This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/io/collada/BCAnimationCurve.cpp
Julian Eisel 585dd63c6e Cleanup: Move RNA path functions into own C++ file
NOTE: This is committed to the 3.3 branch as part of D15606, which we
decided should go to this release still (by Bastien, Dalai and me). That
is because these are important usability fixes/improvements to have for
the LTS release.

Adds `rna_path.cc` and `RNA_path.h`.

`rna_access.c` is a quite big file, which makes it rather hard and
inconvenient to navigate. RNA path functions form a nicely coherent unit
that can stand well on it's own, so it makes sense to split them off to
mitigate the problem. Moreover, I was looking into refactoring the quite
convoluted/overloaded `rna_path_parse()`, and found that some C++
features may help greatly with that. So having that code compile in C++
would be helpful to attempt that.

Differential Revision: https://developer.blender.org/D15540

Reviewed by: Brecht Van Lommel, Campbell Barton, Bastien Montagne
2022-08-04 16:13:00 +02:00

682 lines
17 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2008 Blender Foundation. All rights reserved. */
#include "RNA_path.h"
#include "BCAnimationCurve.h"
BCAnimationCurve::BCAnimationCurve()
{
this->curve_key.set_object_type(BC_ANIMATION_TYPE_OBJECT);
this->fcurve = nullptr;
this->curve_is_local_copy = false;
}
BCAnimationCurve::BCAnimationCurve(const BCAnimationCurve &other)
{
this->min = other.min;
this->max = other.max;
this->fcurve = other.fcurve;
this->curve_key = other.curve_key;
this->curve_is_local_copy = false;
this->id_ptr = other.id_ptr;
/* The fcurve of the new instance is a copy and can be modified */
get_edit_fcurve();
}
BCAnimationCurve::BCAnimationCurve(BCCurveKey key, Object *ob, FCurve *fcu)
{
this->min = 0;
this->max = 0;
this->curve_key = key;
this->fcurve = fcu;
this->curve_is_local_copy = false;
init_pointer_rna(ob);
}
BCAnimationCurve::BCAnimationCurve(const BCCurveKey &key, Object *ob)
{
this->curve_key = key;
this->fcurve = nullptr;
this->curve_is_local_copy = false;
init_pointer_rna(ob);
}
void BCAnimationCurve::init_pointer_rna(Object *ob)
{
switch (this->curve_key.get_animation_type()) {
case BC_ANIMATION_TYPE_BONE: {
bArmature *arm = (bArmature *)ob->data;
RNA_id_pointer_create(&arm->id, &id_ptr);
} break;
case BC_ANIMATION_TYPE_OBJECT: {
RNA_id_pointer_create(&ob->id, &id_ptr);
} break;
case BC_ANIMATION_TYPE_MATERIAL: {
Material *ma = BKE_object_material_get(ob, curve_key.get_subindex() + 1);
RNA_id_pointer_create(&ma->id, &id_ptr);
} break;
case BC_ANIMATION_TYPE_CAMERA: {
Camera *camera = (Camera *)ob->data;
RNA_id_pointer_create(&camera->id, &id_ptr);
} break;
case BC_ANIMATION_TYPE_LIGHT: {
Light *lamp = (Light *)ob->data;
RNA_id_pointer_create(&lamp->id, &id_ptr);
} break;
default:
fprintf(
stderr, "BC_animation_curve_type %d not supported", this->curve_key.get_array_index());
break;
}
}
void BCAnimationCurve::delete_fcurve(FCurve *fcu)
{
BKE_fcurve_free(fcu);
}
FCurve *BCAnimationCurve::create_fcurve(int array_index, const char *rna_path)
{
FCurve *fcu = BKE_fcurve_create();
fcu->flag = (FCURVE_VISIBLE | FCURVE_SELECTED);
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
fcu->array_index = array_index;
return fcu;
}
void BCAnimationCurve::create_bezt(float frame, float output)
{
FCurve *fcu = get_edit_fcurve();
