Motivation is to disambiguate on the naming level what the matrix actually means. It is very easy to understand the meaning backwards, especially since in Python the name goes the opposite way (it is called `world_matrix` in the Python API). It is important to disambiguate the naming without making developers to look into the comment in the header file (which is also not super clear either). Additionally, more clear naming facilitates the unit verification (or, in this case, space validation) when reading an expression. This patch calls the matrix `object_to_world` which makes it clear from the local code what is it exactly going on. This is only done on DNA level, and a lot of local variables still follow the old naming. A DNA rename is setup in a way that there is no change on the file level, so there should be no regressions at all. The possibility is to add `_matrix` or `_mat` suffix to the name to make it explicit that it is a matrix. Although, not sure if it really helps the readability, or is it something redundant. Differential Revision: https://developer.blender.org/D16328
1176 lines
37 KiB
C
1176 lines
37 KiB
C
/* SPDX-License-Identifier: GPL-2.0-or-later
|
|
* Copyright 2005 Blender Foundation. All rights reserved. */
|
|
|
|
/** \file
|
|
* \ingroup modifiers
|
|
*/
|
|
|
|
/* Screw modifier: revolves the edges about an axis */
|
|
#include <limits.h>
|
|
|
|
#include "BLI_utildefines.h"
|
|
|
|
#include "BLI_alloca.h"
|
|
#include "BLI_bitmap.h"
|
|
#include "BLI_math.h"
|
|
|
|
#include "BLT_translation.h"
|
|
|
|
#include "DNA_defaults.h"
|
|
#include "DNA_mesh_types.h"
|
|
#include "DNA_meshdata_types.h"
|
|
#include "DNA_object_types.h"
|
|
#include "DNA_screen_types.h"
|
|
|
|
#include "BKE_context.h"
|
|
#include "BKE_lib_query.h"
|
|
#include "BKE_mesh.h"
|
|
#include "BKE_screen.h"
|
|
|
|
#include "UI_interface.h"
|
|
#include "UI_resources.h"
|
|
|
|
#include "RNA_access.h"
|
|
#include "RNA_prototypes.h"
|
|
|
|
#include "DEG_depsgraph_build.h"
|
|
#include "DEG_depsgraph_query.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include "MOD_modifiertypes.h"
|
|
#include "MOD_ui_common.h"
|
|
|
|
#include "BLI_strict_flags.h"
|
|
|
|
static void initData(ModifierData *md)
|
|
{
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
|
|
BLI_assert(MEMCMP_STRUCT_AFTER_IS_ZERO(ltmd, modifier));
|
|
|
|
MEMCPY_STRUCT_AFTER(ltmd, DNA_struct_default_get(ScrewModifierData), modifier);
|
|
}
|
|
|
|
/** Used for gathering edge connectivity. */
|
|
typedef struct ScrewVertConnect {
|
|
/** Distance from the center axis. */
|
|
float dist_sq;
|
|
/** Location relative to the transformed axis. */
|
|
float co[3];
|
|
/** 2 verts on either side of this one. */
|
|
uint v[2];
|
|
/** Edges on either side, a bit of a waste since each edge ref's 2 edges. */
|
|
MEdge *e[2];
|
|
char flag;
|
|
} ScrewVertConnect;
|
|
|
|
typedef struct ScrewVertIter {
|
|
ScrewVertConnect *v_array;
|
|
ScrewVertConnect *v_poin;
|
|
uint v, v_other;
|
|
MEdge *e;
|
|
} ScrewVertIter;
|
|
|
|
#define SV_UNUSED (UINT_MAX)
|
|
#define SV_INVALID ((UINT_MAX)-1)
|
|
#define SV_IS_VALID(v) ((v) < SV_INVALID)
|
|
|
|
static void screwvert_iter_init(ScrewVertIter *iter,
|
|
ScrewVertConnect *array,
|
|
uint v_init,
|
|
uint dir)
|
|
{
|
|
iter->v_array = array;
|
|
iter->v = v_init;
|
|
|
|
if (SV_IS_VALID(v_init)) {
|
|
iter->v_poin = &array[v_init];
|
|
iter->v_other = iter->v_poin->v[dir];
|
|
iter->e = iter->v_poin->e[!dir];
|
|
}
|
|
else {
|
|
iter->v_poin = NULL;
|
|
iter->e = NULL;
|
|
}
|
|
}
|
|
|
|
static void screwvert_iter_step(ScrewVertIter *iter)
|
|
{
|
|
if (iter->v_poin->v[0] == iter->v_other) {
|
|
iter->v_other = iter->v;
|
|
iter->v = iter->v_poin->v[1];
|
|
}
|
|
else if (iter->v_poin->v[1] == iter->v_other) {
|
|
iter->v_other = iter->v;
|
|
iter->v = iter->v_poin->v[0];
|
|
}
|
|
if (SV_IS_VALID(iter->v)) {
|
|
iter->v_poin = &iter->v_array[iter->v];
|
|
iter->e = iter->v_poin->e[(iter->v_poin->e[0] == iter->e)];
|
|
}
|
|
else {
|
|
iter->e = NULL;
|
|
iter->v_poin = NULL;
|
|
}
|
|
}
|
|
|
|
static Mesh *mesh_remove_doubles_on_axis(Mesh *result,
|
|
MVert *mvert_new,
|
|
const uint totvert,
|
|
const uint step_tot,
|
|
const float axis_vec[3],
|
|
const float axis_offset[3],
|
|
const float merge_threshold)
|
|
{
|
|
BLI_bitmap *vert_tag = BLI_BITMAP_NEW(totvert, __func__);
|
|
|
|
const float merge_threshold_sq = square_f(merge_threshold);
|
|
const bool use_offset = axis_offset != NULL;
|
|
uint tot_doubles = 0;
|
|
for (uint i = 0; i < totvert; i += 1) {
|
|
float axis_co[3];
|
|
if (use_offset) {
|
|
float offset_co[3];
|
|
sub_v3_v3v3(offset_co, mvert_new[i].co, axis_offset);
|
|
project_v3_v3v3_normalized(axis_co, offset_co, axis_vec);
|
|
add_v3_v3(axis_co, axis_offset);
|
|
}
|
|
else {
|
|
project_v3_v3v3_normalized(axis_co, mvert_new[i].co, axis_vec);
|
|
}
|
|
const float dist_sq = len_squared_v3v3(axis_co, mvert_new[i].co);
|
|
if (dist_sq <= merge_threshold_sq) {
|
|
BLI_BITMAP_ENABLE(vert_tag, i);
|
|
tot_doubles += 1;
|
|
copy_v3_v3(mvert_new[i].co, axis_co);
|
|
}
|
|
}
|
|
|
|
if (tot_doubles != 0) {
|
|
uint tot = totvert * step_tot;
|
|
int *full_doubles_map = MEM_malloc_arrayN(tot, sizeof(int), __func__);
|
|
copy_vn_i(full_doubles_map, (int)tot, -1);
|
|
|
|
uint tot_doubles_left = tot_doubles;
