This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/curve_eval.cc
Hans Goudey aa1ffc093c Fix T99884: Crash when converting to old curve type
The conversion from Curves to CurveEval used an incorrect type
for one of the builtin attributes. Also, an incorrect default was used
for reading the nurbs_weight attribute.
2022-07-21 19:44:06 -05:00

588 lines
19 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "BLI_array.hh"
#include "BLI_index_range.hh"
#include "BLI_listbase.h"
#include "BLI_map.hh"
#include "BLI_span.hh"
#include "BLI_string_ref.hh"
#include "BLI_task.hh"
#include "BLI_vector.hh"
#include "DNA_curve_types.h"
#include "BKE_anonymous_attribute.hh"
#include "BKE_curve.h"
#include "BKE_curves.hh"
#include "BKE_geometry_set.hh"
#include "BKE_spline.hh"
using blender::Array;
using blender::float3;
using blender::float4x4;
using blender::GVArray;
using blender::GVArraySpan;
using blender::IndexRange;
using blender::Map;
using blender::MutableSpan;
using blender::Span;
using blender::StringRefNull;
using blender::VArray;
using blender::VArraySpan;
using blender::Vector;
using blender::bke::AttributeIDRef;
using blender::bke::AttributeMetaData;
blender::Span<SplinePtr> CurveEval::splines() const
{
return splines_;
}
blender::MutableSpan<SplinePtr> CurveEval::splines()
{
return splines_;
}
bool CurveEval::has_spline_with_type(const CurveType type) const
{
for (const SplinePtr &spline : this->splines()) {
if (spline->type() == type) {
return true;
}
}
return false;
}
void CurveEval::resize(const int size)
{
splines_.resize(size);
attributes.reallocate(size);
}
void CurveEval::add_spline(SplinePtr spline)
{
splines_.append(std::move(spline));
}
void CurveEval::add_splines(MutableSpan<SplinePtr> splines)
{
for (SplinePtr &spline : splines) {
this->add_spline(std::move(spline));
}
}
void CurveEval::remove_splines(blender::IndexMask mask)
{
for (int i = mask.size() - 1; i >= 0; i--) {
splines_.remove_and_reorder(mask.indices()[i]);
}
}
void CurveEval::translate(const float3 &translation)
{
for (SplinePtr &spline : this->splines()) {
spline->translate(translation);
spline->mark_cache_invalid();
}
}
void CurveEval::transform(const float4x4 &matrix)
{
for (SplinePtr &spline : this->splines()) {
spline->transform(matrix);
}
}
bool CurveEval::bounds_min_max(float3 &min, float3 &max, const bool use_evaluated) const
{
bool have_minmax = false;
for (const SplinePtr &spline : this->splines()) {
if (spline->size()) {
spline->bounds_min_max(min, max, use_evaluated);
have_minmax = true;
}
}
return have_minmax;
}
float CurveEval::total_length() const
{
float length = 0.0f;
for (const SplinePtr &spline : this->splines()) {
length += spline->length();
}
return length;
}
int CurveEval::total_control_point_num() const
{
int count = 0;
for (const SplinePtr &spline : this->splines()) {
count += spline->size();
}
return count;
}
blender::Array<int> CurveEval::control_point_offsets() const
{
Array<int> offsets(splines_.size() + 1);
int offset = 0;
for (const int i : splines_.index_range()) {
offsets[i] = offset;
offset += splines_[i]->size();
}
offsets.last() = offset;
return offsets;
}
blender::Array<int> CurveEval::evaluated_point_offsets() const
{
Array<int> offsets(splines_.size() + 1);
int offset = 0;
for (const int i : splines_.index_range()) {
offsets[i] = offset;
offset += splines_[i]->evaluated_points_num();
}
offsets.last() = offset;
return offsets;
}
blender::Array<float> CurveEval::accumulated_spline_lengths() const
