This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/node.c

2268 lines
57 KiB
C
Raw Normal View History

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <stdlib.h>
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
#include <string.h>
#include "DNA_ID.h"
#include "DNA_image_types.h"
#include "DNA_node_types.h"
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
#include "DNA_material_types.h"
#include "DNA_scene_types.h"
#include "BKE_blender.h"
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
#include "BKE_colortools.h"
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
#include "BKE_global.h"
#include "BKE_image.h"
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_node.h"
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
#include "BKE_texture.h"
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_rand.h"
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
#include "BLI_threads.h"
#include "PIL_time.h"
#include "MEM_guardedalloc.h"
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
#include "IMB_imbuf.h"
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* not very important, but the stack solver likes to know a maximum */
#define MAX_SOCKET 64
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
/* ************** Type stuff ********** */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
static bNodeType *node_get_type(bNodeTree *ntree, int type, bNodeTree *ngroup)
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
{
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(type==NODE_GROUP) {
if(ngroup && GS(ngroup->id.name)==ID_NT) {
return ngroup->owntype;
}
return NULL;
}
else {
bNodeType **typedefs= ntree->alltypes;
while( *typedefs && (*typedefs)->type!=type)
typedefs++;
return *typedefs;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
void ntreeInitTypes(bNodeTree *ntree)
{
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
bNode *node, *next;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
if(ntree->type==NTREE_SHADER)
ntree->alltypes= node_all_shaders;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
else if(ntree->type==NTREE_COMPOSIT)
ntree->alltypes= node_all_composit;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
else {
ntree->alltypes= NULL;
printf("Error: no type definitions for nodes\n");
}
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
for(node= ntree->nodes.first; node; node= next) {
next= node->next;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
node->typeinfo= node_get_type(ntree, node->type, (bNodeTree *)node->id);
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
if(node->typeinfo==NULL) {
printf("Error: Node type %s doesn't exist anymore, removed\n", node->name);
nodeFreeNode(ntree, node);
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
ntree->init |= NTREE_TYPE_INIT;
}
/* only used internal... we depend on type definitions! */
static bNodeSocket *node_add_socket_type(ListBase *lb, bNodeSocketType *stype)
{
bNodeSocket *sock= MEM_callocN(sizeof(bNodeSocket), "sock");
BLI_strncpy(sock->name, stype->name, NODE_MAXSTR);
if(stype->limit==0) sock->limit= 0xFFF;
else sock->limit= stype->limit;
sock->type= stype->type;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
sock->to_index= stype->own_index;
sock->tosock= stype->internsock;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
sock->ns.vec[0]= stype->val1;
sock->ns.vec[1]= stype->val2;
sock->ns.vec[2]= stype->val3;
sock->ns.vec[3]= stype->val4;
sock->ns.min= stype->min;
sock->ns.max= stype->max;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
if(lb)
BLI_addtail(lb, sock);
return sock;
}
static void node_rem_socket(bNodeTree *ntree, ListBase *lb, bNodeSocket *sock)
{
bNodeLink *link, *next;
for(link= ntree->links.first; link; link= next) {
next= link->next;
if(link->fromsock==sock || link->tosock==sock) {
nodeRemLink(ntree, link);
}
}
BLI_remlink(lb, sock);
MEM_freeN(sock);
}
static bNodeSocket *verify_socket(ListBase *lb, bNodeSocketType *stype)
{
bNodeSocket *sock;
for(sock= lb->first; sock; sock= sock->next) {
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* both indices are zero for non-groups, otherwise it's a unique index */
if(sock->to_index==stype->own_index)
if(strncmp(sock->name, stype->name, NODE_MAXSTR)==0)
break;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
if(sock) {
sock->type= stype->type; /* in future, read this from tydefs! */
if(stype->limit==0) sock->limit= 0xFFF;
else sock->limit= stype->limit;
sock->ns.min= stype->min;
sock->ns.max= stype->max;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
sock->tosock= stype->internsock;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
BLI_remlink(lb, sock);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
return sock;
}
else {
return node_add_socket_type(NULL, stype);
}
}
static void verify_socket_list(bNodeTree *ntree, ListBase *lb, bNodeSocketType *stype_first)
{
bNodeSocketType *stype;
/* no inputs anymore? */
if(stype_first==NULL) {
while(lb->first)
node_rem_socket(ntree, lb, lb->first);
}
else {
/* step by step compare */
stype= stype_first;
while(stype->type != -1) {
stype->sock= verify_socket(lb, stype);
stype++;
}
/* leftovers are removed */
while(lb->first)
node_rem_socket(ntree, lb, lb->first);
/* and we put back the verified sockets */
stype= stype_first;
while(stype->type != -1) {
BLI_addtail(lb, stype->sock);
stype++;
}
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
void nodeVerifyType(bNodeTree *ntree, bNode *node)
{
bNodeType *ntype= node->typeinfo;
if(ntype) {
/* might add some other verify stuff here */
verify_socket_list(ntree, &node->inputs, ntype->inputs);
verify_socket_list(ntree, &node->outputs, ntype->outputs);
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
void ntreeVerifyTypes(bNodeTree *ntree)
{
bNode *node;
/* commented out, in linux a 2nd initialize on a Scene ntree from a lib crashes... */
/* if((ntree->init & NTREE_TYPE_INIT)==0) */
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
ntreeInitTypes(ntree);
/* check inputs and outputs, and remove or insert them */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
for(node= ntree->nodes.first; node; node= node->next)
nodeVerifyType(ntree, node);
}
/* ************** Group stuff ********** */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
bNodeType node_group_typeinfo= {
/* type code */ NODE_GROUP,
/* name */ "Group",
/* width+range */ 120, 60, 200,
/* class+opts */ NODE_CLASS_GROUP, NODE_OPTIONS,
/* input sock */ NULL,
/* output sock */ NULL,
/* storage */ "",
/* execfunc */ NULL,
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
};
/* tag internal sockets */
static void group_tag_internal_sockets(bNodeTree *ngroup)
{
bNode *node;
bNodeSocket *sock;
bNodeLink *link;
/* clear intern tag, but check already for hidden sockets */
for(node= ngroup->nodes.first; node; node= node->next) {
for(sock= node->inputs.first; sock; sock= sock->next)
sock->intern= sock->flag & SOCK_HIDDEN;
for(sock= node->outputs.first; sock; sock= sock->next)
sock->intern= sock->flag & SOCK_HIDDEN;
}
/* set tag */