|
|
for (uint i = 0; i < totvert; i += 1) {
|
|
if (BLI_BITMAP_TEST(vert_tag, i)) {
|
|
int *doubles_map = &full_doubles_map[totvert + i];
|
|
for (uint step = 1; step < step_tot; step += 1) {
|
|
*doubles_map = (int)i;
|
|
doubles_map += totvert;
|
|
}
|
|
tot_doubles_left -= 1;
|
|
if (tot_doubles_left == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result = BKE_mesh_merge_verts(result,
|
|
full_doubles_map,
|
|
(int)(tot_doubles * (step_tot - 1)),
|
|
MESH_MERGE_VERTS_DUMP_IF_MAPPED);
|
|
MEM_freeN(full_doubles_map);
|
|
}
|
|
|
|
MEM_freeN(vert_tag);
|
|
|
|
return result;
|
|
}
|
|
|
|
static Mesh *modifyMesh(ModifierData *md, const ModifierEvalContext *ctx, Mesh *meshData)
|
|
{
|
|
const Mesh *mesh = meshData;
|
|
Mesh *result;
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
const bool use_render_params = (ctx->flag & MOD_APPLY_RENDER) != 0;
|
|
|
|
int mpoly_index = 0;
|
|
uint step;
|
|
uint i, j;
|
|
uint i1, i2;
|
|
uint step_tot = use_render_params ? ltmd->render_steps : ltmd->steps;
|
|
const bool do_flip = (ltmd->flag & MOD_SCREW_NORMAL_FLIP) != 0;
|
|
|
|
const int quad_ord[4] = {
|
|
do_flip ? 3 : 0,
|
|
do_flip ? 2 : 1,
|
|
do_flip ? 1 : 2,
|
|
do_flip ? 0 : 3,
|
|
};
|
|
const int quad_ord_ofs[4] = {
|
|
do_flip ? 2 : 0,
|
|
1,
|
|
do_flip ? 0 : 2,
|
|
3,
|
|
};
|
|
|
|
uint maxVerts = 0, maxEdges = 0, maxPolys = 0;
|
|
const uint totvert = (uint)mesh->totvert;
|
|
const uint totedge = (uint)mesh->totedge;
|
|
const uint totpoly = (uint)mesh->totpoly;
|
|
|
|
uint *edge_poly_map = NULL; /* orig edge to orig poly */
|
|
uint *vert_loop_map = NULL; /* orig vert to orig loop */
|
|
|
|
/* UV Coords */
|
|
const uint mloopuv_layers_tot = (uint)CustomData_number_of_layers(&mesh->ldata, CD_MLOOPUV);
|
|
MLoopUV **mloopuv_layers = BLI_array_alloca(mloopuv_layers, mloopuv_layers_tot);
|
|
float uv_u_scale;
|
|
float uv_v_minmax[2] = {FLT_MAX, -FLT_MAX};
|
|
float uv_v_range_inv;
|
|
float uv_axis_plane[4];
|
|
|
|
char axis_char = 'X';
|
|
bool close;
|
|
float angle = ltmd->angle;
|
|
float screw_ofs = ltmd->screw_ofs;
|
|
float axis_vec[3] = {0.0f, 0.0f, 0.0f};
|
|
float tmp_vec1[3], tmp_vec2[3];
|
|
float mat3[3][3];
|
|
/* transform the coords by an object relative to this objects transformation */
|
|
float mtx_tx[4][4];
|
|
float mtx_tx_inv[4][4]; /* inverted */
|
|
float mtx_tmp_a[4][4];
|
|
|
|
uint vc_tot_linked = 0;
|
|
short other_axis_1, other_axis_2;
|
|
const float *tmpf1, *tmpf2;
|
|
|
|
uint edge_offset;
|
|
|
|
MPoly *mp_new;
|
|
MLoop *ml_new;
|
|
MEdge *med_new, *med_new_firstloop;
|
|
MVert *mv_new, *mv_new_base;
|
|
const MVert *mv_orig;
|
|
Object *ob_axis = ltmd->ob_axis;
|
|
|
|
ScrewVertConnect *vc, *vc_tmp, *vert_connect = NULL;
|
|
|
|
const char mpoly_flag = (ltmd->flag & MOD_SCREW_SMOOTH_SHADING) ? ME_SMOOTH : 0;
|
|
|
|
/* don't do anything? */
|
|
if (!totvert) {
|
|
return BKE_mesh_new_nomain_from_template(mesh, 0, 0, 0, 0, 0);
|
|
}
|
|
|
|
switch (ltmd->axis) {
|
|
case 0:
|
|
other_axis_1 = 1;
|
|
other_axis_2 = 2;
|
|
break;
|
|
case 1:
|
|
other_axis_1 = 0;
|
|
other_axis_2 = 2;
|
|
break;
|
|
default: /* 2, use default to quiet warnings */
|
|
other_axis_1 = 0;
|
|
other_axis_2 = 1;
|
|
break;
|
|
}
|
|
|
|
axis_vec[ltmd->axis] = 1.0f;
|
|
|
|
if (ob_axis != NULL) {
|
|
/* Calculate the matrix relative to the axis object. */
|
|
invert_m4_m4(mtx_tmp_a, ctx->object->object_to_world);
|
|
copy_m4_m4(mtx_tx_inv, ob_axis->object_to_world);
|
|
mul_m4_m4m4(mtx_tx, mtx_tmp_a, mtx_tx_inv);
|
|
|
|
/* Calculate the axis vector. */
|
|
mul_mat3_m4_v3(mtx_tx, axis_vec); /* only rotation component */
|
|
normalize_v3(axis_vec);
|
|
|
|
/* screw */
|
|
if (ltmd->flag & MOD_SCREW_OBJECT_OFFSET) {
|
|
/* Find the offset along this axis relative to this objects matrix. */
|
|
float totlen = len_v3(mtx_tx[3]);
|
|
|
|
if (totlen != 0.0f) {
|
|
const float zero[3] = {0.0f, 0.0f, 0.0f};
|
|
float cp[3];
|
|
screw_ofs = closest_to_line_v3(cp, mtx_tx[3], zero, axis_vec);
|
|
}
|
|
else {
|
|
screw_ofs = 0.0f;
|
|
}
|
|
}
|
|
|
|
/* angle */
|
|
|
|
#if 0 /* can't include this, not predictable enough, though quite fun. */
|
|
if (ltmd->flag & MOD_SCREW_OBJECT_ANGLE) {
|
|
float mtx3_tx[3][3];
|
|
copy_m3_m4(mtx3_tx, mtx_tx);
|
|
|
|
float vec[3] = {0, 1, 0};
|
|
float cross1[3];
|
|
float cross2[3];
|
|
cross_v3_v3v3(cross1, vec, axis_vec);
|
|
|
|
mul_v3_m3v3(cross2, mtx3_tx, cross1);
|
|
{
|
|
float c1[3];
|
|
float c2[3];
|
|
float axis_tmp[3];
|
|
|
|
cross_v3_v3v3(c1, cross2, axis_vec);
|
|
cross_v3_v3v3(c2, axis_vec, c1);
|
|
|
|
angle = angle_v3v3(cross1, c2);
|
|
|
|
cross_v3_v3v3(axis_tmp, cross1, c2);
|
|
normalize_v3(axis_tmp);
|
|
|
|
if (len_v3v3(axis_tmp, axis_vec) > 1.0f) {
|
|
angle = -angle;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
axis_char = (char)(axis_char + ltmd->axis); /* 'X' + axis */
|
|
|
|
/* Useful to be able to use the axis vector in some cases still. */
|
|
zero_v3(axis_vec);
|
|
axis_vec[ltmd->axis] = 1.0f;
|
|
}
|
|
|
|
/* apply the multiplier */
|
|
angle *= (float)ltmd->iter;
|
|
screw_ofs *= (float)ltmd->iter;
|
|
uv_u_scale = 1.0f / (float)(step_tot);
|
|
|
|
/* multiplying the steps is a bit tricky, this works best */
|
|
step_tot = ((step_tot + 1) * ltmd->iter) - (ltmd->iter - 1);
|
|
|
|
/* Will the screw be closed?