{
Array<float> spline_lengths(splines_.size() + 1);
float spline_length = 0.0f;
for (const int i : splines_.index_range()) {
spline_lengths[i] = spline_length;
spline_length += splines_[i]->length();
}
spline_lengths.last() = spline_length;
return spline_lengths;
}
void CurveEval::mark_cache_invalid()
{
for (SplinePtr &spline : splines_) {
spline->mark_cache_invalid();
}
}
static HandleType handle_type_from_dna_bezt(const eBezTriple_Handle dna_handle_type)
{
switch (dna_handle_type) {
case HD_FREE:
return BEZIER_HANDLE_FREE;
case HD_AUTO:
return BEZIER_HANDLE_AUTO;
case HD_VECT:
return BEZIER_HANDLE_VECTOR;
case HD_ALIGN:
return BEZIER_HANDLE_ALIGN;
case HD_AUTO_ANIM:
return BEZIER_HANDLE_AUTO;
case HD_ALIGN_DOUBLESIDE:
return BEZIER_HANDLE_ALIGN;
}
BLI_assert_unreachable();
return BEZIER_HANDLE_AUTO;
}
static NormalMode normal_mode_from_dna_curve(const int twist_mode)
{
switch (twist_mode) {
case CU_TWIST_Z_UP:
case CU_TWIST_TANGENT:
return NORMAL_MODE_Z_UP;
case CU_TWIST_MINIMUM:
return NORMAL_MODE_MINIMUM_TWIST;
}
BLI_assert_unreachable();
return NORMAL_MODE_MINIMUM_TWIST;
}
static KnotsMode knots_mode_from_dna_nurb(const short flag)
{
switch (flag & (CU_NURB_ENDPOINT | CU_NURB_BEZIER)) {
case CU_NURB_ENDPOINT:
return NURBS_KNOT_MODE_ENDPOINT;
case CU_NURB_BEZIER:
return NURBS_KNOT_MODE_BEZIER;
case CU_NURB_ENDPOINT | CU_NURB_BEZIER:
return NURBS_KNOT_MODE_ENDPOINT_BEZIER;
default:
return NURBS_KNOT_MODE_NORMAL;
}
BLI_assert_unreachable();
return NURBS_KNOT_MODE_NORMAL;
}
static SplinePtr spline_from_dna_bezier(const Nurb &nurb)
{
std::unique_ptr<BezierSpline> spline = std::make_unique<BezierSpline>();
spline->set_resolution(nurb.resolu);
spline->set_cyclic(nurb.flagu & CU_NURB_CYCLIC);
Span<const BezTriple> src_points{nurb.bezt, nurb.pntsu};
spline->resize(src_points.size());
MutableSpan<float3> positions = spline->positions();
MutableSpan<float3> handle_positions_left = spline->handle_positions_left(true);
MutableSpan<float3> handle_positions_right = spline->handle_positions_right(true);
MutableSpan<int8_t> handle_types_left = spline->handle_types_left();
MutableSpan<int8_t> handle_types_right = spline->handle_types_right();
MutableSpan<float> radii = spline->radii();
MutableSpan<float> tilts = spline->tilts();
blender::threading::parallel_for(src_points.index_range(), 2048, [&](IndexRange range) {
for (const int i : range) {
const BezTriple &bezt = src_points[i];
positions[i] = bezt.vec[1];
handle_positions_left[i] = bezt.vec[0];
handle_types_left[i] = handle_type_from_dna_bezt((eBezTriple_Handle)bezt.h1);
handle_positions_right[i] = bezt.vec[2];
handle_types_right[i] = handle_type_from_dna_bezt((eBezTriple_Handle)bezt.h2);
radii[i] = bezt.radius;
tilts[i] = bezt.tilt;
}
});
return spline;
}
static SplinePtr spline_from_dna_nurbs(const Nurb &nurb)
{
std::unique_ptr<NURBSpline> spline = std::make_unique<NURBSpline>();
spline->set_resolution(nurb.resolu);
spline->set_cyclic(nurb.flagu & CU_NURB_CYCLIC);
spline->set_order(nurb.orderu);
spline->knots_mode = knots_mode_from_dna_nurb(nurb.flagu);
Span<const BPoint> src_points{nurb.bp, nurb.pntsu};
spline->resize(src_points.size());
MutableSpan<float3> positions = spline->positions();
MutableSpan<float> weights = spline->weights();
MutableSpan<float> radii = spline->radii();
MutableSpan<float> tilts = spline->tilts();
blender::threading::parallel_for(src_points.index_range(), 2048, [&](IndexRange range) {