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
bez.vec[1][0] = frame;
bez.vec[1][1] = output;
bez.ipo = U.ipo_new; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
BKE_fcurve_handles_recalc(fcu);
}
BCAnimationCurve::~BCAnimationCurve()
{
if (curve_is_local_copy && fcurve) {
// fprintf(stderr, "removed fcurve %s\n", fcurve->rna_path);
delete_fcurve(fcurve);
this->fcurve = nullptr;
}
}
bool BCAnimationCurve::is_of_animation_type(BC_animation_type type) const
{
return curve_key.get_animation_type() == type;
}
std::string BCAnimationCurve::get_channel_target() const
{
const std::string path = curve_key.get_path();
if (bc_startswith(path, "pose.bones")) {
return bc_string_after(path, "pose.bones");
}
return bc_string_after(path, ".");
}
std::string BCAnimationCurve::get_channel_type() const
{
const std::string channel = get_channel_target();
return bc_string_after(channel, ".");
}
std::string BCAnimationCurve::get_channel_posebone() const
{
const std::string channel = get_channel_target();
std::string pose_bone_name = bc_string_before(channel, ".");
if (pose_bone_name == channel) {
pose_bone_name = "";
}
else {
pose_bone_name = bc_string_after(pose_bone_name, "\"[");
pose_bone_name = bc_string_before(pose_bone_name, "]\"");
}
return pose_bone_name;
}
std::string BCAnimationCurve::get_animation_name(Object *ob) const
{
std::string name;
switch (curve_key.get_animation_type()) {
case BC_ANIMATION_TYPE_OBJECT: {
name = id_name(ob);
} break;
case BC_ANIMATION_TYPE_BONE: {
if (fcurve == nullptr || fcurve->rna_path == nullptr) {
name = "";
}
else {
char boneName[MAXBONENAME];
if (BLI_str_quoted_substr(fcurve->rna_path, "pose.bones[", boneName, sizeof(boneName))) {
name = id_name(ob) + "_" + std::string(boneName);
}
else {
name = "";
}
}
} break;
case BC_ANIMATION_TYPE_CAMERA: {
Camera *camera = (Camera *)ob->data;
name = id_name(ob) + "-" + id_name(camera) + "-camera";
} break;
case BC_ANIMATION_TYPE_LIGHT: {
Light *lamp = (Light *)ob->data;
name = id_name(ob) + "-" + id_name(lamp) + "-light";
} break;
case BC_ANIMATION_TYPE_MATERIAL: {
Material *ma = BKE_object_material_get(ob, this->curve_key.get_subindex() + 1);
name = id_name(ob) + "-" + id_name(ma) + "-material";
} break;
default: {
name = "";
}
}
return name;
}
int BCAnimationCurve::get_channel_index() const
{
return curve_key.get_array_index();
}
int BCAnimationCurve::get_subindex() const
{
return curve_key.get_subindex();
}
std::string BCAnimationCurve::get_rna_path() const
{
return curve_key.get_path();
}
int BCAnimationCurve::sample_count() const
{
if (fcurve == nullptr) {
return 0;
}
return fcurve->totvert;
}
int BCAnimationCurve::closest_index_above(const float sample_frame, const int start_at) const
{
if (fcurve == nullptr) {
return -1;
}
const int cframe = fcurve->bezt[start_at].vec[1][0]; /* inaccurate! */
if (fabs(cframe - sample_frame) < 0.00001) {
return start_at;
}
return (fcurve->totvert > start_at + 1) ? start_at + 1 : start_at;
}
int BCAnimationCurve::closest_index_below(const float sample_frame) const
{
if (fcurve == nullptr) {
return -1;
}
float lower_frame = sample_frame;
float upper_frame = sample_frame;
int lower_index = 0;
int upper_index = 0;
for (int fcu_index = 0; fcu_index < fcurve->totvert; fcu_index++) {
upper_index = fcu_index;
const int cframe = fcurve->bezt[fcu_index].vec[1][0]; /* inaccurate! */
if (cframe <= sample_frame) {