|
|
* NOTE: smaller than `FLT_EPSILON * 100`
|
|
* gives problems with float precision so its never closed. */
|
|
if (fabsf(screw_ofs) <= (FLT_EPSILON * 100.0f) &&
|
|
fabsf(fabsf(angle) - ((float)M_PI * 2.0f)) <= (FLT_EPSILON * 100.0f) && step_tot > 3) {
|
|
close = 1;
|
|
step_tot--;
|
|
|
|
maxVerts = totvert * step_tot; /* -1 because we're joining back up */
|
|
maxEdges = (totvert * step_tot) + /* these are the edges between new verts */
|
|
(totedge * step_tot); /* -1 because vert edges join */
|
|
maxPolys = totedge * step_tot;
|
|
|
|
screw_ofs = 0.0f;
|
|
}
|
|
else {
|
|
close = 0;
|
|
if (step_tot < 2) {
|
|
step_tot = 2;
|
|
}
|
|
|
|
maxVerts = totvert * step_tot; /* -1 because we're joining back up */
|
|
maxEdges = (totvert * (step_tot - 1)) + /* these are the edges between new verts */
|
|
(totedge * step_tot); /* -1 because vert edges join */
|
|
maxPolys = totedge * (step_tot - 1);
|
|
}
|
|
|
|
if ((ltmd->flag & MOD_SCREW_UV_STRETCH_U) == 0) {
|
|
uv_u_scale = (uv_u_scale / (float)ltmd->iter) * (angle / ((float)M_PI * 2.0f));
|
|
}
|
|
|
|
/* The `screw_ofs` cannot change from now on. */
|
|
const bool do_remove_doubles = (ltmd->flag & MOD_SCREW_MERGE) && (screw_ofs == 0.0f);
|
|
|
|
result = BKE_mesh_new_nomain_from_template(
|
|
mesh, (int)maxVerts, (int)maxEdges, 0, (int)maxPolys * 4, (int)maxPolys);
|
|
|
|
const MVert *mvert_orig = BKE_mesh_verts(mesh);
|
|
const MEdge *medge_orig = BKE_mesh_edges(mesh);
|
|
const MPoly *mpoly_orig = BKE_mesh_polys(mesh);
|
|
const MLoop *mloop_orig = BKE_mesh_loops(mesh);
|
|
|
|
MVert *mvert_new = BKE_mesh_verts_for_write(result);
|
|
MEdge *medge_new = BKE_mesh_edges_for_write(result);
|
|
MPoly *mpoly_new = BKE_mesh_polys_for_write(result);
|
|
MLoop *mloop_new = BKE_mesh_loops_for_write(result);
|
|
|
|
if (!CustomData_has_layer(&result->pdata, CD_ORIGINDEX)) {
|
|
CustomData_add_layer(&result->pdata, CD_ORIGINDEX, CD_SET_DEFAULT, NULL, (int)maxPolys);
|
|
}
|
|
|
|
int *origindex = CustomData_get_layer(&result->pdata, CD_ORIGINDEX);
|
|
|
|
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, 0, (int)totvert);
|
|
|
|
if (mloopuv_layers_tot) {
|
|
const float zero_co[3] = {0};
|
|
plane_from_point_normal_v3(uv_axis_plane, zero_co, axis_vec);
|
|
}
|
|
|
|
if (mloopuv_layers_tot) {
|
|
uint uv_lay;
|
|
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
|
|
mloopuv_layers[uv_lay] = CustomData_get_layer_n(&result->ldata, CD_MLOOPUV, (int)uv_lay);
|
|
}
|
|
|
|
if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) {
|
|
for (i = 0, mv_orig = mvert_orig; i < totvert; i++, mv_orig++) {
|
|
const float v = dist_signed_squared_to_plane_v3(mv_orig->co, uv_axis_plane);
|
|
uv_v_minmax[0] = min_ff(v, uv_v_minmax[0]);
|
|
uv_v_minmax[1] = max_ff(v, uv_v_minmax[1]);
|
|
}
|
|
uv_v_minmax[0] = sqrtf_signed(uv_v_minmax[0]);
|
|
uv_v_minmax[1] = sqrtf_signed(uv_v_minmax[1]);
|
|
}
|
|
|
|
uv_v_range_inv = uv_v_minmax[1] - uv_v_minmax[0];
|
|
uv_v_range_inv = uv_v_range_inv ? 1.0f / uv_v_range_inv : 0.0f;
|
|
}
|
|
|
|
/* Set the locations of the first set of verts */
|
|
|
|
mv_new = mvert_new;
|
|
mv_orig = mvert_orig;
|
|
|
|
BLI_bitmap *vert_tag = BLI_BITMAP_NEW(totvert, __func__);
|
|
|
|
/* Copy the first set of edges */
|
|
const MEdge *med_orig = medge_orig;
|
|
med_new = medge_new;
|
|
for (i = 0; i < totedge; i++, med_orig++, med_new++) {
|
|
med_new->v1 = med_orig->v1;
|
|
med_new->v2 = med_orig->v2;
|
|
med_new->flag = med_orig->flag & ~ME_LOOSEEDGE;
|
|
|
|
/* Tag #MVert as not loose. */
|
|
BLI_BITMAP_ENABLE(vert_tag, med_orig->v1);
|
|
BLI_BITMAP_ENABLE(vert_tag, med_orig->v2);
|
|
}
|
|
|
|
/* build polygon -> edge map */
|
|
if (totpoly) {
|
|
const MPoly *mp_orig;
|
|
|
|
edge_poly_map = MEM_malloc_arrayN(totedge, sizeof(*edge_poly_map), __func__);
|
|
memset(edge_poly_map, 0xff, sizeof(*edge_poly_map) * totedge);
|
|
|
|
vert_loop_map = MEM_malloc_arrayN(totvert, sizeof(*vert_loop_map), __func__);
|
|
memset(vert_loop_map, 0xff, sizeof(*vert_loop_map) * totvert);
|
|
|
|
for (i = 0, mp_orig = mpoly_orig; i < totpoly; i++, mp_orig++) {
|
|
uint loopstart = (uint)mp_orig->loopstart;
|
|
uint loopend = loopstart + (uint)mp_orig->totloop;
|
|
|
|
const MLoop *ml_orig = &mloop_orig[loopstart];
|
|
uint k;
|
|
for (k = loopstart; k < loopend; k++, ml_orig++) {
|
|
edge_poly_map[ml_orig->e] = i;
|
|
vert_loop_map[ml_orig->v] = k;