for(link= ngroup->links.first; link; link= link->next) {
link->fromsock->intern= 1;
link->tosock->intern= 1;
}
/* remove link pointer to external links (only happens on create group) */
for(node= ngroup->nodes.first; node; node= node->next) {
for(sock= node->inputs.first; sock; sock= sock->next)
if(sock->intern==0)
sock->link= NULL;
}
/* set all intern sockets to own_index zero, makes sure that later use won't mixup */
for(node= ngroup->nodes.first; node; node= node->next) {
for(sock= node->inputs.first; sock; sock= sock->next)
if(sock->intern)
sock->own_index= 0;
for(sock= node->outputs.first; sock; sock= sock->next)
if(sock->intern)
sock->own_index= 0;
}
}
/* after editing group, new sockets are zero */
/* this routine ensures unique identifiers for zero sockets that are exposed */
static void group_verify_own_indices(bNodeTree *ngroup)
{
bNode *node;
bNodeSocket *sock;
for(node= ngroup->nodes.first; node; node= node->next) {
for(sock= node->inputs.first; sock; sock= sock->next)
if(sock->own_index==0 && sock->intern==0)
sock->own_index= ++(ngroup->cur_index);
for(sock= node->outputs.first; sock; sock= sock->next)
if(sock->own_index==0 && sock->intern==0)
sock->own_index= ++(ngroup->cur_index);
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
//printf("internal index %d\n", ngroup->cur_index);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
/* nodetrees can be used as groups, so we need typeinfo structs generated */
void ntreeMakeOwnType(bNodeTree *ngroup)
{
bNode *node;
bNodeSocket *sock;
int totin= 0, totout=0, a;
/* tags socket when internal linked */
group_tag_internal_sockets(ngroup);
/* ensure all sockets have own unique id */
group_verify_own_indices(ngroup);
/* counting stats */
for(node= ngroup->nodes.first; node; node= node->next) {
if(node->type==NODE_GROUP)
break;
for(sock= node->inputs.first; sock; sock= sock->next)
if(sock->intern==0)
totin++;
for(sock= node->outputs.first; sock; sock= sock->next)
if(sock->intern==0)
totout++;
}
/* debug: nodetrees in nodetrees not handled yet */
if(node) {
printf("group in group, not supported yet\n");
return;
}
/* free own type struct */
if(ngroup->owntype) {
if(ngroup->owntype->inputs)
MEM_freeN(ngroup->owntype->inputs);
if(ngroup->owntype->outputs)
MEM_freeN(ngroup->owntype->outputs);
MEM_freeN(ngroup->owntype);
}
/* make own type struct */
ngroup->owntype= MEM_mallocN(sizeof(bNodeType), "group type");
*ngroup->owntype= node_group_typeinfo;
/* input type arrays */
if(totin) {
bNodeSocketType *stype;
bNodeSocketType *inputs= MEM_mallocN(sizeof(bNodeSocketType)*(totin+1), "bNodeSocketType");
a= 0;
for(node= ngroup->nodes.first; node; node= node->next) {
/* nodes are presumed fully verified, stype and socket list are in sync */
stype= node->typeinfo->inputs;
for(sock= node->inputs.first; sock; sock= sock->next, stype++) {
if(sock->intern==0) {
/* debug only print */
if(stype==NULL || stype->type==-1) printf("group verification error %s\n", ngroup->id.name);
inputs[a]= *stype;
inputs[a].own_index= sock->own_index;
inputs[a].internsock= sock;
a++;
}
}
}
inputs[a].type= -1; /* terminator code */
ngroup->owntype->inputs= inputs;
}
/* output type arrays */
if(totout) {
bNodeSocketType *stype;
bNodeSocketType *outputs= MEM_mallocN(sizeof(bNodeSocketType)*(totout+1), "bNodeSocketType");
a= 0;
for(node= ngroup->nodes.first; node; node= node->next) {
/* nodes are presumed fully verified, stype and socket list are in sync */
stype= node->typeinfo->outputs;
for(sock= node->outputs.first; sock; sock= sock->next, stype++) {
if(sock->intern==0) {
/* debug only print */
if(stype==NULL || stype->type==-1) printf("group verification error %s\n", ngroup->id.name);
outputs[a]= *stype;
outputs[a].own_index= sock->own_index;
outputs[a].internsock= sock;
a++;
}
}
}
outputs[a].type= -1; /* terminator code */
ngroup->owntype->outputs= outputs;
}
/* voila, the nodetree has the full definition for generating group-node instances! */
}
static bNodeSocket *groupnode_find_tosock(bNode *gnode, int index)
{
bNodeSocket *sock;
for(sock= gnode->inputs.first; sock; sock= sock->next)
if(sock->to_index==index)
return sock;
return NULL;
}
static bNodeSocket *groupnode_find_fromsock(bNode *gnode, int index)
{
bNodeSocket *sock;
for(sock= gnode->outputs.first; sock; sock= sock->next)
if(sock->to_index==index)
return sock;
return NULL;
}
bNode *nodeMakeGroupFromSelected(bNodeTree *ntree)
{
bNodeLink *link, *linkn;
bNode *node, *gnode, *nextn;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
bNodeSocket *sock;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
bNodeTree *ngroup;
float min[2], max[2];
int totnode=0;
INIT_MINMAX2(min, max);
/* is there something to group? also do some clearing */
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
for(node= ntree->nodes.first; node; node= node->next) {
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(node->flag & NODE_SELECT) {
/* no groups in groups */
if(node->type==NODE_GROUP)
return NULL;
DO_MINMAX2( (&node->locx), min, max);
totnode++;
}
node->done= 0;
}
if(totnode==0) return NULL;
/* check if all connections are OK, no unselected node has both
inputs and outputs to a selection */
for(link= ntree->links.first; link; link= link->next) {
if(link->fromnode->flag & NODE_SELECT)
link->tonode->done |= 1;
if(link->tonode->flag & NODE_SELECT)
link->fromnode->done |= 2;
}
for(node= ntree->nodes.first; node; node= node->next) {
if((node->flag & NODE_SELECT)==0)
if(node->done==3)
break;
}
if(node)
return NULL;
/* OK! new nodetree */
ngroup= alloc_libblock(&G.main->nodetree, ID_NT, "NodeGroup");
ngroup->type= ntree->type;
ngroup->alltypes= ntree->alltypes;
/* move nodes over */
for(node= ntree->nodes.first; node; node= nextn) {
nextn= node->next;
if(node->flag & NODE_SELECT) {
BLI_remlink(&ntree->nodes, node);
BLI_addtail(&ngroup->nodes, node);
node->locx-= 0.5f*(min[0]+max[0]);
node->locy-= 0.5f*(min[1]+max[1]);
}
}
/* move links over */
for(link= ntree->links.first; link; link= linkn) {
linkn= link->next;
if(link->fromnode->flag & link->tonode->flag & NODE_SELECT) {
BLI_remlink(&ntree->links, link);
BLI_addtail(&ngroup->links, link);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* now we can make own group typeinfo */
ntreeMakeOwnType(ngroup);
/* make group node */
gnode= nodeAddNodeType(ntree, NODE_GROUP, ngroup);
gnode->locx= 0.5f*(min[0]+max[0]);
gnode->locy= 0.5f*(min[1]+max[1]);
/* relink external sockets */
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
for(link= ntree->links.first; link; link= linkn) {
linkn= link->next;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(link->tonode->flag & NODE_SELECT) {
link->tonode= gnode;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
sock= groupnode_find_tosock(gnode, link->tosock->own_index);
if(sock==NULL) {
nodeRemLink(ntree, link);
printf("Removed link, cannot mix internal and external sockets in group\n");
}
else link->tosock= sock;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
else if(link->fromnode->flag & NODE_SELECT) {
link->fromnode= gnode;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
