This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/volume_precache.c
Matt Ebb f02dde5de7 Patch from Raul Fernandez Hernandez - volume render multiple scattering fixes
Also: Changed 'Spread' value to be proportional to the light cache voxel grid 
(i.e. 0.5 spreads half the width of the grid), so that it's independent of light 
cache resolution. This means that results should be similar as you increase/
decrease resolution.
2010-01-03 23:45:13 +00:00

777 lines
21 KiB
C

/**
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Matt Ebb, Ra˙l Fern·ndez Hern·ndez (Farsthary).
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_voxel.h"
#include "PIL_time.h"
#include "RE_shader_ext.h"
#include "RE_raytrace.h"
#include "DNA_material_types.h"
#include "render_types.h"
#include "rendercore.h"
#include "renderdatabase.h"
#include "volumetric.h"
#include "volume_precache.h"
#if defined( _MSC_VER ) && !defined( __cplusplus )
# define inline __inline
#endif // defined( _MSC_VER ) && !defined( __cplusplus )
#include "BKE_global.h"
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
/* only to be used here in this file, it's for speed */
extern struct Render R;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* *** utility code to set up an individual raytree for objectinstance, for checking inside/outside *** */
/* Recursive test for intersections, from a point inside the mesh, to outside
* Number of intersections (depth) determine if a point is inside or outside the mesh */
int intersect_outside_volume(RayObject *tree, Isect *isect, float *offset, int limit, int depth)
{
if (limit == 0) return depth;
if (RE_rayobject_raycast(tree, isect)) {
isect->start[0] = isect->start[0] + isect->labda*isect->vec[0];
isect->start[1] = isect->start[1] + isect->labda*isect->vec[1];
isect->start[2] = isect->start[2] + isect->labda*isect->vec[2];
isect->labda = FLT_MAX;
isect->skip = RE_SKIP_VLR_NEIGHBOUR;
isect->orig.face= isect->hit.face;
isect->orig.ob= isect->hit.ob;
return intersect_outside_volume(tree, isect, offset, limit-1, depth+1);
} else {
return depth;
}
}
/* Uses ray tracing to check if a point is inside or outside an ObjectInstanceRen */
int point_inside_obi(RayObject *tree, ObjectInstanceRen *obi, float *co)
{
Isect isect;
float vec[3] = {0.0f,0.0f,1.0f};
int final_depth=0, depth=0, limit=20;
/* set up the isect */
memset(&isect, 0, sizeof(isect));
VECCOPY(isect.start, co);
VECCOPY(isect.vec, vec);
isect.mode= RE_RAY_MIRROR;
isect.last_hit= NULL;
isect.lay= -1;
isect.labda = FLT_MAX;
isect.orig.face= NULL;
isect.orig.ob = NULL;
final_depth = intersect_outside_volume(tree, &isect, vec, limit, depth);
/* even number of intersections: point is outside
* odd number: point is inside */
if (final_depth % 2 == 0) return 0;
else return 1;
}
/* *** light cache filtering *** */
static float get_avg_surrounds(float *cache, int *res, int xx, int yy, int zz)
{
int x, y, z, x_, y_, z_;
int added=0;
float tot=0.0f;
for (z=-1; z <= 1; z++) {
z_ = zz+z;
if (z_ >= 0 && z_ <= res[2]-1) {
for (y=-1; y <= 1; y++) {
y_ = yy+y;
if (y_ >= 0 && y_ <= res[1]-1) {
for (x=-1; x <= 1; x++) {
x_ = xx+x;
if (x_ >= 0 && x_ <= res[0]-1) {
const int i= V_I(x_, y_, z_, res);
if (cache[i] > 0.0f) {
tot += cache[i];
added++;
}
}
}
}
}
}
}
if (added > 0) tot /= added;
return tot;
}
/* function to filter the edges of the light cache, where there was no volume originally.
* For each voxel which was originally external to the mesh, it finds the average values of
* the surrounding internal voxels and sets the original external voxel to that average amount.