|
|
|
|
/* also order edges based on faces */
|
|
if (medge_new[ml_orig->e].v1 != ml_orig->v) {
|
|
SWAP(uint, medge_new[ml_orig->e].v1, medge_new[ml_orig->e].v2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ltmd->flag & MOD_SCREW_NORMAL_CALC) {
|
|
|
|
/* Normal Calculation (for face flipping)
|
|
* Sort edge verts for correct face flipping
|
|
* NOT REALLY NEEDED but face flipping is nice. */
|
|
|
|
/* Notice!
|
|
*
|
|
* Since we are only ordering the edges here it can avoid mallocing the
|
|
* extra space by abusing the vert array before its filled with new verts.
|
|
* The new array for vert_connect must be at least `sizeof(ScrewVertConnect) * totvert`
|
|
* and the size of our resulting meshes array is `sizeof(MVert) * totvert * 3`
|
|
* so its safe to use the second 2 thirds of #MVert the array for vert_connect,
|
|
* just make sure #ScrewVertConnect struct is no more than twice as big as #MVert,
|
|
* at the moment there is no chance of that being a problem,
|
|
* unless #MVert becomes half its current size.
|
|
*
|
|
* once the edges are ordered, vert_connect is not needed and it can be used for verts
|
|
*
|
|
* This makes the modifier faster with one less allocate.
|
|
*/
|
|
|
|
vert_connect = MEM_malloc_arrayN(totvert, sizeof(ScrewVertConnect), __func__);
|
|
/* skip the first slice of verts. */
|
|
// vert_connect = (ScrewVertConnect *) &medge_new[totvert];
|
|
vc = vert_connect;
|
|
|
|
/* Copy Vert Locations */
|
|
if (totedge != 0) {
|
|
// printf("\n\n\n\n\nStarting Modifier\n");
|
|
/* set edge users */
|
|
med_new = medge_new;
|
|
mv_new = mvert_new;
|
|
|
|
if (ob_axis != NULL) {
|
|
/* `mtx_tx` is initialized early on. */
|
|
for (i = 0; i < totvert; i++, mv_new++, mv_orig++, vc++) {
|
|
vc->co[0] = mv_new->co[0] = mv_orig->co[0];
|
|
vc->co[1] = mv_new->co[1] = mv_orig->co[1];
|
|
vc->co[2] = mv_new->co[2] = mv_orig->co[2];
|
|
|
|
vc->flag = 0;
|
|
vc->e[0] = vc->e[1] = NULL;
|
|
vc->v[0] = vc->v[1] = SV_UNUSED;
|
|
|
|
mul_m4_v3(mtx_tx, vc->co);
|
|
/* Length in 2D, don't `sqrt` because this is only for comparison. */
|
|
vc->dist_sq = vc->co[other_axis_1] * vc->co[other_axis_1] +
|
|
vc->co[other_axis_2] * vc->co[other_axis_2];
|
|
|
|
// printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist_sq);
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < totvert; i++, mv_new++, mv_orig++, vc++) {
|
|
vc->co[0] = mv_new->co[0] = mv_orig->co[0];
|
|
vc->co[1] = mv_new->co[1] = mv_orig->co[1];
|
|
vc->co[2] = mv_new->co[2] = mv_orig->co[2];
|
|
|
|
vc->flag = 0;
|
|
vc->e[0] = vc->e[1] = NULL;
|
|
vc->v[0] = vc->v[1] = SV_UNUSED;
|
|
|
|
/* Length in 2D, don't sqrt because this is only for comparison. */
|
|
vc->dist_sq = vc->co[other_axis_1] * vc->co[other_axis_1] +
|
|
vc->co[other_axis_2] * vc->co[other_axis_2];
|
|
|
|
// printf("location %f %f %f -- %f\n", vc->co[0], vc->co[1], vc->co[2], vc->dist_sq);
|
|
}
|
|
}
|
|
|
|
/* this loop builds connectivity info for verts */
|
|
for (i = 0; i < totedge; i++, med_new++) {
|
|
vc = &vert_connect[med_new->v1];
|
|
|
|
if (vc->v[0] == SV_UNUSED) { /* unused */
|
|
vc->v[0] = med_new->v2;
|
|
vc->e[0] = med_new;
|
|
}
|
|
else if (vc->v[1] == SV_UNUSED) {
|
|
vc->v[1] = med_new->v2;
|
|
vc->e[1] = med_new;
|
|
}
|
|
else {
|
|
vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */
|
|
}
|
|
|
|
vc = &vert_connect[med_new->v2];
|
|
|
|
/* same as above but swap v1/2 */
|
|
if (vc->v[0] == SV_UNUSED) { /* unused */
|
|
vc->v[0] = med_new->v1;
|
|
vc->e[0] = med_new;
|
|
}
|
|
else if (vc->v[1] == SV_UNUSED) {
|
|
vc->v[1] = med_new->v1;
|
|
vc->e[1] = med_new;
|
|
}
|
|
else {
|
|
vc->v[0] = vc->v[1] = SV_INVALID; /* error value - don't use, 3 edges on vert */
|
|
}
|
|
}
|
|
|
|
/* find the first vert */
|
|
vc = vert_connect;
|
|
for (i = 0; i < totvert; i++, vc++) {
|
|
/* Now do search for connected verts, order all edges and flip them
|
|
* so resulting faces are flipped the right way */
|
|
vc_tot_linked = 0; /* count the number of linked verts for this loop */
|
|
if (vc->flag == 0) {
|
|
uint v_best = SV_UNUSED, ed_loop_closed = 0; /* vert and vert new */
|
|
ScrewVertIter lt_iter;
|
|
float fl = -1.0f;
|
|
|
|
/* compiler complains if not initialized, but it should be initialized below */
|
|
bool ed_loop_flip = false;
|
|
|
|
// printf("Loop on connected vert: %i\n", i);
|
|
|
|
for (j = 0; j < 2; j++) {