sock= groupnode_find_fromsock(gnode, link->fromsock->own_index);
if(sock==NULL) {
nodeRemLink(ntree, link);
printf("Removed link, cannot mix internal and external sockets in group\n");
}
else link->fromsock= sock;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
}
/* initialize variables of unused input sockets */
for(node= ngroup->nodes.first; node; node= node->next) {
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->intern==0) {
bNodeSocket *nsock= groupnode_find_tosock(gnode, sock->own_index);
if(nsock) {
QUATCOPY(nsock->ns.vec, sock->ns.vec);
}
}
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
return gnode;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* note: ungroup: group_indices zero! */
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* here's a nasty little one, need to check users... */
/* should become callbackable... */
void nodeVerifyGroup(bNodeTree *ngroup)
{
/* group changed, so we rebuild the type definition */
ntreeMakeOwnType(ngroup);
if(ngroup->type==NTREE_SHADER) {
Material *ma;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
for(ma= G.main->mat.first; ma; ma= ma->id.next) {
if(ma->nodetree) {
bNode *node;
/* find if group is in tree */
for(node= ma->nodetree->nodes.first; node; node= node->next)
if(node->id == (ID *)ngroup)
break;
if(node) {
/* set all type pointers OK */
ntreeInitTypes(ma->nodetree);
for(node= ma->nodetree->nodes.first; node; node= node->next)
if(node->id == (ID *)ngroup)
nodeVerifyType(ma->nodetree, node);
}
}
}
}
else if(ngroup->type==NTREE_COMPOSIT) {
Scene *sce;
for(sce= G.main->scene.first; sce; sce= sce->id.next) {
if(sce->nodetree) {
bNode *node;
/* find if group is in tree */
for(node= sce->nodetree->nodes.first; node; node= node->next)
if(node->id == (ID *)ngroup)
break;
if(node) {
/* set all type pointers OK */
ntreeInitTypes(sce->nodetree);
for(node= sce->nodetree->nodes.first; node; node= node->next)
if(node->id == (ID *)ngroup)
nodeVerifyType(sce->nodetree, node);
}
}
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
/* also to check all users of groups. Now only used in editor for hide/unhide */
/* should become callbackable? */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
void nodeGroupSocketUseFlags(bNodeTree *ngroup)
{
bNode *node;
bNodeSocket *sock;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* clear flags */
for(node= ngroup->nodes.first; node; node= node->next) {
for(sock= node->inputs.first; sock; sock= sock->next)
sock->flag &= ~SOCK_IN_USE;
for(sock= node->outputs.first; sock; sock= sock->next)
sock->flag &= ~SOCK_IN_USE;
}
/* tag all thats in use */
if(ngroup->type==NTREE_SHADER) {
Material *ma;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
for(ma= G.main->mat.first; ma; ma= ma->id.next) {
if(ma->nodetree) {
for(node= ma->nodetree->nodes.first; node; node= node->next) {
if(node->id==(ID *)ngroup) {
for(sock= node->inputs.first; sock; sock= sock->next)
if(sock->link)
if(sock->tosock)
sock->tosock->flag |= SOCK_IN_USE;
for(sock= node->outputs.first; sock; sock= sock->next)
if(nodeCountSocketLinks(ma->nodetree, sock))
if(sock->tosock)
sock->tosock->flag |= SOCK_IN_USE;
}
}
}
}
}
else if(ngroup->type==NTREE_COMPOSIT) {
Scene *sce;
for(sce= G.main->scene.first; sce; sce= sce->id.next) {
if(sce->nodetree) {
for(node= sce->nodetree->nodes.first; node; node= node->next) {
if(node->id==(ID *)ngroup) {
for(sock= node->inputs.first; sock; sock= sock->next)
if(sock->link)
if(sock->tosock)
sock->tosock->flag |= SOCK_IN_USE;
for(sock= node->outputs.first; sock; sock= sock->next)
if(nodeCountSocketLinks(sce->nodetree, sock))
if(sock->tosock)
sock->tosock->flag |= SOCK_IN_USE;
}
}
}
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
static void find_node_with_socket(bNodeTree *ntree, bNodeSocket *sock, bNode **nodep, int *sockindex)
{
bNode *node;
bNodeSocket *tsock;
int index= 0;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
for(node= ntree->nodes.first; node; node= node->next) {
for(index=0, tsock= node->inputs.first; tsock; tsock= tsock->next, index++)
if(tsock==sock)
break;
if(tsock)
break;
for(index=0, tsock= node->outputs.first; tsock; tsock= tsock->next, index++)
if(tsock==sock)
break;
if(tsock)
break;
}
if(node) {
*nodep= node;
*sockindex= index;
}
else {
*nodep= NULL;
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* returns 1 if its OK */
int nodeGroupUnGroup(bNodeTree *ntree, bNode *gnode)
{
bNodeLink *link, *linkn;
bNode *node, *nextn;
bNodeTree *ngroup, *wgroup;
int index;
ngroup= (bNodeTree *)gnode->id;
if(ngroup==NULL) return 0;
/* clear new pointers, set in copytree */
for(node= ntree->nodes.first; node; node= node->next)
node->new_node= NULL;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
wgroup= ntreeCopyTree(ngroup, 0);
/* add the nodes into the ntree */
for(node= wgroup->nodes.first; node; node= nextn) {
nextn= node->next;
BLI_remlink(&wgroup->nodes, node);
BLI_addtail(&ntree->nodes, node);
node->locx+= gnode->locx;
node->locy+= gnode->locy;
node->flag |= NODE_SELECT;
}
/* and the internal links */
for(link= wgroup->links.first; link; link= linkn) {
linkn= link->next;
BLI_remlink(&wgroup->links, link);
BLI_addtail(&ntree->links, link);
}
/* restore links to and from the gnode */
for(link= ntree->links.first; link; link= link->next) {
if(link->tonode==gnode) {
/* link->tosock->tosock is on the node we look for */
find_node_with_socket(ngroup, link->tosock->tosock, &nextn, &index);
if(nextn==NULL) printf("wrong stuff!\n");
else if(nextn->new_node==NULL) printf("wrong stuff too!\n");
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
else {
link->tonode= nextn->new_node;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
link->tosock= BLI_findlink(&link->tonode->inputs, index);
}
}
else if(link->fromnode==gnode) {
/* link->fromsock->tosock is on the node we look for */
find_node_with_socket(ngroup, link->fromsock->tosock, &nextn, &index);
if(nextn==NULL) printf("1 wrong stuff!\n");
else if(nextn->new_node==NULL) printf("1 wrong stuff too!\n");
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
else {
link->fromnode= nextn->new_node;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
link->fromsock= BLI_findlink(&link->fromnode->outputs, index);
}
}
}
/* remove the gnode & work tree */
free_libblock(&G.main->nodetree, wgroup);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
nodeFreeNode(ntree, gnode);
/* solve order goes fine, but the level tags not... doing it twice works for now. solve this once */
ntreeSolveOrder(ntree);
ntreeSolveOrder(ntree);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
return 1;
}
/* ************** Add stuff ********** */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
bNode *nodeAddNodeType(bNodeTree *ntree, int type, bNodeTree *ngroup)
{
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
bNode *node;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
bNodeType *ntype= node_get_type(ntree, type, ngroup);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
bNodeSocketType *stype;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