for (const int i : range) {
const BPoint &bp = src_points[i];
positions[i] = bp.vec;
weights[i] = bp.vec[3];
radii[i] = bp.radius;
tilts[i] = bp.tilt;
}
});
return spline;
}
static SplinePtr spline_from_dna_poly(const Nurb &nurb)
{
std::unique_ptr<PolySpline> spline = std::make_unique<PolySpline>();
spline->set_cyclic(nurb.flagu & CU_NURB_CYCLIC);
Span<const BPoint> src_points{nurb.bp, nurb.pntsu};
spline->resize(src_points.size());
MutableSpan<float3> positions = spline->positions();
MutableSpan<float> radii = spline->radii();
MutableSpan<float> tilts = spline->tilts();
blender::threading::parallel_for(src_points.index_range(), 2048, [&](IndexRange range) {
for (const int i : range) {
const BPoint &bp = src_points[i];
positions[i] = bp.vec;
radii[i] = bp.radius;
tilts[i] = bp.tilt;
}
});
return spline;
}
std::unique_ptr<CurveEval> curve_eval_from_dna_curve(const Curve &dna_curve,
const ListBase &nurbs_list)
{
Vector<const Nurb *> nurbs(nurbs_list);
std::unique_ptr<CurveEval> curve = std::make_unique<CurveEval>();
curve->resize(nurbs.size());
MutableSpan<SplinePtr> splines = curve->splines();
blender::threading::parallel_for(nurbs.index_range(), 256, [&](IndexRange range) {
for (const int i : range) {
switch (nurbs[i]->type) {
case CU_BEZIER:
splines[i] = spline_from_dna_bezier(*nurbs[i]);
break;
case CU_NURBS:
splines[i] = spline_from_dna_nurbs(*nurbs[i]);
break;
case CU_POLY:
splines[i] = spline_from_dna_poly(*nurbs[i]);
break;
default:
BLI_assert_unreachable();
break;
}
}
});
/* Normal mode is stored separately in each spline to facilitate combining
* splines from multiple curve objects, where the value may be different. */
const NormalMode normal_mode = normal_mode_from_dna_curve(dna_curve.twist_mode);
for (SplinePtr &spline : curve->splines()) {
spline->normal_mode = normal_mode;
}
return curve;
}
std::unique_ptr<CurveEval> curve_eval_from_dna_curve(const Curve &dna_curve)
{
return curve_eval_from_dna_curve(dna_curve, *BKE_curve_nurbs_get_for_read(&dna_curve));
}
static void copy_attributes_between_components(
const blender::bke::AttributeAccessor &src_attributes,
blender::bke::MutableAttributeAccessor &dst_attributes,
Span<std::string> skip)
{
src_attributes.for_all([&](const AttributeIDRef &id, const AttributeMetaData meta_data) {
if (id.is_named() && skip.contains(id.name())) {
return true;
}
GVArray src_attribute = src_attributes.lookup(id, meta_data.domain, meta_data.data_type);
if (!src_attribute) {
return true;
}
GVArraySpan src_attribute_data{src_attribute};
blender::bke::GAttributeWriter dst_attribute = dst_attributes.lookup_or_add_for_write(
id, meta_data.domain, meta_data.data_type);
if (!dst_attribute) {
return true;
}
dst_attribute.varray.set_all(src_attribute_data.data());
dst_attribute.finish();
return true;
});
}
std::unique_ptr<CurveEval> curves_to_curve_eval(const Curves &curves_id)
{
CurveComponent src_component;
src_component.replace(&const_cast<Curves &>(curves_id), GeometryOwnershipType::ReadOnly);
const blender::bke::CurvesGeometry &curves = blender::bke::CurvesGeometry::wrap(
curves_id.geometry);
const blender::bke::AttributeAccessor src_attributes = curves.attributes();
VArray<int> resolution = curves.resolution();
VArray<int8_t> normal_mode = curves.normal_mode();
VArraySpan<float> nurbs_weights{
src_attributes.lookup_or_default<float>("nurbs_weight", ATTR_DOMAIN_POINT, 1.0f)};
VArraySpan<int8_t> nurbs_orders{
src_attributes.lookup_or_default<int8_t>("nurbs_order", ATTR_DOMAIN_CURVE, 4)};