lower_frame = cframe;
lower_index = fcu_index;
}
if (cframe >= sample_frame) {
upper_frame = cframe;
break;
}
}
if (lower_index == upper_index) {
return lower_index;
}
const float fraction = float(sample_frame - lower_frame) / (upper_frame - lower_frame);
return (fraction < 0.5) ? lower_index : upper_index;
}
int BCAnimationCurve::get_interpolation_type(float sample_frame) const
{
const int index = closest_index_below(sample_frame);
if (index < 0) {
return BEZT_IPO_BEZ;
}
return fcurve->bezt[index].ipo;
}
FCurve *BCAnimationCurve::get_fcurve() const
{
return fcurve;
}
FCurve *BCAnimationCurve::get_edit_fcurve()
{
if (!curve_is_local_copy) {
const int index = curve_key.get_array_index();
const std::string &path = curve_key.get_path();
fcurve = create_fcurve(index, path.c_str());
/* Caution here:
* Replacing the pointer here is OK only because the original value
* of FCurve was a const pointer into Blender territory. We do not
* touch that! We use the local copy to prepare data for export. */
curve_is_local_copy = true;
}
return fcurve;
}
void BCAnimationCurve::clean_handles()
{
if (fcurve == nullptr) {
fcurve = get_edit_fcurve();
}
/* Keep old bezt data for copy). */
BezTriple *old_bezts = fcurve->bezt;
int totvert = fcurve->totvert;
fcurve->bezt = nullptr;
fcurve->totvert = 0;
for (int i = 0; i < totvert; i++) {
BezTriple *bezt = &old_bezts[i];
float x = bezt->vec[1][0];
float y = bezt->vec[1][1];
insert_vert_fcurve(fcurve, x, y, (eBezTriple_KeyframeType)BEZKEYTYPE(bezt), INSERTKEY_NOFLAGS);
BezTriple *lastb = fcurve->bezt + (fcurve->totvert - 1);
lastb->f1 = lastb->f2 = lastb->f3 = 0;
}
/* now free the memory used by the old BezTriples */
if (old_bezts) {
MEM_freeN(old_bezts);
}
}
bool BCAnimationCurve::is_transform_curve() const
{
std::string channel_type = this->get_channel_type();
return (is_rotation_curve() || channel_type == "scale" || channel_type == "location");
}
bool BCAnimationCurve::is_rotation_curve() const
{
std::string channel_type = this->get_channel_type();
return (channel_type == "rotation" || channel_type == "rotation_euler" ||
channel_type == "rotation_quaternion");
}
float BCAnimationCurve::get_value(const float frame)
{
if (fcurve) {
return evaluate_fcurve(fcurve, frame);
}
return 0; /* TODO: handle case where neither sample nor fcu exist */
}
void BCAnimationCurve::update_range(float val)
{
if (val < min) {
min = val;
}
if (val > max) {
max = val;
}
}
void BCAnimationCurve::init_range(float val)
{
min = max = val;
}
void BCAnimationCurve::adjust_range(const int frame_index)
{
if (fcurve && fcurve->totvert > 1) {
const float eval = evaluate_fcurve(fcurve, frame_index);
int first_frame = fcurve->bezt[0].vec[1][0];
if (first_frame == frame_index) {
init_range(eval);
}
else {
update_range(eval);
}
}
}
void BCAnimationCurve::add_value(const float val, const int frame_index)
{
FCurve *fcu = get_edit_fcurve();
fcu->auto_smoothing = U.auto_smoothing_new;
insert_vert_fcurve(fcu, frame_index, val, BEZT_KEYTYPE_KEYFRAME, INSERTKEY_NOFLAGS);
if (fcu->totvert == 1) {
init_range(val);
}
else {
update_range(val);
}
}
bool BCAnimationCurve::add_value_from_matrix(const BCSample &sample, const int frame_index)
{
int array_index = curve_key.get_array_index();
/* transformation curves are fed directly from the transformation matrix
* to resolve parent inverse matrix issues with object hierarchies.