node= MEM_callocN(sizeof(bNode), "new node");
BLI_addtail(&ntree->nodes, node);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
node->typeinfo= ntype;
if(ngroup)
BLI_strncpy(node->name, ngroup->id.name+2, NODE_MAXSTR);
else
BLI_strncpy(node->name, ntype->name, NODE_MAXSTR);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
node->type= ntype->type;
node->flag= NODE_SELECT|ntype->flag;
node->width= ntype->width;
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
node->miniwidth= 15.0f; /* small value only, allows print of first chars */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(type==NODE_GROUP)
node->id= (ID *)ngroup;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
if(ntype->inputs) {
stype= ntype->inputs;
while(stype->type != -1) {
node_add_socket_type(&node->inputs, stype);
stype++;
}
}
if(ntype->outputs) {
stype= ntype->outputs;
while(stype->type != -1) {
node_add_socket_type(&node->outputs, stype);
stype++;
}
}
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
/* need init handler later? */
if(ntree->type==NTREE_SHADER) {
if(type==SH_NODE_MATERIAL)
node->custom1= SH_NODE_MAT_DIFF|SH_NODE_MAT_SPEC;
else if(type==SH_NODE_VALTORGB)
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
node->storage= add_colorband(1);
else if(type==SH_NODE_MAPPING)
node->storage= add_mapping();
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
else if(type==SH_NODE_CURVE_VEC)
node->storage= curvemapping_add(3, -1.0f, -1.0f, 1.0f, 1.0f);
else if(type==SH_NODE_CURVE_RGB)
node->storage= curvemapping_add(4, 0.0f, 0.0f, 1.0f, 1.0f);
else if(type==SH_NODE_GEOMETRY)
node->storage= MEM_callocN(sizeof(NodeGeometry), "NodeGeometry");
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
else if(ntree->type==NTREE_COMPOSIT) {
if(type==CMP_NODE_VALTORGB)
node->storage= add_colorband(1);
else if(type==CMP_NODE_CURVE_VEC)
node->storage= curvemapping_add(3, -1.0f, -1.0f, 1.0f, 1.0f);
else if(type==CMP_NODE_CURVE_RGB)
node->storage= curvemapping_add(4, 0.0f, 0.0f, 1.0f, 1.0f);
else if(type==CMP_NODE_TIME) {
node->custom1= G.scene->r.sfra;
node->custom2= G.scene->r.efra;
node->storage= curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f);
}
2006-01-26 22:18:46 +00:00
else if(type==CMP_NODE_MAP_VALUE)
node->storage= add_mapping();
else if(type==CMP_NODE_BLUR)
node->storage= MEM_callocN(sizeof(NodeBlurData), "node blur data");
else if(type==CMP_NODE_DEFOCUS) {
/* qdn: defocus node */
NodeDefocus *nbd = MEM_callocN(sizeof(NodeDefocus), "node defocus data");
nbd->bktype = 0;
nbd->rotation = 0.f;
nbd->preview = 1;
nbd->gamco = 0;
nbd->samples = 16;
nbd->fstop = 128.f;
nbd->maxblur = 0;
nbd->bthresh = 1.f;
nbd->scale = 1.f;
nbd->no_zbuf = 1;
node->storage = nbd;
}
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
else if(type==CMP_NODE_VECBLUR) {
NodeBlurData *nbd= MEM_callocN(sizeof(NodeBlurData), "node blur data");
node->storage= nbd;
nbd->samples= 32;
nbd->fac= 1.0f;
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
}
else if(ELEM3(type, CMP_NODE_IMAGE, CMP_NODE_VIEWER, CMP_NODE_SPLITVIEWER)) {
ImageUser *iuser= MEM_callocN(sizeof(ImageUser), "node image user");
node->storage= iuser;
iuser->sfra= 1;
iuser->fie_ima= 2;
iuser->ok= 1;
if(type==CMP_NODE_SPLITVIEWER){
node->custom1= 50; /* default 50% split */
}
}
Four-in-one commit: (NOTE: new include dependency in Render module, might need MSVC update! It has to include the imbuf/intern/openexr/ directory in search path) -> New Composite node: "Hue Saturation". Works like the former 'post process' menu. There's no gamma, brightness or multiply needed in this node, for that the Curves Node functions better. -> Enabled Toolbox in Node editor This now also replaces the SHIFT+A for adding nodes. The nodes are automatically added to the menus, using the 'class' category from the type definition. Current classes are (compositor examples): Inputs: RenderResult, Image Outputs: Composite, Viewer Color Ops: RGB Curves, Mix, Hue Saturation, AlphaOver Vector Ops: Normal, Vector Curves, Map Value Filters: Filter, Blur, VectorBlur Convertors: ColorRamp, RGBtoBW, Separate RGBA, Separate HSVA, Set Alpha Generators: RGB, Value, Time Groups: the list of custom defined nodes -> OpenEXR tile saving support Created an API for for saving tile-based Images with an unlimited amount of layers/channels. I've tested it for 'render result' now, with the idea that this can (optionally) replace the current inserting of tiles in the main result buffers. Especially with a lot of layers, the used memory for these buffers can easily go into the 100s of megs. Two other advantages: - all 'render result' layers can be saved entirely in a single file, for later use in compositing, also for animation output. - on each render, per scene, a unique temp file can be stored, allowing to re-use these temp files on starting Blender or loading files, showing the last result of a render command. The option is currently disabled, needs more work... but I had to commit this because of the rest of the work I did! -> Bug fix The Image node didn't call an execute event when browsing another image.
2006-02-18 13:28:44 +00:00
else if(type==CMP_NODE_HUE_SAT) {
NodeHueSat *nhs= MEM_callocN(sizeof(NodeHueSat), "node hue sat");
node->storage= nhs;
nhs->hue= 0.5f;
Four-in-one commit: (NOTE: new include dependency in Render module, might need MSVC update! It has to include the imbuf/intern/openexr/ directory in search path) -> New Composite node: "Hue Saturation". Works like the former 'post process' menu. There's no gamma, brightness or multiply needed in this node, for that the Curves Node functions better. -> Enabled Toolbox in Node editor This now also replaces the SHIFT+A for adding nodes. The nodes are automatically added to the menus, using the 'class' category from the type definition. Current classes are (compositor examples): Inputs: RenderResult, Image Outputs: Composite, Viewer Color Ops: RGB Curves, Mix, Hue Saturation, AlphaOver Vector Ops: Normal, Vector Curves, Map Value Filters: Filter, Blur, VectorBlur Convertors: ColorRamp, RGBtoBW, Separate RGBA, Separate HSVA, Set Alpha Generators: RGB, Value, Time Groups: the list of custom defined nodes -> OpenEXR tile saving support Created an API for for saving tile-based Images with an unlimited amount of layers/channels. I've tested it for 'render result' now, with the idea that this can (optionally) replace the current inserting of tiles in the main result buffers. Especially with a lot of layers, the used memory for these buffers can easily go into the 100s of megs. Two other advantages: - all 'render result' layers can be saved entirely in a single file, for later use in compositing, also for animation output. - on each render, per scene, a unique temp file can be stored, allowing to re-use these temp files on starting Blender or loading files, showing the last result of a render command. The option is currently disabled, needs more work... but I had to commit this because of the rest of the work I did! -> Bug fix The Image node didn't call an execute event when browsing another image.