VArraySpan<int8_t> nurbs_knots_modes{
src_attributes.lookup_or_default<int8_t>("knots_mode", ATTR_DOMAIN_CURVE, 0)};
VArraySpan<int8_t> handle_types_right{
src_attributes.lookup_or_default<int8_t>("handle_type_right", ATTR_DOMAIN_POINT, 0)};
VArraySpan<int8_t> handle_types_left{
src_attributes.lookup_or_default<int8_t>("handle_type_left", ATTR_DOMAIN_POINT, 0)};
/* Create splines with the correct size and type. */
VArray<int8_t> curve_types = curves.curve_types();
std::unique_ptr<CurveEval> curve_eval = std::make_unique<CurveEval>();
for (const int curve_index : curve_types.index_range()) {
const IndexRange points = curves.points_for_curve(curve_index);
std::unique_ptr<Spline> spline;
/* #CurveEval does not support catmull rom curves, so convert those to poly splines. */
switch (std::max<int8_t>(1, curve_types[curve_index])) {
case CURVE_TYPE_POLY: {
spline = std::make_unique<PolySpline>();
spline->resize(points.size());
break;
}
case CURVE_TYPE_BEZIER: {
std::unique_ptr<BezierSpline> bezier_spline = std::make_unique<BezierSpline>();
bezier_spline->resize(points.size());
bezier_spline->set_resolution(resolution[curve_index]);
bezier_spline->handle_types_left().copy_from(handle_types_left.slice(points));
bezier_spline->handle_types_right().copy_from(handle_types_right.slice(points));
spline = std::move(bezier_spline);
break;
}
case CURVE_TYPE_NURBS: {
std::unique_ptr<NURBSpline> nurb_spline = std::make_unique<NURBSpline>();
nurb_spline->resize(points.size());
nurb_spline->set_resolution(resolution[curve_index]);
nurb_spline->weights().copy_from(nurbs_weights.slice(points));
nurb_spline->set_order(nurbs_orders[curve_index]);
nurb_spline->knots_mode = static_cast<KnotsMode>(nurbs_knots_modes[curve_index]);
spline = std::move(nurb_spline);
break;
}
case CURVE_TYPE_CATMULL_ROM:
/* Not supported yet. */
BLI_assert_unreachable();
continue;
}
spline->positions().fill(float3(0));
spline->tilts().fill(0.0f);
spline->radii().fill(1.0f);
spline->normal_mode = static_cast<NormalMode>(normal_mode[curve_index]);
curve_eval->add_spline(std::move(spline));
}
curve_eval->attributes.reallocate(curve_eval->splines().size());
CurveComponentLegacy dst_component;
dst_component.replace(curve_eval.get(), GeometryOwnershipType::Editable);
blender::bke::MutableAttributeAccessor dst_attributes = *dst_component.attributes_for_write();
copy_attributes_between_components(src_attributes,
dst_attributes,
{"curve_type",
"resolution",
"normal_mode",
"nurbs_weight",
"nurbs_order",
"knots_mode",
"handle_type_right",
"handle_type_left"});
return curve_eval;
}
Curves *curve_eval_to_curves(const CurveEval &curve_eval)
{
Curves *curves_id = blender::bke::curves_new_nomain(curve_eval.total_control_point_num(),
curve_eval.splines().size());
CurveComponent dst_component;
dst_component.replace(curves_id, GeometryOwnershipType::Editable);
blender::bke::MutableAttributeAccessor dst_attributes = *dst_component.attributes_for_write();
blender::bke::CurvesGeometry &curves = blender::bke::CurvesGeometry::wrap(curves_id->geometry);
curves.offsets_for_write().copy_from(curve_eval.control_point_offsets());
MutableSpan<int8_t> curve_types = curves.curve_types_for_write();
blender::bke::SpanAttributeWriter<int8_t> normal_mode =
dst_attributes.lookup_or_add_for_write_only_span<int8_t>("normal_mode", ATTR_DOMAIN_CURVE);
blender::bke::SpanAttributeWriter<float> nurbs_weight;
blender::bke::SpanAttributeWriter<int8_t> nurbs_order;