* Works almost a bit like a 'dilate' filter */
static void lightcache_filter(VolumePrecache *vp)
{
int x, y, z;
for (z=0; z < vp->res[2]; z++) {
for (y=0; y < vp->res[1]; y++) {
for (x=0; x < vp->res[0]; x++) {
/* trigger for outside mesh */
const int i= V_I(x, y, z, vp->res);
if (vp->data_r[i] < -0.f)
vp->data_r[i] = get_avg_surrounds(vp->data_r, vp->res, x, y, z);
if (vp->data_g[i] < -0.f)
vp->data_g[i] = get_avg_surrounds(vp->data_g, vp->res, x, y, z);
if (vp->data_b[i] < -0.f)
vp->data_b[i] = get_avg_surrounds(vp->data_b, vp->res, x, y, z);
}
}
}
}
#if 0
static void lightcache_filter2(VolumePrecache *vp)
{
int x, y, z;
float *new_r, *new_g, *new_b;
int field_size = vp->res[0]*vp->res[1]*vp->res[2]*sizeof(float);
new_r = MEM_mallocN(field_size, "temp buffer for light cache filter r channel");
new_g = MEM_mallocN(field_size, "temp buffer for light cache filter g channel");
new_b = MEM_mallocN(field_size, "temp buffer for light cache filter b channel");
memcpy(new_r, vp->data_r, field_size);
memcpy(new_g, vp->data_g, field_size);
memcpy(new_b, vp->data_b, field_size);
for (z=0; z < vp->res[2]; z++) {
for (y=0; y < vp->res[1]; y++) {
for (x=0; x < vp->res[0]; x++) {
/* trigger for outside mesh */
const int i= V_I(x, y, z, vp->res);
if (vp->data_r[i] < -0.f)
new_r[i] = get_avg_surrounds(vp->data_r, vp->res, x, y, z);
if (vp->data_g[i] < -0.f)
new_g[i] = get_avg_surrounds(vp->data_g, vp->res, x, y, z);
if (vp->data_b[i] < -0.f)
new_b[i] = get_avg_surrounds(vp->data_b, vp->res, x, y, z);
}
}
}
SWAP(float *, vp->data_r, new_r);
SWAP(float *, vp->data_g, new_g);
SWAP(float *, vp->data_b, new_b);
if (new_r) { MEM_freeN(new_r); new_r=NULL; }
if (new_g) { MEM_freeN(new_g); new_g=NULL; }
if (new_b) { MEM_freeN(new_b); new_b=NULL; }
}
#endif
static inline int ms_I(int x, int y, int z, int *n) //has a pad of 1 voxel surrounding the core for boundary simulation
{
/* different ordering to light cache */
return x*(n[1]+2)*(n[2]+2) + y*(n[2]+2) + z;
}
static inline int v_I_pad(int x, int y, int z, int *n) //has a pad of 1 voxel surrounding the core for boundary simulation
{
/* same ordering to light cache, with padding */
return z*(n[1]+2)*(n[0]+2) + y*(n[0]+2) + x;
}
static inline int lc_to_ms_I(int x, int y, int z, int *n)
{
/* converting light cache index to multiple scattering index */
return (x-1)*(n[1]*n[2]) + (y-1)*(n[2]) + z-1;
}
/* *** multiple scattering approximation *** */
/* get the total amount of light energy in the light cache. used to normalise after multiple scattering */
static float total_ss_energy(VolumePrecache *vp)
{
int x, y, z;
int *res = vp->res;
float energy=0.f;
for (z=0; z < res[2]; z++) {
for (y=0; y < res[1]; y++) {
for (x=0; x < res[0]; x++) {
const int i=V_I(x, y, z, res);
if (vp->data_r[i] > 0.f) energy += vp->data_r[i];
if (vp->data_g[i] > 0.f) energy += vp->data_g[i];
if (vp->data_b[i] > 0.f) energy += vp->data_b[i];
}
}
}
return energy;
}
static float total_ms_energy(float *sr, float *sg, float *sb, int *res)
{
int x, y, z;
float energy=0.f;
for (z=1;z<=res[2];z++) {
for (y=1;y<=res[1];y++) {
for (x=1;x<=res[0];x++) {
const int i = ms_I(x,y,z,res);
if (sr[i] > 0.f) energy += sr[i];
if (sg[i] > 0.f) energy += sg[i];
if (sb[i] > 0.f) energy += sb[i];
}
}
}
return energy;
}
static void ms_diffuse(float *x0, float *x, float diff, int *n) //n is the unpadded resolution
{
int i, j, k, l;
const float dt = VOL_MS_TIMESTEP;
const float a = dt*diff*n[0]*n[1]*n[2];
for (l=0; l<20; l++)
{
for (k=1; k<=n[2]; k++)
{
for (j=1; j<=n[1]; j++)
{
for (i=1; i<=n[0]; i++)