2006-02-18 13:28:44 +00:00
nhs->sat= 1.0f;
nhs->val= 1.0f;
Four-in-one commit: (NOTE: new include dependency in Render module, might need MSVC update! It has to include the imbuf/intern/openexr/ directory in search path) -> New Composite node: "Hue Saturation". Works like the former 'post process' menu. There's no gamma, brightness or multiply needed in this node, for that the Curves Node functions better. -> Enabled Toolbox in Node editor This now also replaces the SHIFT+A for adding nodes. The nodes are automatically added to the menus, using the 'class' category from the type definition. Current classes are (compositor examples): Inputs: RenderResult, Image Outputs: Composite, Viewer Color Ops: RGB Curves, Mix, Hue Saturation, AlphaOver Vector Ops: Normal, Vector Curves, Map Value Filters: Filter, Blur, VectorBlur Convertors: ColorRamp, RGBtoBW, Separate RGBA, Separate HSVA, Set Alpha Generators: RGB, Value, Time Groups: the list of custom defined nodes -> OpenEXR tile saving support Created an API for for saving tile-based Images with an unlimited amount of layers/channels. I've tested it for 'render result' now, with the idea that this can (optionally) replace the current inserting of tiles in the main result buffers. Especially with a lot of layers, the used memory for these buffers can easily go into the 100s of megs. Two other advantages: - all 'render result' layers can be saved entirely in a single file, for later use in compositing, also for animation output. - on each render, per scene, a unique temp file can be stored, allowing to re-use these temp files on starting Blender or loading files, showing the last result of a render command. The option is currently disabled, needs more work... but I had to commit this because of the rest of the work I did! -> Bug fix The Image node didn't call an execute event when browsing another image.
2006-02-18 13:28:44 +00:00
}
else if(type==CMP_NODE_OUTPUT_FILE) {
NodeImageFile *nif= MEM_callocN(sizeof(NodeImageFile), "node image file");
node->storage= nif;
BLI_strncpy(nif->name, G.scene->r.pic, sizeof(nif->name));
nif->imtype= G.scene->r.imtype;
nif->subimtype= G.scene->r.subimtype;
nif->quality= G.scene->r.quality;
nif->sfra= G.scene->r.sfra;
nif->efra= G.scene->r.efra;
}
else if(type==CMP_NODE_DIFF_MATTE){
NodeChroma *c= MEM_callocN(sizeof(NodeChroma), "node chroma");
node->storage= c;
c->t1= 0.01f;
c->t2= 0.01f;
c->t3= 0.01f;
c->fsize= 0.0f;
c->fstrength= 0.0f;
node->custom1= 1; /* RGB */
}
else if(type==CMP_NODE_COLOR_SPILL){
NodeChroma *c= MEM_callocN(sizeof(NodeChroma), "node chroma");
node->storage=c;
c->t1= 0.0f;
c->t2= 0.0f;
c->t3= 0.0f;
c->fsize= 0.0f;
c->fstrength= 0.0f;
node->custom1= 2; /* green channel */
}
else if(type==CMP_NODE_CHROMA){
NodeChroma *c= MEM_callocN(sizeof(NodeChroma), "node chroma");
node->storage= c;
c->t1= 30.0f;
c->t2= 10.0f;
c->t3= 0.0f;
c->fsize= 0.0f;
c->fstrength= 1.0f;
}
else if(type==CMP_NODE_CHANNEL_MATTE){
NodeChroma *c= MEM_callocN(sizeof(NodeChroma), "node chroma");
node->storage=c;
c->t1= 0.0f;
c->t2= 0.0f;
c->t3= 0.0f;
c->fsize= 0.0f;
c->fstrength= 0.0f;
node->custom1= 1; /* RGB channel */
node->custom2= 2; /* Green Channel */
}
else if(type==CMP_NODE_LUMA_MATTE){
NodeChroma *c= MEM_callocN(sizeof(NodeChroma), "node chroma");
node->storage=c;
c->t1= 0.0f;
c->t2= 0.0f;
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
return node;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
/* keep socket listorder identical, for copying links */
/* ntree is the target tree */
bNode *nodeCopyNode(struct bNodeTree *ntree, struct bNode *node)
{
bNode *nnode= MEM_callocN(sizeof(bNode), "dupli node");
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
bNodeSocket *sock;
*nnode= *node;
BLI_addtail(&ntree->nodes, nnode);
duplicatelist(&nnode->inputs, &node->inputs);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
for(sock= nnode->inputs.first; sock; sock= sock->next)
sock->own_index= 0;
duplicatelist(&nnode->outputs, &node->outputs);
for(sock= nnode->outputs.first; sock; sock= sock->next) {
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
sock->own_index= 0;
sock->stack_index= 0;
sock->ns.data= NULL;
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(nnode->id)
nnode->id->us++;
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
if(nnode->storage) {
/* another candidate for handlerizing! */
if(ntree->type==NTREE_SHADER) {
if(node->type==SH_NODE_CURVE_VEC || node->type==SH_NODE_CURVE_RGB)
nnode->storage= curvemapping_copy(node->storage);
else
nnode->storage= MEM_dupallocN(nnode->storage);
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
else if(ntree->type==NTREE_COMPOSIT) {
if(ELEM3(node->type, CMP_NODE_TIME, CMP_NODE_CURVE_VEC, CMP_NODE_CURVE_RGB))
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
nnode->storage= curvemapping_copy(node->storage);
else
nnode->storage= MEM_dupallocN(nnode->storage);
}
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
else
nnode->storage= MEM_dupallocN(nnode->storage);
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
node->new_node= nnode;
nnode->new_node= NULL;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
nnode->preview= NULL;
return nnode;
}
bNodeLink *nodeAddLink(bNodeTree *ntree, bNode *fromnode, bNodeSocket *fromsock, bNode *tonode, bNodeSocket *tosock)
{
bNodeLink *link= MEM_callocN(sizeof(bNodeLink), "link");
BLI_addtail(&ntree->links, link);
link->fromnode= fromnode;
link->fromsock= fromsock;
link->tonode= tonode;
link->tosock= tosock;
return link;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
void nodeRemLink(bNodeTree *ntree, bNodeLink *link)
{
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
BLI_remlink(&ntree->links, link);
if(link->tosock)
link->tosock->link= NULL;
MEM_freeN(link);
}
bNodeTree *ntreeAddTree(int type)
{
bNodeTree *ntree= MEM_callocN(sizeof(bNodeTree), "new node tree");
ntree->type= type;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
ntreeInitTypes(ntree);
return ntree;
}
bNodeTree *ntreeCopyTree(bNodeTree *ntree, int internal_select)
{
bNodeTree *newtree;
bNode *node, *nnode, *last;
bNodeLink *link, *nlink;
bNodeSocket *sock;
int a;
if(ntree==NULL) return NULL;
if(internal_select==0) {
/* is ntree part of library? */
for(newtree=G.main->nodetree.first; newtree; newtree= newtree->id.next)
if(newtree==ntree) break;
if(newtree)
newtree= copy_libblock(ntree);
else
newtree= MEM_dupallocN(ntree);
newtree->nodes.first= newtree->nodes.last= NULL;
newtree->links.first= newtree->links.last= NULL;
}
else
newtree= ntree;
