i++) {
for (unsigned int j = 0; j < N; j++)
this->_coord[i * N + j] /= lambda;
}
}
return *this;
}
protected:
value_type _coord[_SIZE];
#ifdef WITH_CXX_GUARDEDALLOC
MEM_CXX_CLASS_ALLOC_FUNCS("Freestyle:VecMat:Matrix")
#endif
};
#undef _SIZE
//
// SquareMatrix class
// - T: value type
// - N: rows & cols
//
/////////////////////////////////////////////////////////////////////////////
// Dirty, but icc under Windows needs this
#define _SIZE (N * N)
template <class T, unsigned N>
class SquareMatrix : public Matrix<T, N, N>
{
public:
typedef T value_type;
inline SquareMatrix() : Matrix<T, N, N>() {}
template <class U>
explicit inline SquareMatrix(const U tab[_SIZE]) : Matrix<T, N, N>(tab) {}
template <class U>
explicit inline SquareMatrix(const std::vector<U>& tab) : Matrix<T, N, N>(tab) {}
template <class U>
inline SquareMatrix(const Matrix<U, N, N>& m) : Matrix<T, N, N>(m) {}
static inline SquareMatrix<T, N> identity()
{
SquareMatrix<T, N> res;
for (unsigned int i = 0; i < N; i++)
res(i, i) = 1;
return res;
}
};
#undef _SIZE
//
// Vector external functions
//
/////////////////////////////////////////////////////////////////////////////
#if 0
template <class T, unsigned N>
inline Vec<T, N> operator+(const Vec<T, N>& v1, const Vec<T, N>& v2)
{
Vec<T, N> res(v1);
res += v2;
return res;
}
template <class T, unsigned N>
inline Vec<T, N> operator-(const Vec<T, N>& v1, const Vec<T, N>& v2)
{
Vec<T, N> res(v1);
res -= v2;
return res;
}
template <class T, unsigned N>
inline Vec<T, N> operator*(const Vec<T, N>& v, const typename Vec<T, N>::value_type r)
{
Vec<T, N> res(v);
res *= r;
return res;
}
#endif
template <class T, unsigned N>
inline Vec<T, N> operator*(const typename Vec<T, N>::value_type r, const Vec<T, N>& v)
{
Vec<T, N> res(v);
res *= r;
return res;
}
#if 0
template <class T, unsigned N>
inline Vec<T, N> operator/(const Vec<T, N>& v, const typename Vec<T, N>::value_type r)
{
Vec<T, N> res(v);
if (r)
res /= r;
return res;
}
// dot product
template <class T, unsigned N>
inline typename Vec<T, N>::value_type operator*(const Vec<T, N>& v1, const Vec<T, N>& v2)
{
typename Vec<T, N>::value_type sum = 0;
for (unsigned int i = 0; i < N; i++)
sum += v1[i] * v2[i];
return sum;
}
// cross product for 3D Vectors
template <typename T>
inline Vec3<T> operator^(const Vec<T, 3>& v1, const Vec<T, 3>& v2)
{
Vec3<T> res(v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0]);
return res;
}
#endif
// stream operator
template <class T, unsigned N>
inline std::ostream& operator<<(std::ostream& s, const Vec<T, N>& v)
{
unsigned int i;
s << "[";
for (i = 0; i < N - 1; i++)
s << v[i] << ", ";
s << v[i] << "]";
return s;
}
//
// Matrix external functions
//
/////////////////////////////////////////////////////////////////////////////
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N> operator+(const Matrix<T, M, N>& m1, const Matrix<T, M, N>& m2)
{
Matrix<T, M, N> res(m1);
res += m2;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N> operator-(const Matrix<T, M, N>& m1, const Matrix<T, M, N>& m2)
{
Matrix<T, M, N> res(m1);
res -= m2;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N> operator*(const Matrix<T, M, N>& m1, const typename Matrix<T, M, N>::value_type lambda)
{
Matrix<T, M, N> res(m1);
res *= lambda;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N> operator*(const typename Matrix<T, M, N>::value_type lambda, const Matrix<T, M, N>& m1)
{
Matrix<T, M, N> res(m1);
res *= lambda;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N> operator/(const Matrix<T, M, N>& m1, const typename Matrix<T, M, N>::value_type lambda)
{
Matrix<T, M, N> res(m1);
res /= lambda;
return res;
}
template <class T, unsigned M, unsigned N, unsigned P>
inline Matrix<T, M, P> operator*(const Matrix<T, M, N>& m1, const Matrix<T, N, P>& m2)
{
unsigned int i, j, k;
Matrix<T, M, P> res;
typename Matrix<T, N, P>::value_type scale;
for (j = 0; j < P; j++) {
for (k = 0; k < N; k++) {
scale = m2(k, j);
for (i = 0; i < N; i++)
res(i, j) += m1(i, k) * scale;
}
}
return res;
}
template <class T, unsigned M, unsigned N>
inline Vec<T, M> operator*(const Matrix<T, M, N>& m, const Vec<T, N>& v)
{
Vec<T, M> res;
typename Matrix<T, M, N>::value_type scale;
for (unsigned int j = 0; j < M; j++) {
scale = v[j];
for (unsigned int i = 0; i < N; i++)
res[i] += m(i, j) * scale;
}
return res;
}
// stream operator
template <class T, unsigned M, unsigned N>
inline std::ostream& operator<<(std::ostream& s, const Matrix<T, M, N>& m)
{
unsigned int i, j;
for (i = 0; i < M; i++) {
s << "[";
for (j = 0; j < N - 1; j++)
s << m(i, j) << ", ";
s << m(i, j) << "]" << std::endl;
}
return s;
}
} // end of namespace VecMat
} /* namespace Freestyle */
#endif // __VECMAT_H__