* Maybe this can be unified with the
*/
const std::string channel_target = get_channel_target();
float val = 0;
/* Pick the value from the sample according to the definition of the FCurve */
bool good = sample.get_value(channel_target, array_index, &val);
if (good) {
add_value(val, frame_index);
}
return good;
}
bool BCAnimationCurve::add_value_from_rna(const int frame_index)
{
PointerRNA ptr;
PropertyRNA *prop;
float value = 0.0f;
int array_index = curve_key.get_array_index();
const std::string full_path = curve_key.get_full_path();
/* get property to read from, and get value as appropriate */
bool path_resolved = RNA_path_resolve_full(
&id_ptr, full_path.c_str(), &ptr, &prop, &array_index);
if (!path_resolved && array_index == 0) {
const std::string rna_path = curve_key.get_path();
path_resolved = RNA_path_resolve_full(&id_ptr, rna_path.c_str(), &ptr, &prop, &array_index);
}
if (path_resolved) {
bool is_array = RNA_property_array_check(prop);
if (is_array) {
/* array */
if ((array_index >= 0) && (array_index < RNA_property_array_length(&ptr, prop))) {
switch (RNA_property_type(prop)) {
case PROP_BOOLEAN:
value = (float)RNA_property_boolean_get_index(&ptr, prop, array_index);
break;
case PROP_INT:
value = (float)RNA_property_int_get_index(&ptr, prop, array_index);
break;
case PROP_FLOAT:
value = RNA_property_float_get_index(&ptr, prop, array_index);
break;
default:
break;
}
}
else {
fprintf(stderr,
"Out of Bounds while reading data for Curve %s\n",
curve_key.get_full_path().c_str());
return false;
}
}
else {
/* not an array */
switch (RNA_property_type(prop)) {
case PROP_BOOLEAN:
value = (float)RNA_property_boolean_get(&ptr, prop);
break;
case PROP_INT:
value = (float)RNA_property_int_get(&ptr, prop);
break;
case PROP_FLOAT:
value = RNA_property_float_get(&ptr, prop);
break;
case PROP_ENUM:
value = (float)RNA_property_enum_get(&ptr, prop);
break;
default:
fprintf(stderr,
"property type %d not supported for Curve %s\n",
RNA_property_type(prop),
curve_key.get_full_path().c_str());
return false;
break;
}
}
}
else {
/* path couldn't be resolved */
fprintf(stderr, "Path not recognized for Curve %s\n", curve_key.get_full_path().c_str());
return false;
}
add_value(value, frame_index);
return true;
}
void BCAnimationCurve::get_value_map(BCValueMap &value_map)
{
value_map.clear();
if (fcurve == nullptr) {
return;
}
for (int i = 0; i < fcurve->totvert; i++) {
const float frame = fcurve->bezt[i].vec[1][0];
const float val = fcurve->bezt[i].vec[1][1];
value_map[frame] = val;
}
}
void BCAnimationCurve::get_frames(BCFrames &frames) const
{
frames.clear();
if (fcurve) {
for (int i = 0; i < fcurve->totvert; i++) {
const float val = fcurve->bezt[i].vec[1][0];
frames.push_back(val);
}
}
}
void BCAnimationCurve::get_values(BCValues &values) const
{
values.clear();
if (fcurve) {
for (int i = 0; i < fcurve->totvert; i++) {
const float val = fcurve->bezt[i].vec[1][1];
values.push_back(val);
}
}
}
bool BCAnimationCurve::is_animated()
{
static float MIN_DISTANCE = 0.00001;
return fabs(max - min) > MIN_DISTANCE;
}
bool BCAnimationCurve::is_keyframe(int frame)
{
if (this->fcurve == nullptr) {
return false;
}