|
|
// printf("\tSide: %i\n", j);
|
|
screwvert_iter_init(<_iter, vert_connect, i, j);
|
|
if (j == 1) {
|
|
screwvert_iter_step(<_iter);
|
|
}
|
|
while (lt_iter.v_poin) {
|
|
// printf("\t\tVERT: %i\n", lt_iter.v);
|
|
if (lt_iter.v_poin->flag) {
|
|
// printf("\t\t\tBreaking Found end\n");
|
|
// endpoints[0] = endpoints[1] = SV_UNUSED;
|
|
ed_loop_closed = 1; /* circle */
|
|
break;
|
|
}
|
|
lt_iter.v_poin->flag = 1;
|
|
vc_tot_linked++;
|
|
// printf("Testing 2 floats %f : %f\n", fl, lt_iter.v_poin->dist_sq);
|
|
if (fl <= lt_iter.v_poin->dist_sq) {
|
|
fl = lt_iter.v_poin->dist_sq;
|
|
v_best = lt_iter.v;
|
|
// printf("\t\t\tVERT BEST: %i\n", v_best);
|
|
}
|
|
screwvert_iter_step(<_iter);
|
|
if (!lt_iter.v_poin) {
|
|
// printf("\t\t\tFound End Also Num %i\n", j);
|
|
// endpoints[j] = lt_iter.v_other; /* other is still valid */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Now we have a collection of used edges. flip their edges the right way. */
|
|
/* if (v_best != SV_UNUSED) - */
|
|
|
|
// printf("Done Looking - vc_tot_linked: %i\n", vc_tot_linked);
|
|
|
|
if (vc_tot_linked > 1) {
|
|
float vf_1, vf_2, vf_best;
|
|
|
|
vc_tmp = &vert_connect[v_best];
|
|
|
|
tmpf1 = vert_connect[vc_tmp->v[0]].co;
|
|
tmpf2 = vert_connect[vc_tmp->v[1]].co;
|
|
|
|
/* edge connects on each side! */
|
|
if (SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1])) {
|
|
// printf("Verts on each side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]);
|
|
/* Find out which is higher. */
|
|
|
|
vf_1 = tmpf1[ltmd->axis];
|
|
vf_2 = tmpf2[ltmd->axis];
|
|
vf_best = vc_tmp->co[ltmd->axis];
|
|
|
|
if (vf_1 < vf_best && vf_best < vf_2) {
|
|
ed_loop_flip = 0;
|
|
}
|
|
else if (vf_1 > vf_best && vf_best > vf_2) {
|
|
ed_loop_flip = 1;
|
|
}
|
|
else {
|
|
/* not so simple to work out which edge is higher */
|
|
sub_v3_v3v3(tmp_vec1, tmpf1, vc_tmp->co);
|
|
sub_v3_v3v3(tmp_vec2, tmpf2, vc_tmp->co);
|
|
normalize_v3(tmp_vec1);
|
|
normalize_v3(tmp_vec2);
|
|
|
|
if (tmp_vec1[ltmd->axis] < tmp_vec2[ltmd->axis]) {
|
|
ed_loop_flip = 1;
|
|
}
|
|
else {
|
|
ed_loop_flip = 0;
|
|
}
|
|
}
|
|
}
|
|
else if (SV_IS_VALID(vc_tmp->v[0])) { /* Vertex only connected on 1 side. */
|
|
// printf("Verts on ONE side (%i %i)\n", vc_tmp->v[0], vc_tmp->v[1]);
|
|
if (tmpf1[ltmd->axis] < vc_tmp->co[ltmd->axis]) { /* best is above */
|
|
ed_loop_flip = 1;
|
|
}
|
|
else { /* best is below or even... in even case we can't know what to do. */
|
|
ed_loop_flip = 0;
|
|
}
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("No Connected ___\n");
|
|
}
|
|
#endif
|
|
|
|
// printf("flip direction %i\n", ed_loop_flip);
|
|
|
|
/* Switch the flip option if set
|
|
* NOTE: flip is now done at face level so copying group slices is easier. */
|
|
#if 0
|
|
if (do_flip) {
|
|
ed_loop_flip = !ed_loop_flip;
|
|
}
|
|
#endif
|
|
|
|
if (angle < 0.0f) {
|
|
ed_loop_flip = !ed_loop_flip;
|
|
}
|
|
|
|
/* if its closed, we only need 1 loop */
|
|
for (j = ed_loop_closed; j < 2; j++) {
|
|
// printf("Ordering Side J %i\n", j);
|
|
|
|
screwvert_iter_init(<_iter, vert_connect, v_best, j);
|
|
// printf("\n\nStarting - Loop\n");
|
|
lt_iter.v_poin->flag = 1; /* so a non loop will traverse the other side */
|
|
|
|
/* If this is the vert off the best vert and
|
|
* the best vert has 2 edges connected too it
|
|
* then swap the flip direction */
|
|
if (j == 1 && SV_IS_VALID(vc_tmp->v[0]) && SV_IS_VALID(vc_tmp->v[1])) {
|
|
ed_loop_flip = !ed_loop_flip;
|
|
}
|
|
|
|
while (lt_iter.v_poin && lt_iter.v_poin->flag != 2) {
|
|
// printf("\tOrdering Vert V %i\n", lt_iter.v);
|
|
|
|
lt_iter.v_poin->flag = 2;
|
|
if (lt_iter.e) {
|
|
if (lt_iter.v == lt_iter.e->v1) {
|
|
if (ed_loop_flip == 0) {
|
|
// printf("\t\t\tFlipping 0\n");
|
|
SWAP(uint, lt_iter.e->v1, lt_iter.e->v2);
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\t\tFlipping Not 0\n");
|
|
}
|
|
#endif
|
|
}
|
|
else if (lt_iter.v == lt_iter.e->v2) {
|
|
if (ed_loop_flip == 1) {
|
|
// printf("\t\t\tFlipping 1\n");
|
|
SWAP(uint, lt_iter.e->v1, lt_iter.e->v2);
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\t\tFlipping Not 1\n");
|
|
}
|
|
#endif
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\tIncorrect edge topology");
|
|
}
|
|
#endif
|
|
}
|
|
#if 0
|
|
else {
|
|
printf("\t\tNo Edge at this point\n");
|
|
}
|
|
#endif
|
|