last= ntree->nodes.last;
for(node= ntree->nodes.first; node; node= node->next) {
node->new_node= NULL;
if(internal_select==0 || (node->flag & NODE_SELECT)) {
nnode= nodeCopyNode(newtree, node); /* sets node->new */
if(internal_select) {
node->flag &= ~NODE_SELECT;
nnode->flag |= NODE_SELECT;
}
node->flag &= ~NODE_ACTIVE;
}
if(node==last) break;
}
/* check for copying links */
for(link= ntree->links.first; link; link= link->next) {
if(link->fromnode->new_node && link->tonode->new_node) {
nlink= nodeAddLink(newtree, link->fromnode->new_node, NULL, link->tonode->new_node, NULL);
/* sockets were copied in order */
for(a=0, sock= link->fromnode->outputs.first; sock; sock= sock->next, a++) {
if(sock==link->fromsock)
break;
}
nlink->fromsock= BLI_findlink(&link->fromnode->new_node->outputs, a);
for(a=0, sock= link->tonode->inputs.first; sock; sock= sock->next, a++) {
if(sock==link->tosock)
break;
}
nlink->tosock= BLI_findlink(&link->tonode->new_node->inputs, a);
}
}
/* own type definition for group usage */
if(internal_select==0) {
if(ntree->owntype) {
newtree->owntype= MEM_dupallocN(ntree->owntype);
if(ntree->owntype->inputs)
newtree->owntype->inputs= MEM_dupallocN(ntree->owntype->inputs);
if(ntree->owntype->outputs)
newtree->owntype->outputs= MEM_dupallocN(ntree->owntype->outputs);
}
}
/* weird this is required... there seem to be link pointers wrong still? */
/* anyhoo, doing this solves crashes on copying entire tree (copy scene) and delete nodes */
ntreeSolveOrder(newtree);
return newtree;
}
/* ************** Free stuff ********** */
/* goes over entire tree */
static void node_unlink_node(bNodeTree *ntree, bNode *node)
{
bNodeLink *link, *next;
bNodeSocket *sock;
ListBase *lb;
for(link= ntree->links.first; link; link= next) {
next= link->next;
if(link->fromnode==node) {
lb= &node->outputs;
NodeTagChanged(ntree, link->tonode);
}
else if(link->tonode==node)
lb= &node->inputs;
else
lb= NULL;
if(lb) {
for(sock= lb->first; sock; sock= sock->next) {
if(link->fromsock==sock || link->tosock==sock)
break;
}
if(sock) {
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
nodeRemLink(ntree, link);
}
}
}
}
static void composit_free_node_cache(bNode *node)
{
bNodeSocket *sock;
for(sock= node->outputs.first; sock; sock= sock->next) {
if(sock->ns.data) {
free_compbuf(sock->ns.data);
sock->ns.data= NULL;
}
}
}
void nodeFreeNode(bNodeTree *ntree, bNode *node)
{
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
node_unlink_node(ntree, node);
BLI_remlink(&ntree->nodes, node);
/* since it is called while free database, node->id is undefined */
if(ntree->type==NTREE_COMPOSIT)
composit_free_node_cache(node);
BLI_freelistN(&node->inputs);
BLI_freelistN(&node->outputs);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
if(node->preview) {
if(node->preview->rect)
MEM_freeN(node->preview->rect);
MEM_freeN(node->preview);
}
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
if(node->storage) {
/* could be handlerized at some point, now only 1 exception still */
if(ntree->type==NTREE_SHADER) {
if(node->type==SH_NODE_CURVE_VEC || node->type==SH_NODE_CURVE_RGB)
curvemapping_free(node->storage);
else
MEM_freeN(node->storage);
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
else if(ntree->type==NTREE_COMPOSIT) {
if(ELEM3(node->type, CMP_NODE_TIME, CMP_NODE_CURVE_VEC, CMP_NODE_CURVE_RGB))
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
curvemapping_free(node->storage);
else
MEM_freeN(node->storage);
}
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
else
MEM_freeN(node->storage);
}
MEM_freeN(node);
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* do not free ntree itself here, free_libblock calls this function too */
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
void ntreeFreeTree(bNodeTree *ntree)
{
bNode *node, *next;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if(ntree==NULL) return;
ntreeEndExecTree(ntree); /* checks for if it is still initialized */
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
BLI_freelistN(&ntree->links); /* do first, then unlink_node goes fast */
for(node= ntree->nodes.first; node; node= next) {
next= node->next;
Orange: - New UI element: the "Curve Button". For mapping ranges (like 0 - 1) to another range, the curve button can be used for proportional falloff, bone influences, painting density, etc. Most evident use is of course to map RGB color with curves. To be able to use it, you have to allocate a CurveMapping struct and pass this on to the button. The CurveMapping API is in the new C file blenkernel/intern/colortools.c It's as simple as calling: curvemap= curvemapping_add(3, 0, 0, 1, 1) Which will create 3 curves, and sets a default 0-1 range. The current code only supports up to 4 curves maximum per mapping struct. The CurveMap button in Blender than handles allmost all editing. Evaluating a single channel: float newvalue= curvemapping_evaluateF(curvemap, 0, oldval); Where the second argument is the channel index, here 0-1-2 are possible. Or mapping a vector: curvemapping_evaluate3F(curvemap, newvec, oldvec); Optimized versions for byte or short mapping is possible too, not done yet. In butspace.c I've added a template wrapper for buttons around the curve, to reveil settings or show tools; check this screenie: http://www.blender.org/bf/curves.jpg - Buttons R, G, B: select channel - icons + and -: zoom in, out - icon 'wrench': menu with tools, like clear curve, set handle type - icon 'clipping': menu with clip values, and to dis/enable clipping - icon 'x': delete selection In the curve button itself, only LMB clicks are handled (like all UI elements in Blender). - click on point: select - shift+click on point: swap select - click on point + drag: select point (if not selected) and move it - click outside point + drag: translate view - CTRL+click: add new point - hold SHIFT while dragging to snap to grid (Yes I know... either one of these can be Blender compliant, not both!) - if you drag a point exactly on top of another, it merges them Other fixes: - Icons now draw using "Safe RasterPos", so they align with pixel boundary. the old code made ints from the raster pos coordinate, which doesn't work well for zoom in/out situations - bug in Node editing: buttons could not get freed, causing in memory error prints at end of a Blender session. That one was a very simple, but nasty error causing me all evening last night to find! (Hint; check diff of editnode.c, where uiDoButtons is called) Last note: this adds 3 new files in our tree, I did scons, but not MSVC!