blender::bke::SpanAttributeWriter<int8_t> nurbs_knots_mode;
if (curve_eval.has_spline_with_type(CURVE_TYPE_NURBS)) {
nurbs_weight = dst_attributes.lookup_or_add_for_write_only_span<float>("nurbs_weight",
ATTR_DOMAIN_POINT);
nurbs_order = dst_attributes.lookup_or_add_for_write_only_span<int8_t>("nurbs_order",
ATTR_DOMAIN_CURVE);
nurbs_knots_mode = dst_attributes.lookup_or_add_for_write_only_span<int8_t>("knots_mode",
ATTR_DOMAIN_CURVE);
}
blender::bke::SpanAttributeWriter<int8_t> handle_type_right;
blender::bke::SpanAttributeWriter<int8_t> handle_type_left;
if (curve_eval.has_spline_with_type(CURVE_TYPE_BEZIER)) {
handle_type_right = dst_attributes.lookup_or_add_for_write_only_span<int8_t>(
"handle_type_right", ATTR_DOMAIN_POINT);
handle_type_left = dst_attributes.lookup_or_add_for_write_only_span<int8_t>("handle_type_left",
ATTR_DOMAIN_POINT);
}
for (const int curve_index : curve_eval.splines().index_range()) {
const Spline &spline = *curve_eval.splines()[curve_index];
curve_types[curve_index] = curve_eval.splines()[curve_index]->type();
normal_mode.span[curve_index] = curve_eval.splines()[curve_index]->normal_mode;
const IndexRange points = curves.points_for_curve(curve_index);
switch (spline.type()) {
case CURVE_TYPE_POLY:
break;
case CURVE_TYPE_BEZIER: {
const BezierSpline &src = static_cast<const BezierSpline &>(spline);
handle_type_right.span.slice(points).copy_from(src.handle_types_right());
handle_type_left.span.slice(points).copy_from(src.handle_types_left());
break;
}
case CURVE_TYPE_NURBS: {
const NURBSpline &src = static_cast<const NURBSpline &>(spline);
nurbs_knots_mode.span[curve_index] = static_cast<int8_t>(src.knots_mode);
nurbs_order.span[curve_index] = src.order();
nurbs_weight.span.slice(points).copy_from(src.weights());
break;
}
case CURVE_TYPE_CATMULL_ROM: {
BLI_assert_unreachable();
break;
}
}
}
curves.update_curve_types();
normal_mode.finish();
nurbs_weight.finish();
nurbs_order.finish();
nurbs_knots_mode.finish();
handle_type_right.finish();
handle_type_left.finish();
CurveComponentLegacy src_component;
src_component.replace(&const_cast<CurveEval &>(curve_eval), GeometryOwnershipType::ReadOnly);
const blender::bke::AttributeAccessor src_attributes = *src_component.attributes();
copy_attributes_between_components(src_attributes, dst_attributes, {});
return curves_id;
}
void CurveEval::assert_valid_point_attributes() const
{
#ifdef DEBUG
if (splines_.size() == 0) {
return;
}
const int layer_len = splines_.first()->attributes.data.totlayer;
Array<AttributeIDRef> ids_in_order(layer_len);
Array<AttributeMetaData> meta_data_in_order(layer_len);
{
int i = 0;
splines_.first()->attributes.foreach_attribute(
[&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
ids_in_order[i] = attribute_id;
meta_data_in_order[i] = meta_data;
i++;
return true;
},
ATTR_DOMAIN_POINT);
}
for (const SplinePtr &spline : splines_) {
/* All splines should have the same number of attributes. */
BLI_assert(spline->attributes.data.totlayer == layer_len);
int i = 0;
spline->attributes.foreach_attribute(
[&](const AttributeIDRef &attribute_id, const AttributeMetaData &meta_data) {
/* Attribute names and IDs should have the same order and exist on all splines. */
BLI_assert(attribute_id == ids_in_order[i]);
/* Attributes with the same ID different splines should all have the same type. */
BLI_assert(meta_data == meta_data_in_order[i]);
i++;
return true;
},
ATTR_DOMAIN_POINT);
}
#endif
}