screwvert_iter_step(<_iter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
mv_orig = mvert_orig;
|
|
mv_new = mvert_new;
|
|
|
|
for (i = 0; i < totvert; i++, mv_new++, mv_orig++) {
|
|
copy_v3_v3(mv_new->co, mv_orig->co);
|
|
}
|
|
}
|
|
/* done with edge connectivity based normal flipping */
|
|
|
|
/* Add Faces */
|
|
for (step = 1; step < step_tot; step++) {
|
|
const uint varray_stride = totvert * step;
|
|
float step_angle;
|
|
float mat[4][4];
|
|
/* Rotation Matrix */
|
|
step_angle = (angle / (float)(step_tot - (!close))) * (float)step;
|
|
|
|
if (ob_axis != NULL) {
|
|
axis_angle_normalized_to_mat3(mat3, axis_vec, step_angle);
|
|
}
|
|
else {
|
|
axis_angle_to_mat3_single(mat3, axis_char, step_angle);
|
|
}
|
|
copy_m4_m3(mat, mat3);
|
|
|
|
if (screw_ofs) {
|
|
madd_v3_v3fl(mat[3], axis_vec, screw_ofs * ((float)step / (float)(step_tot - 1)));
|
|
}
|
|
|
|
/* copy a slice */
|
|
CustomData_copy_data(&mesh->vdata, &result->vdata, 0, (int)varray_stride, (int)totvert);
|
|
|
|
mv_new_base = mvert_new;
|
|
mv_new = &mvert_new[varray_stride]; /* advance to the next slice */
|
|
|
|
for (j = 0; j < totvert; j++, mv_new_base++, mv_new++) {
|
|
/* set location */
|
|
copy_v3_v3(mv_new->co, mv_new_base->co);
|
|
|
|
/* only need to set these if using non cleared memory */
|
|
// mv_new->mat_nr = mv_new->flag = 0;
|
|
|
|
if (ob_axis != NULL) {
|
|
sub_v3_v3(mv_new->co, mtx_tx[3]);
|
|
|
|
mul_m4_v3(mat, mv_new->co);
|
|
|
|
add_v3_v3(mv_new->co, mtx_tx[3]);
|
|
}
|
|
else {
|
|
mul_m4_v3(mat, mv_new->co);
|
|
}
|
|
|
|
/* add the new edge */
|
|
med_new->v1 = varray_stride + j;
|
|
med_new->v2 = med_new->v1 - totvert;
|
|
med_new->flag = ME_EDGEDRAW | ME_EDGERENDER;
|
|
if (!BLI_BITMAP_TEST(vert_tag, j)) {
|
|
med_new->flag |= ME_LOOSEEDGE;
|
|
}
|
|
med_new++;
|
|
}
|
|
}
|
|
|
|
/* we can avoid if using vert alloc trick */
|
|
if (vert_connect) {
|
|
MEM_freeN(vert_connect);
|
|
vert_connect = NULL;
|
|
}
|
|
|
|
if (close) {
|
|
/* last loop of edges, previous loop doesn't account for the last set of edges */
|
|
const uint varray_stride = (step_tot - 1) * totvert;
|
|
|
|
for (i = 0; i < totvert; i++) {
|
|
med_new->v1 = i;
|
|
med_new->v2 = varray_stride + i;
|
|
med_new->flag = ME_EDGEDRAW | ME_EDGERENDER;
|
|
if (!BLI_BITMAP_TEST(vert_tag, i)) {
|
|
med_new->flag |= ME_LOOSEEDGE;
|
|
}
|
|
med_new++;
|
|
}
|
|
}
|
|
|
|
mp_new = mpoly_new;
|
|
ml_new = mloop_new;
|
|
med_new_firstloop = medge_new;
|
|
|
|
/* more of an offset in this case */
|
|
edge_offset = totedge + (totvert * (step_tot - (close ? 0 : 1)));
|
|
|
|
const int *src_material_index = BKE_mesh_material_indices(mesh);
|
|
int *dst_material_index = BKE_mesh_material_indices_for_write(result);
|
|
|
|
for (i = 0; i < totedge; i++, med_new_firstloop++) {
|
|
const uint step_last = step_tot - (close ? 1 : 2);
|
|
const uint mpoly_index_orig = totpoly ? edge_poly_map[i] : UINT_MAX;
|
|
const bool has_mpoly_orig = (mpoly_index_orig != UINT_MAX);
|
|
float uv_v_offset_a, uv_v_offset_b;
|
|
|
|
const uint mloop_index_orig[2] = {
|
|
vert_loop_map ? vert_loop_map[medge_new[i].v1] : UINT_MAX,
|
|
vert_loop_map ? vert_loop_map[medge_new[i].v2] : UINT_MAX,
|
|
};
|
|
const bool has_mloop_orig = mloop_index_orig[0] != UINT_MAX;
|
|
|
|
int mat_nr;
|
|
|
|
/* for each edge, make a cylinder of quads */
|
|
i1 = med_new_firstloop->v1;
|
|
i2 = med_new_firstloop->v2;
|
|
|
|
if (has_mpoly_orig) {
|
|
mat_nr = src_material_index == NULL ? 0 : src_material_index[mpoly_index_orig];
|
|
}
|
|
else {
|
|
mat_nr = 0;
|
|
}
|
|
|
|
if (has_mloop_orig == false && mloopuv_layers_tot) {
|
|
uv_v_offset_a = dist_signed_to_plane_v3(mvert_new[medge_new[i].v1].co, uv_axis_plane);
|
|
uv_v_offset_b = dist_signed_to_plane_v3(mvert_new[medge_new[i].v2].co, uv_axis_plane);
|
|
|
|
if (ltmd->flag & MOD_SCREW_UV_STRETCH_V) {
|
|
uv_v_offset_a = (uv_v_offset_a - uv_v_minmax[0]) * uv_v_range_inv;
|
|
uv_v_offset_b = (uv_v_offset_b - uv_v_minmax[0]) * uv_v_range_inv;
|
|
}
|
|
}
|
|
|
|
for (step = 0; step <= step_last; step++) {
|
|
|
|
/* Polygon */
|
|
if (has_mpoly_orig) {
|
|
CustomData_copy_data(
|
|
&mesh->pdata, &result->pdata, (int)mpoly_index_orig, (int)mpoly_index, 1);
|
|
origindex[mpoly_index] = (int)mpoly_index_orig;
|
|
}
|
|
else {
|
|
origindex[mpoly_index] = ORIGINDEX_NONE;
|
|
dst_material_index[mpoly_index] = mat_nr;
|
|
mp_new->flag = mpoly_flag;
|
|
}
|
|