2006-01-08 11:41:06 +00:00
nodeFreeNode(ntree, node);
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(ntree->owntype) {
if(ntree->owntype->inputs)
MEM_freeN(ntree->owntype->inputs);
if(ntree->owntype->outputs)
MEM_freeN(ntree->owntype->outputs);
MEM_freeN(ntree->owntype);
}
}
void ntreeFreeCache(bNodeTree *ntree)
{
bNode *node;
if(ntree==NULL) return;
if(ntree->type==NTREE_COMPOSIT)
for(node= ntree->nodes.first; node; node= node->next)
composit_free_node_cache(node);
}
void ntreeMakeLocal(bNodeTree *ntree)
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
{
int local=0, lib=0;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if(ntree->id.lib==NULL) return;
if(ntree->id.us==1) {
ntree->id.lib= 0;
ntree->id.flag= LIB_LOCAL;
new_id(0, (ID *)ntree, 0);
return;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
/* now check users of groups... again typedepending, callback... */
if(ntree->type==NTREE_SHADER) {
Material *ma;
for(ma= G.main->mat.first; ma; ma= ma->id.next) {
if(ma->nodetree) {
bNode *node;
/* find if group is in tree */
for(node= ma->nodetree->nodes.first; node; node= node->next) {
if(node->id == (ID *)ntree) {
if(ma->id.lib) lib= 1;
else local= 1;
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
}
}
else if(ntree->type==NTREE_COMPOSIT) {
Scene *sce;
for(sce= G.main->scene.first; sce; sce= sce->id.next) {
if(sce->nodetree) {
bNode *node;
/* find if group is in tree */
for(node= sce->nodetree->nodes.first; node; node= node->next) {
if(node->id == (ID *)ntree) {
if(sce->id.lib) lib= 1;
else local= 1;
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* if all users are local, we simply make tree local */
if(local && lib==0) {
ntree->id.lib= NULL;
ntree->id.flag= LIB_LOCAL;
new_id(0, (ID *)ntree, 0);
}
else if(local && lib) {
/* this is the mixed case, we copy the tree and assign it to local users */
bNodeTree *newtree= ntreeCopyTree(ntree, 0);
newtree->id.us= 0;
if(ntree->type==NTREE_SHADER) {
Material *ma;
for(ma= G.main->mat.first; ma; ma= ma->id.next) {
if(ma->nodetree) {
bNode *node;
/* find if group is in tree */
for(node= ma->nodetree->nodes.first; node; node= node->next) {
if(node->id == (ID *)ntree) {
if(ma->id.lib==NULL) {
node->id= &newtree->id;
newtree->id.us++;
ntree->id.us--;
}
}
}
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
else if(ntree->type==NTREE_COMPOSIT) {
Scene *sce;
for(sce= G.main->scene.first; sce; sce= sce->id.next) {
if(sce->nodetree) {
bNode *node;
/* find if group is in tree */
for(node= sce->nodetree->nodes.first; node; node= node->next) {
if(node->id == (ID *)ntree) {
if(sce->id.lib==NULL) {
node->id= &newtree->id;
newtree->id.us++;
ntree->id.us--;
}
}
}
}
}
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
/* ************ find stuff *************** */
static int ntreeHasType(bNodeTree *ntree, int type)
{
bNode *node;
if(ntree)
for(node= ntree->nodes.first; node; node= node->next)
if(node->type == type)
return 1;
return 0;
}
bNodeLink *nodeFindLink(bNodeTree *ntree, bNodeSocket *from, bNodeSocket *to)
{
bNodeLink *link;
for(link= ntree->links.first; link; link= link->next) {
if(link->fromsock==from && link->tosock==to)
return link;
if(link->fromsock==to && link->tosock==from) /* hrms? */
return link;
}
return NULL;
}
int nodeCountSocketLinks(bNodeTree *ntree, bNodeSocket *sock)
{
bNodeLink *link;
int tot= 0;
for(link= ntree->links.first; link; link= link->next) {
if(link->fromsock==sock || link->tosock==sock)
tot++;
}
return tot;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
bNode *nodeGetActive(bNodeTree *ntree)
{
bNode *node;
if(ntree==NULL) return NULL;
for(node= ntree->nodes.first; node; node= node->next)
if(node->flag & NODE_ACTIVE)
break;
return node;
}
/* two active flags, ID nodes have special flag for buttons display */
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
bNode *nodeGetActiveID(bNodeTree *ntree, short idtype)
{
bNode *node;
if(ntree==NULL) return NULL;
for(node= ntree->nodes.first; node; node= node->next)
if(node->id && GS(node->id->name)==idtype)
if(node->flag & NODE_ACTIVE_ID)
break;
return node;
}
/* two active flags, ID nodes have special flag for buttons display */
void nodeClearActiveID(bNodeTree *ntree, short idtype)
{
bNode *node;
if(ntree==NULL) return;
for(node= ntree->nodes.first; node; node= node->next)
if(node->id && GS(node->id->name)==idtype)
node->flag &= ~NODE_ACTIVE_ID;
}
More node goodies! First note; this is a WIP project, some commits might change things that make formerly saved situations not to work identically... like now! ------ New Material integration ------ Until now, the Node system worked on top of the 'current' Material, just like how the Material Layers worked. That's quite confusing in practice, especially to see what Material is a Node, or what is the "base material" Best solution is to completely separate the two. This has been implemented as follows now; - The confusing "Input" node has been removed. - When choosing a Material in Blender, you can define this Material to be either 'normal' (default) or be the root of a Node tree. - If a Material is a Node tree, you have to add Nodes in the tree to see something happen. An empty Node tree doesn't do anything (black). - If a Material is a Node Tree, the 'data browse' menus show it with an 'N' mark before the name. The 'data block' buttons display it with the suffix 'NT' (instead of 'MA'). - In a Node Tree, any Material can be inserted, including itself. Only in that case the Material is being used itself for shading. UI changes: Added a new Panel "Links", which shows: - where the Material is linked to (Object, Mesh, etc) - if the Material is a NodeTree or not - the actual active Material in the Tree The "Node" Panel itself now only shows buttons from the other nodes, when they are active. Further the Material Nodes themselves allow browsing and renaming or adding new Materials now too. Second half of today's work was cleaning up selection when the Nodes overlap... it was possible to drag links from invisible sockets, or click headers for invisible nodes, etc. This because the mouse input code was not checking for visibility yet. Works now even for buttons. :)
2005-12-29 18:08:01 +00:00
/* two active flags, ID nodes have special flag for buttons display */
void nodeSetActive(bNodeTree *ntree, bNode *node)
{
bNode *tnode;
/* make sure only one node is active, and only one per ID type */
for(tnode= ntree->nodes.first; tnode; tnode= tnode->next) {
tnode->flag &= ~NODE_ACTIVE;
if(node->id && tnode->id) {
if(GS(node->id->name) == GS(tnode->id->name))
tnode->flag &= ~NODE_ACTIVE_ID;
}
}
node->flag |= NODE_ACTIVE;
if(node->id)
node->flag |= NODE_ACTIVE_ID;
}
/* use flags are not persistant yet, groups might need different tagging, so we do it each time
when we need to get this info */
void ntreeSocketUseFlags(bNodeTree *ntree)
{
bNode *node;
bNodeSocket *sock;
bNodeLink *link;
/* clear flags */
for(node= ntree->nodes.first; node; node= node->next) {
for(sock= node->inputs.first; sock; sock= sock->next)
sock->flag &= ~SOCK_IN_USE;
for(sock= node->outputs.first; sock; sock= sock->next)
sock->flag &= ~SOCK_IN_USE;
}
/* tag all thats in use */
for(link= ntree->links.first; link; link= link->next) {
link->fromsock->flag |= SOCK_IN_USE;
link->tosock->flag |= SOCK_IN_USE;
}
}
/* ************** dependency stuff *********** */
/* node is guaranteed to be not checked before */