{
x[v_I_pad(i,j,k,n)] = (x0[v_I_pad(i,j,k,n)]) + a*( x0[v_I_pad(i-1,j,k,n)]+ x0[v_I_pad(i+1,j,k,n)]+ x0[v_I_pad(i,j-1,k,n)]+
x0[v_I_pad(i,j+1,k,n)]+ x0[v_I_pad(i,j,k-1,n)]+x0[v_I_pad(i,j,k+1,n)]
) / (1+6*a);
}
}
}
}
}
void multiple_scattering_diffusion(Render *re, VolumePrecache *vp, Material *ma)
{
const float diff = ma->vol.ms_diff * 0.001f; /* compensate for scaling for a nicer UI range */
const int simframes = (int)(ma->vol.ms_spread * (float)MAX3(vp->res[0], vp->res[1], vp->res[2]));
const int shade_type = ma->vol.shade_type;
float fac = ma->vol.ms_intensity;
int x, y, z, m;
int *n = vp->res;
const int size = (n[0]+2)*(n[1]+2)*(n[2]+2);
double time, lasttime= PIL_check_seconds_timer();
float total;
float c=1.0f;
float origf; /* factor for blending in original light cache */
float energy_ss, energy_ms;
float *sr0=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
float *sr=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
float *sg0=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
float *sg=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
float *sb0=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
float *sb=(float *)MEM_callocN(size*sizeof(float), "temporary multiple scattering buffer");
total = (float)(n[0]*n[1]*n[2]*simframes);
energy_ss = total_ss_energy(vp);
/* Scattering as diffusion pass */
for (m=0; m<simframes; m++)
{
/* add sources */
for (z=1; z<=n[2]; z++)
{
for (y=1; y<=n[1]; y++)
{
for (x=1; x<=n[0]; x++)
{
const int i = lc_to_ms_I(x, y ,z, n); //lc index
const int j = ms_I(x, y, z, n); //ms index
time= PIL_check_seconds_timer();
c++;
if (vp->data_r[i] > 0.0f)
sr[j] += vp->data_r[i];
if (vp->data_g[i] > 0.0f)
sg[j] += vp->data_g[i];
if (vp->data_b[i] > 0.0f)
sb[j] += vp->data_b[i];
/* Displays progress every second */
if(time-lasttime>1.0f) {
char str[64];
sprintf(str, "Simulating multiple scattering: %d%%", (int)(100.0f * (c / total)));
re->i.infostr= str;
re->stats_draw(re->sdh, &re->i);
re->i.infostr= NULL;
lasttime= time;
}
}
}
}
SWAP(float *,sr,sr0);
SWAP(float *,sg,sg0);
SWAP(float *,sb,sb0);
/* main diffusion simulation */
ms_diffuse(sr0, sr, diff, n);
ms_diffuse(sg0, sg, diff, n);
ms_diffuse(sb0, sb, diff, n);
if (re->test_break(re->tbh)) break;
}
/* normalisation factor to conserve energy */
energy_ms = total_ms_energy(sr, sg, sb, n);
fac *= (energy_ss / energy_ms);
/* blend multiple scattering back in the light cache */
if (shade_type == MA_VOL_SHADE_SHADEDPLUSMULTIPLE) {
/* conserve energy - half single, half multiple */
origf = 0.5f;
fac *= 0.5f;
} else {
origf = 0.0f;
}
for (z=1;z<=n[2];z++)
{
for (y=1;y<=n[1];y++)
{
for (x=1;x<=n[0];x++)
{
const int i = lc_to_ms_I(x, y ,z, n); //lc index
const int j = ms_I(x, y, z, n); //ms index
vp->data_r[i] = origf * vp->data_r[i] + fac * sr[j];
vp->data_g[i] = origf * vp->data_g[i] + fac * sg[j];
vp->data_b[i] = origf * vp->data_b[i] + fac * sb[j];
}
}
}
MEM_freeN(sr0);
MEM_freeN(sr);
MEM_freeN(sg0);
MEM_freeN(sg);
MEM_freeN(sb0);
MEM_freeN(sb);
}
#if 0 // debug stuff
static void *vol_precache_part_test(void *data)
{
VolPrecachePart *pa = data;
printf("part number: %d \n", pa->num);
printf("done: %d \n", pa->done);
printf("x min: %d x max: %d \n", pa->minx, pa->maxx);
printf("y min: %d y max: %d \n", pa->miny, pa->maxy);
printf("z min: %d z max: %d \n", pa->minz, pa->maxz);
return NULL;
}
#endif
/* Iterate over the 3d voxel grid, and fill the voxels with scattering information
*
* It's stored in memory as 3 big float grids next to each other, one for each RGB channel.