mp_new->loopstart = mpoly_index * 4;
|
|
mp_new->totloop = 4;
|
|
|
|
/* Loop-Custom-Data */
|
|
if (has_mloop_orig) {
|
|
int l_index = (int)(ml_new - mloop_new);
|
|
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[0], l_index + 0, 1);
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[1], l_index + 1, 1);
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[1], l_index + 2, 1);
|
|
CustomData_copy_data(
|
|
&mesh->ldata, &result->ldata, (int)mloop_index_orig[0], l_index + 3, 1);
|
|
|
|
if (mloopuv_layers_tot) {
|
|
uint uv_lay;
|
|
const float uv_u_offset_a = (float)(step)*uv_u_scale;
|
|
const float uv_u_offset_b = (float)(step + 1) * uv_u_scale;
|
|
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
|
|
MLoopUV *mluv = &mloopuv_layers[uv_lay][l_index];
|
|
|
|
mluv[quad_ord[0]].uv[0] += uv_u_offset_a;
|
|
mluv[quad_ord[1]].uv[0] += uv_u_offset_a;
|
|
mluv[quad_ord[2]].uv[0] += uv_u_offset_b;
|
|
mluv[quad_ord[3]].uv[0] += uv_u_offset_b;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (mloopuv_layers_tot) {
|
|
int l_index = (int)(ml_new - mloop_new);
|
|
|
|
uint uv_lay;
|
|
const float uv_u_offset_a = (float)(step)*uv_u_scale;
|
|
const float uv_u_offset_b = (float)(step + 1) * uv_u_scale;
|
|
for (uv_lay = 0; uv_lay < mloopuv_layers_tot; uv_lay++) {
|
|
MLoopUV *mluv = &mloopuv_layers[uv_lay][l_index];
|
|
|
|
copy_v2_fl2(mluv[quad_ord[0]].uv, uv_u_offset_a, uv_v_offset_a);
|
|
copy_v2_fl2(mluv[quad_ord[1]].uv, uv_u_offset_a, uv_v_offset_b);
|
|
copy_v2_fl2(mluv[quad_ord[2]].uv, uv_u_offset_b, uv_v_offset_b);
|
|
copy_v2_fl2(mluv[quad_ord[3]].uv, uv_u_offset_b, uv_v_offset_a);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Loop-Data */
|
|
if (!(close && step == step_last)) {
|
|
/* regular segments */
|
|
ml_new[quad_ord[0]].v = i1;
|
|
ml_new[quad_ord[1]].v = i2;
|
|
ml_new[quad_ord[2]].v = i2 + totvert;
|
|
ml_new[quad_ord[3]].v = i1 + totvert;
|
|
|
|
ml_new[quad_ord_ofs[0]].e = step == 0 ? i :
|
|
(edge_offset + step + (i * (step_tot - 1))) - 1;
|
|
ml_new[quad_ord_ofs[1]].e = totedge + i2;
|
|
ml_new[quad_ord_ofs[2]].e = edge_offset + step + (i * (step_tot - 1));
|
|
ml_new[quad_ord_ofs[3]].e = totedge + i1;
|
|
|
|
/* new vertical edge */
|
|
if (step) { /* The first set is already done */
|
|
med_new->v1 = i1;
|
|
med_new->v2 = i2;
|
|
med_new->flag = med_new_firstloop->flag;
|
|
med_new++;
|
|
}
|
|
i1 += totvert;
|
|
i2 += totvert;
|
|
}
|
|
else {
|
|
/* last segment */
|
|
ml_new[quad_ord[0]].v = i1;
|
|
ml_new[quad_ord[1]].v = i2;
|
|
ml_new[quad_ord[2]].v = med_new_firstloop->v2;
|
|
ml_new[quad_ord[3]].v = med_new_firstloop->v1;
|
|
|
|
ml_new[quad_ord_ofs[0]].e = (edge_offset + step + (i * (step_tot - 1))) - 1;
|
|
ml_new[quad_ord_ofs[1]].e = totedge + i2;
|
|
ml_new[quad_ord_ofs[2]].e = i;
|
|
ml_new[quad_ord_ofs[3]].e = totedge + i1;
|
|
}
|
|
|
|
mp_new++;
|
|
ml_new += 4;
|
|
mpoly_index++;
|
|
}
|
|
|
|
/* new vertical edge */
|
|
med_new->v1 = i1;
|
|
med_new->v2 = i2;
|
|
med_new->flag = med_new_firstloop->flag & ~ME_LOOSEEDGE;
|
|
med_new++;
|
|
}
|
|
|
|
/* validate loop edges */
|
|
#if 0
|
|
{
|
|
uint i = 0;
|
|
printf("\n");
|
|
for (; i < maxPolys * 4; i += 4) {
|
|
uint ii;
|
|
ml_new = mloop_new + i;
|
|
ii = findEd(medge_new, maxEdges, ml_new[0].v, ml_new[1].v);
|
|
printf("%d %d -- ", ii, ml_new[0].e);
|
|
ml_new[0].e = ii;
|
|
|
|
ii = findEd(medge_new, maxEdges, ml_new[1].v, ml_new[2].v);
|
|
printf("%d %d -- ", ii, ml_new[1].e);
|
|
ml_new[1].e = ii;
|
|
|
|
ii = findEd(medge_new, maxEdges, ml_new[2].v, ml_new[3].v);
|
|
printf("%d %d -- ", ii, ml_new[2].e);
|
|
ml_new[2].e = ii;
|
|
|
|
ii = findEd(medge_new, maxEdges, ml_new[3].v, ml_new[0].v);
|
|
printf("%d %d\n", ii, ml_new[3].e);
|
|
ml_new[3].e = ii;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
MEM_freeN(vert_tag);
|
|
|
|
if (edge_poly_map) {
|
|
MEM_freeN(edge_poly_map);
|
|
}
|
|
|
|
if (vert_loop_map) {
|
|
MEM_freeN(vert_loop_map);
|
|
}
|
|
|
|
if (do_remove_doubles) {
|
|
result = mesh_remove_doubles_on_axis(result,
|
|
mvert_new,
|
|
totvert,
|
|
step_tot,
|
|
axis_vec,
|
|
ob_axis != NULL ? mtx_tx[3] : NULL,
|
|
ltmd->merge_dist);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void updateDepsgraph(ModifierData *md, const ModifierUpdateDepsgraphContext *ctx)
|
|
{
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
if (ltmd->ob_axis != NULL) {
|
|