for (int i = 0; i < fcurve->totvert; i++) {
const int cframe = nearbyint(fcurve->bezt[i].vec[1][0]);
if (cframe == frame) {
return true;
}
if (cframe > frame) {
break;
}
}
return false;
}
/* Needed for adding a BCAnimationCurve into a BCAnimationCurveSet */
inline bool operator<(const BCAnimationCurve &lhs, const BCAnimationCurve &rhs)
{
std::string lhtgt = lhs.get_channel_target();
std::string rhtgt = rhs.get_channel_target();
if (lhtgt == rhtgt) {
const int lha = lhs.get_channel_index();
const int rha = rhs.get_channel_index();
return lha < rha;
}
return lhtgt < rhtgt;
}
BCCurveKey::BCCurveKey()
{
this->key_type = BC_ANIMATION_TYPE_OBJECT;
this->rna_path = "";
this->curve_array_index = 0;
this->curve_subindex = -1;
}
BCCurveKey::BCCurveKey(const BC_animation_type type,
const std::string path,
const int array_index,
const int subindex)
{
this->key_type = type;
this->rna_path = path;
this->curve_array_index = array_index;
this->curve_subindex = subindex;
}
void BCCurveKey::operator=(const BCCurveKey &other)
{
this->key_type = other.key_type;
this->rna_path = other.rna_path;
this->curve_array_index = other.curve_array_index;
this->curve_subindex = other.curve_subindex;
}
std::string BCCurveKey::get_full_path() const
{
return this->rna_path + '[' + std::to_string(this->curve_array_index) + ']';
}
std::string BCCurveKey::get_path() const
{
return this->rna_path;
}
int BCCurveKey::get_array_index() const
{
return this->curve_array_index;
}
int BCCurveKey::get_subindex() const
{
return this->curve_subindex;
}
void BCCurveKey::set_object_type(BC_animation_type object_type)
{
this->key_type = object_type;
}
BC_animation_type BCCurveKey::get_animation_type() const
{
return this->key_type;
}
bool BCCurveKey::operator<(const BCCurveKey &other) const
{
/* needed for using this class as key in maps and sets */
if (this->key_type != other.key_type) {
return this->key_type < other.key_type;
}
if (this->curve_subindex != other.curve_subindex) {
return this->curve_subindex < other.curve_subindex;
}
if (this->rna_path != other.rna_path) {
return this->rna_path < other.rna_path;
}
return this->curve_array_index < other.curve_array_index;
}
BCBezTriple::BCBezTriple(BezTriple &bezt) : bezt(bezt)
{
}
float BCBezTriple::get_frame() const
{
return bezt.vec[1][0];
}
float BCBezTriple::get_time(Scene *scene) const
{
return FRA2TIME(bezt.vec[1][0]);
}
float BCBezTriple::get_value() const
{
return bezt.vec[1][1];
}
float BCBezTriple::get_angle() const
{
return RAD2DEGF(get_value());
}
void BCBezTriple::get_in_tangent(Scene *scene, float point[2], bool as_angle) const
{
get_tangent(scene, point, as_angle, 0);
}
void BCBezTriple::get_out_tangent(Scene *scene, float point[2], bool as_angle) const
{
get_tangent(scene, point, as_angle, 2);
}
void BCBezTriple::get_tangent(Scene *scene, float point[2], bool as_angle, int index) const
{
point[0] = FRA2TIME(bezt.vec[index][0]);
if (bezt.ipo != BEZT_IPO_BEZ) {
/* We're in a mixed interpolation scenario, set zero as it's irrelevant but value might contain
* unused data */
point[0] = 0;
point[1] = 0;
}
else if (as_angle) {
point[1] = RAD2DEGF(bezt.vec[index][1]);
}
else {
point[1] = bezt.vec[index][1];
}
}