* I'm guessing the memory alignment may work out better this way for the purposes
* of doing linear interpolation, but I haven't actually tested this theory! :)
*/
static void *vol_precache_part(void *data)
{
VolPrecachePart *pa = (VolPrecachePart *)data;
ObjectInstanceRen *obi = pa->obi;
RayObject *tree = pa->tree;
ShadeInput *shi = pa->shi;
float scatter_col[3] = {0.f, 0.f, 0.f};
float co[3];
int x, y, z, i;
const int res[3]= {pa->res[0], pa->res[1], pa->res[2]};
for (z= pa->minz; z < pa->maxz; z++) {
co[2] = pa->bbmin[2] + (pa->voxel[2] * (z + 0.5f));
for (y= pa->miny; y < pa->maxy; y++) {
co[1] = pa->bbmin[1] + (pa->voxel[1] * (y + 0.5f));
for (x=pa->minx; x < pa->maxx; x++) {
co[0] = pa->bbmin[0] + (pa->voxel[0] * (x + 0.5f));
i= V_I(x, y, z, res);
// don't bother if the point is not inside the volume mesh
if (!point_inside_obi(tree, obi, co)) {
obi->volume_precache->data_r[i] = -1.0f;
obi->volume_precache->data_g[i] = -1.0f;
obi->volume_precache->data_b[i] = -1.0f;
continue;
}
copy_v3_v3(shi->view, co);
normalize_v3(shi->view);
vol_get_scattering(shi, scatter_col, co);
obi->volume_precache->data_r[i] = scatter_col[0];
obi->volume_precache->data_g[i] = scatter_col[1];
obi->volume_precache->data_b[i] = scatter_col[2];
}
}
}
pa->done = 1;
return 0;
}
static void precache_setup_shadeinput(Render *re, ObjectInstanceRen *obi, Material *ma, ShadeInput *shi)
{
memset(shi, 0, sizeof(ShadeInput));
shi->depth= 1;
shi->mask= 1;
shi->mat = ma;
shi->vlr = NULL;
memcpy(&shi->r, &shi->mat->r, 23*sizeof(float)); // note, keep this synced with render_types.h
shi->har= shi->mat->har;
shi->obi= obi;
shi->obr= obi->obr;
shi->lay = re->scene->lay;
}
static void precache_init_parts(Render *re, RayObject *tree, ShadeInput *shi, ObjectInstanceRen *obi, int totthread, int *parts)
{
VolumePrecache *vp = obi->volume_precache;
int i=0, x, y, z;
float voxel[3];
int sizex, sizey, sizez;
float *bbmin=obi->obr->boundbox[0], *bbmax=obi->obr->boundbox[1];
int *res;
int minx, maxx;
int miny, maxy;
int minz, maxz;
if (!vp) return;
BLI_freelistN(&re->volume_precache_parts);
/* currently we just subdivide the box, number of threads per side */
parts[0] = parts[1] = parts[2] = totthread;
res = vp->res;
sub_v3_v3v3(voxel, bbmax, bbmin);
voxel[0] /= res[0];
voxel[1] /= res[1];
voxel[2] /= res[2];
for (x=0; x < parts[0]; x++) {
sizex = ceil(res[0] / (float)parts[0]);
minx = x * sizex;
maxx = minx + sizex;
maxx = (maxx>res[0])?res[0]:maxx;
for (y=0; y < parts[1]; y++) {
sizey = ceil(res[1] / (float)parts[1]);
miny = y * sizey;
maxy = miny + sizey;
maxy = (maxy>res[1])?res[1]:maxy;
for (z=0; z < parts[2]; z++) {
VolPrecachePart *pa= MEM_callocN(sizeof(VolPrecachePart), "new precache part");
sizez = ceil(res[2] / (float)parts[2]);
minz = z * sizez;