DEG_add_object_relation(ctx->node, ltmd->ob_axis, DEG_OB_COMP_TRANSFORM, "Screw Modifier");
|
|
DEG_add_depends_on_transform_relation(ctx->node, "Screw Modifier");
|
|
}
|
|
}
|
|
|
|
static void foreachIDLink(ModifierData *md, Object *ob, IDWalkFunc walk, void *userData)
|
|
{
|
|
ScrewModifierData *ltmd = (ScrewModifierData *)md;
|
|
|
|
walk(userData, ob, (ID **)<md->ob_axis, IDWALK_CB_NOP);
|
|
}
|
|
|
|
static void panel_draw(const bContext *UNUSED(C), Panel *panel)
|
|
{
|
|
uiLayout *sub, *row, *col;
|
|
uiLayout *layout = panel->layout;
|
|
int toggles_flag = UI_ITEM_R_TOGGLE | UI_ITEM_R_FORCE_BLANK_DECORATE;
|
|
|
|
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
|
|
|
|
PointerRNA screw_obj_ptr = RNA_pointer_get(ptr, "object");
|
|
|
|
uiLayoutSetPropSep(layout, true);
|
|
|
|
col = uiLayoutColumn(layout, false);
|
|
uiItemR(col, ptr, "angle", 0, NULL, ICON_NONE);
|
|
row = uiLayoutRow(col, false);
|
|
uiLayoutSetActive(row,
|
|
RNA_pointer_is_null(&screw_obj_ptr) ||
|
|
!RNA_boolean_get(ptr, "use_object_screw_offset"));
|
|
uiItemR(row, ptr, "screw_offset", 0, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "iterations", 0, NULL, ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
col = uiLayoutColumn(layout, false);
|
|
row = uiLayoutRow(col, false);
|
|
uiItemR(row, ptr, "axis", UI_ITEM_R_EXPAND, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "object", 0, IFACE_("Axis Object"), ICON_NONE);
|
|
sub = uiLayoutColumn(col, false);
|
|
uiLayoutSetActive(sub, !RNA_pointer_is_null(&screw_obj_ptr));
|
|
uiItemR(sub, ptr, "use_object_screw_offset", 0, NULL, ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
|
|
col = uiLayoutColumn(layout, true);
|
|
uiItemR(col, ptr, "steps", 0, IFACE_("Steps Viewport"), ICON_NONE);
|
|
uiItemR(col, ptr, "render_steps", 0, IFACE_("Render"), ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
|
|
row = uiLayoutRowWithHeading(layout, true, IFACE_("Merge"));
|
|
uiItemR(row, ptr, "use_merge_vertices", 0, "", ICON_NONE);
|
|
sub = uiLayoutRow(row, true);
|
|
uiLayoutSetActive(sub, RNA_boolean_get(ptr, "use_merge_vertices"));
|
|
uiItemR(sub, ptr, "merge_threshold", 0, "", ICON_NONE);
|
|
|
|
uiItemS(layout);
|
|
|
|
row = uiLayoutRowWithHeading(layout, true, IFACE_("Stretch UVs"));
|
|
uiItemR(row, ptr, "use_stretch_u", toggles_flag, IFACE_("U"), ICON_NONE);
|
|
uiItemR(row, ptr, "use_stretch_v", toggles_flag, IFACE_("V"), ICON_NONE);
|
|
|
|
modifier_panel_end(layout, ptr);
|
|
}
|
|
|
|
static void normals_panel_draw(const bContext *UNUSED(C), Panel *panel)
|
|
{
|
|
uiLayout *col;
|
|
uiLayout *layout = panel->layout;
|
|
|
|
PointerRNA *ptr = modifier_panel_get_property_pointers(panel, NULL);
|
|
|
|
uiLayoutSetPropSep(layout, true);
|
|
|
|
col = uiLayoutColumn(layout, false);
|
|
uiItemR(col, ptr, "use_smooth_shade", 0, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "use_normal_calculate", 0, NULL, ICON_NONE);
|
|
uiItemR(col, ptr, "use_normal_flip", 0, NULL, ICON_NONE);
|
|
}
|
|
|
|
static void panelRegister(ARegionType *region_type)
|
|
{
|
|
PanelType *panel_type = modifier_panel_register(region_type, eModifierType_Screw, panel_draw);
|
|
modifier_subpanel_register(
|
|
region_type, "normals", "Normals", NULL, normals_panel_draw, panel_type);
|
|
}
|
|
|
|
ModifierTypeInfo modifierType_Screw = {
|
|
/* name */ N_("Screw"),
|
|
/* structName */ "ScrewModifierData",
|
|
/* structSize */ sizeof(ScrewModifierData),
|
|
/* srna */ &RNA_ScrewModifier,
|
|
/* type */ eModifierTypeType_Constructive,
|
|
|
|
/* flags */ eModifierTypeFlag_AcceptsMesh | eModifierTypeFlag_AcceptsCVs |
|
|
eModifierTypeFlag_SupportsEditmode | eModifierTypeFlag_EnableInEditmode,
|
|
/* icon */ ICON_MOD_SCREW,
|
|
|
|
/* copyData */ BKE_modifier_copydata_generic,
|
|
|
|
/* deformVerts */ NULL,
|
|
/* deformMatrices */ NULL,
|
|
/* deformVertsEM */ NULL,
|
|
/* deformMatricesEM */ NULL,
|
|
/* modifyMesh */ modifyMesh,
|
|
/* modifyGeometrySet */ NULL,
|
|
|
|
/* initData */ initData,
|
|
/* requiredDataMask */ NULL,
|
|
/* freeData */ NULL,
|
|
/* isDisabled */ NULL,
|
|
/* updateDepsgraph */ updateDepsgraph,
|
|
/* dependsOnTime */ NULL,
|
|
/* dependsOnNormals */ NULL,
|
|
/* foreachIDLink */ foreachIDLink,
|
|
/* foreachTexLink */ NULL,
|
|
/* freeRuntimeData */ NULL,
|
|
/* panelRegister */ panelRegister,
|
|
/* blendWrite */ NULL,
|
|
/* blendRead */ NULL,
|
|
};
|