maxz = minz + sizez;
maxz = (maxz>res[2])?res[2]:maxz;
pa->done = 0;
pa->working = 0;
pa->num = i;
pa->tree = tree;
pa->shi = shi;
pa->obi = obi;
VECCOPY(pa->bbmin, bbmin);
VECCOPY(pa->voxel, voxel);
VECCOPY(pa->res, res);
pa->minx = minx; pa->maxx = maxx;
pa->miny = miny; pa->maxy = maxy;
pa->minz = minz; pa->maxz = maxz;
BLI_addtail(&re->volume_precache_parts, pa);
i++;
}
}
}
}
static VolPrecachePart *precache_get_new_part(Render *re)
{
VolPrecachePart *pa, *nextpa=NULL;
for (pa = re->volume_precache_parts.first; pa; pa=pa->next)
{
if (pa->done==0 && pa->working==0) {
nextpa = pa;
break;
}
}
return nextpa;
}
static int precache_resolution(VolumePrecache *vp, float *bbmin, float *bbmax, int res)
{
float dim[3], div;
sub_v3_v3v3(dim, bbmax, bbmin);
div = MAX3(dim[0], dim[1], dim[2]);
dim[0] /= div;
dim[1] /= div;
dim[2] /= div;
vp->res[0] = dim[0] * (float)res;
vp->res[1] = dim[1] * (float)res;
vp->res[2] = dim[2] * (float)res;
if ((vp->res[0] < 1) || (vp->res[1] < 1) || (vp->res[2] < 1))
return 0;
return 1;
}
/* Precache a volume into a 3D voxel grid.
* The voxel grid is stored in the ObjectInstanceRen,
* in camera space, aligned with the ObjectRen's bounding box.
* Resolution is defined by the user.
*/
void vol_precache_objectinstance_threads(Render *re, ObjectInstanceRen *obi, Material *ma)
{
VolumePrecache *vp;
VolPrecachePart *nextpa, *pa;
RayObject *tree;
ShadeInput shi;
ListBase threads;
float *bbmin=obi->obr->boundbox[0], *bbmax=obi->obr->boundbox[1];
int parts[3] = {1, 1, 1}, totparts;
int caching=1, counter=0;
int totthread = re->r.threads;
double time, lasttime= PIL_check_seconds_timer();
R = *re;
/* create a raytree with just the faces of the instanced ObjectRen,
* used for checking if the cached point is inside or outside. */
//tree = create_raytree_obi(obi, bbmin, bbmax);
tree = makeraytree_object(&R, obi);
if (!tree) return;
INIT_MINMAX(bbmin, bbmax);
RE_rayobject_merge_bb( tree, bbmin, bbmax);
vp = MEM_callocN(sizeof(VolumePrecache), "volume light cache");
if (!precache_resolution(vp, bbmin, bbmax, ma->vol.precache_resolution)) {
MEM_freeN(vp);
vp = NULL;
return;
}
vp->data_r = MEM_callocN(sizeof(float)*vp->res[0]*vp->res[1]*vp->res[2], "volume light cache data red channel");
vp->data_g = MEM_callocN(sizeof(float)*vp->res[0]*vp->res[1]*vp->res[2], "volume light cache data green channel");
vp->data_b = MEM_callocN(sizeof(float)*vp->res[0]*vp->res[1]*vp->res[2], "volume light cache data blue channel");
if (vp->data_r==0 || vp->data_g==0 || vp->data_b==0) {
MEM_freeN(vp);
vp = NULL;
return;
}
obi->volume_precache = vp;
/* Need a shadeinput to calculate scattering */
precache_setup_shadeinput(re, obi, ma, &shi);
precache_init_parts(re, tree, &shi, obi, totthread, parts);
totparts = parts[0] * parts[1] * parts[2];
BLI_init_threads(&threads, vol_precache_part, totthread);
while(caching) {
if(BLI_available_threads(&threads) && !(re->test_break(re->tbh))) {
nextpa = precache_get_new_part(re);
if (nextpa) {
nextpa->working = 1;
BLI_insert_thread(&threads, nextpa);
}
}
else PIL_sleep_ms(50);
caching=0;
counter=0;
for(pa= re->volume_precache_parts.first; pa; pa= pa->next) {
if(pa->done) {
counter++;
BLI_remove_thread(&threads, pa);
} else
caching = 1;
}
if (re->test_break(re->tbh) && BLI_available_threads(&threads)==totthread)
caching=0;
time= PIL_check_seconds_timer();
if(time-lasttime>1.0f) {
char str[64];
sprintf(str, "Precaching volume: %d%%", (int)(100.0f * ((float)counter / (float)totparts)));
re->i.infostr= str;
re->stats_draw(re->sdh, &re->i);
re->i.infostr= NULL;
lasttime= time;
}
}
BLI_end_threads(&threads);
BLI_freelistN(&re->volume_precache_parts);
if(tree) {
//TODO: makeraytree_object creates a tree and saves it on OBI, if we free this tree we should also clear other pointers to it
//RE_rayobject_free(tree);
//tree= NULL;
}
if (ELEM(ma->vol.shade_type, MA_VOL_SHADE_MULTIPLE, MA_VOL_SHADE_SHADEDPLUSMULTIPLE))
{
/* this should be before the filtering */
multiple_scattering_diffusion(re, obi->volume_precache, ma);
}
lightcache_filter(obi->volume_precache);
}
static int using_lightcache(Material *ma)
{
return (((ma->vol.shadeflag & MA_VOL_PRECACHESHADING) && (ma->vol.shade_type == MA_VOL_SHADE_SHADED))
|| (ELEM(ma->vol.shade_type, MA_VOL_SHADE_MULTIPLE, MA_VOL_SHADE_SHADEDPLUSMULTIPLE)));
}
/* loop through all objects (and their associated materials)
* marked for pre-caching in convertblender.c, and pre-cache them */
void volume_precache(Render *re)
{
ObjectInstanceRen *obi;
VolumeOb *vo;
for(vo= re->volumes.first; vo; vo= vo->next) {
if (using_lightcache(vo->ma)) {
for(obi= re->instancetable.first; obi; obi= obi->next) {
if (obi->obr == vo->obr) {
vol_precache_objectinstance_threads(re, obi, vo->ma);
}
}
}
}
re->i.infostr= NULL;
re->stats_draw(re->sdh, &re->i);
}
void free_volume_precache(Render *re)
{
ObjectInstanceRen *obi;
for(obi= re->instancetable.first; obi; obi= obi->next) {
if (obi->volume_precache != NULL) {
MEM_freeN(obi->volume_precache->data_r);
MEM_freeN(obi->volume_precache->data_g);
MEM_freeN(obi->volume_precache->data_b);
MEM_freeN(obi->volume_precache);
obi->volume_precache = NULL;
}
}
BLI_freelistN(&re->volumes);
}
int point_inside_volume_objectinstance(Render *re, ObjectInstanceRen *obi, float *co)
{
RayObject *tree;
int inside=0;
tree = makeraytree_object(re, obi);
if (!tree) return 0;
inside = point_inside_obi(tree, obi, co);
//TODO: makeraytree_object creates a tree and saves it on OBI, if we free this tree we should also clear other pointers to it
//RE_rayobject_free(tree);
//tree= NULL;
return inside;
}