static int node_recurs_check(bNode *node, bNode ***nsort, int level)
{
bNode *fromnode;
bNodeSocket *sock;
int has_inputlinks= 0;
node->done= 1;
level++;
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->link) {
has_inputlinks= 1;
fromnode= sock->link->fromnode;
if(fromnode->done==0) {
fromnode->level= node_recurs_check(fromnode, nsort, level);
}
}
}
// printf("node sort %s level %d\n", node->name, level);
**nsort= node;
(*nsort)++;
if(has_inputlinks)
return level;
else
return 0xFFF;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
void ntreeSolveOrder(bNodeTree *ntree)
{
bNode *node, **nodesort, **nsort;
bNodeSocket *sock;
bNodeLink *link;
int a, totnode=0;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
/* the solve-order is called on each tree change, so we should be sure no exec can be running */
ntreeEndExecTree(ntree);
/* set links pointers the input sockets, to find dependencies */
/* first clear data */
for(node= ntree->nodes.first; node; node= node->next) {
node->done= 0;
totnode++;
for(sock= node->inputs.first; sock; sock= sock->next)
sock->link= NULL;
}
if(totnode==0)
return;
for(link= ntree->links.first; link; link= link->next) {
link->tosock->link= link;
}
nsort= nodesort= MEM_callocN(totnode*sizeof(void *), "sorted node array");
/* recursive check */
for(node= ntree->nodes.first; node; node= node->next) {
if(node->done==0) {
node->level= node_recurs_check(node, &nsort, 0);
}
}
/* re-insert nodes in order, first a paranoia check */
for(a=0; a<totnode; a++) {
if(nodesort[a]==NULL)
break;
}
if(a<totnode)
printf("sort error in node tree");
else {
ntree->nodes.first= ntree->nodes.last= NULL;
for(a=0; a<totnode; a++)
BLI_addtail(&ntree->nodes, nodesort[a]);
}
MEM_freeN(nodesort);
/* find the active outputs, might become tree type dependant handler */
for(node= ntree->nodes.first; node; node= node->next) {
if(node->typeinfo->nclass==NODE_CLASS_OUTPUT) {
bNode *tnode;
int output= 0;
/* we need a check for which output node should be tagged like this, below an exception */
if(node->type==CMP_NODE_OUTPUT_FILE)
continue;
/* there is more types having output class, each one is checked */
for(tnode= ntree->nodes.first; tnode; tnode= tnode->next) {
if(tnode->typeinfo->nclass==NODE_CLASS_OUTPUT) {
if(tnode->type==node->type) {
2006-01-26 22:18:46 +00:00
if(tnode->flag & NODE_DO_OUTPUT) {
output++;
2006-01-26 22:18:46 +00:00
if(output>1)
tnode->flag &= ~NODE_DO_OUTPUT;
}
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
2006-01-26 22:18:46 +00:00
if(output==0)
node->flag |= NODE_DO_OUTPUT;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
}
/* here we could recursively set which nodes have to be done,
might be different for editor or for "real" use... */
}
/* should be callback! */
void NodeTagChanged(bNodeTree *ntree, bNode *node)
{
if(ntree->type==NTREE_COMPOSIT) {
bNodeSocket *sock;
for(sock= node->outputs.first; sock; sock= sock->next) {
if(sock->ns.data) {
free_compbuf(sock->ns.data);
sock->ns.data= NULL;
//if(node->preview && node->preview->rect) {
// MEM_freeN(node->preview->rect);
// node->preview->rect= NULL;
//}
}
}
node->need_exec= 1;
}
}
void NodeTagIDChanged(bNodeTree *ntree, ID *id)
{
if(id==NULL)
return;
if(ntree->type==NTREE_COMPOSIT) {
bNode *node;
for(node= ntree->nodes.first; node; node= node->next)
if(node->id==id)
NodeTagChanged(ntree, node);
}
}
/* *************** preview *********** */
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
/* if node->preview, then we assume the rect to exist */
static void nodeInitPreview(bNode *node, int xsize, int ysize)
{
if(node->preview==NULL) {
node->preview= MEM_callocN(sizeof(bNodePreview), "node preview");
// printf("added preview %s\n", node->name);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
/* node previews can get added with variable size this way */
if(xsize==0 || ysize==0)
return;
2006-01-26 22:18:46 +00:00
/* sanity checks & initialize */
if(node->preview->rect) {
2006-01-26 22:18:46 +00:00
if(node->preview->xsize!=xsize && node->preview->ysize!=ysize) {
MEM_freeN(node->preview->rect);
node->preview->rect= NULL;
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
if(node->preview->rect==NULL) {
node->preview->rect= MEM_callocN(4*xsize + xsize*ysize*sizeof(float)*4, "node preview rect");
node->preview->xsize= xsize;
node->preview->ysize= ysize;
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
void ntreeInitPreview(bNodeTree *ntree, int xsize, int ysize)
{
bNode *node;
if(ntree==NULL)
return;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
for(node= ntree->nodes.first; node; node= node->next) {
if(node->typeinfo->flag & NODE_PREVIEW) /* hrms, check for closed nodes? */
nodeInitPreview(node, xsize, ysize);
if(node->type==NODE_GROUP && (node->flag & NODE_GROUP_EDIT))
ntreeInitPreview((bNodeTree *)node->id, xsize, ysize);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
}
static void nodeClearPreview(bNode *node)
{
if(node->preview && node->preview->rect)
memset(node->preview->rect, 0, MEM_allocN_len(node->preview->rect));
}
/* use it to enforce clear */
void ntreeClearPreview(bNodeTree *ntree)
{
bNode *node;
if(ntree==NULL)
return;
for(node= ntree->nodes.first; node; node= node->next) {
if(node->typeinfo->flag & NODE_PREVIEW)
nodeClearPreview(node);
if(node->type==NODE_GROUP && (node->flag & NODE_GROUP_EDIT))
ntreeClearPreview((bNodeTree *)node->id);
}
}
/* hack warning! this function is only used for shader previews, and
since it gets called multiple times per pixel for Ztransp we only
add the color once. Preview gets cleared before it starts render though */
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
void nodeAddToPreview(bNode *node, float *col, int x, int y)
{
bNodePreview *preview= node->preview;
if(preview) {
if(x>=0 && y>=0) {
if(x<preview->xsize && y<preview->ysize) {
float *tar= preview->rect+ 4*((preview->xsize*y) + x);
if(tar[0]==0.0f) {
QUATCOPY(tar, col);
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
//else printf("prv out bound x y %d %d\n", x, y);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
//else printf("prv out bound x y %d %d\n", x, y);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
}
/* ******************* executing ************* */
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
/* see notes at ntreeBeginExecTree */
static void group_node_get_stack(bNode *node, bNodeStack *stack, bNodeStack **in, bNodeStack **out, bNodeStack **gin, bNodeStack **gout)
{
bNodeSocket *sock;
/* build pointer stack */
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->intern) {
/* yep, intern can have link or is hidden socket */
if(sock->link)
*(in++)= stack + sock->link->fromsock->stack_index;
else
*(in++)= &sock->ns;
}
else
*(in++)= gin[sock->stack_index_ext];
}
for(sock= node->outputs.first; sock; sock= sock->next) {
if(sock->intern)
*(out++)= stack + sock->stack_index;
else
*(out++)= gout[sock->stack_index_ext];
}
}
static void node_group_execute(bNodeStack *stack, void *data, bNode *gnode, bNodeStack **in, bNodeStack **out)
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
{
bNode *node;
bNodeTree *ntree= (bNodeTree *)gnode->id;
bNodeStack *nsin[MAX_SOCKET]; /* arbitrary... watch this */
bNodeStack *nsout[MAX_SOCKET]; /* arbitrary... watch this */
if(ntree==NULL) return;
stack+= gnode->stack_index;
for(node= ntree->nodes.first; node; node= node->next) {
if(node->typeinfo->execfunc) {
group_node_get_stack(node, stack, nsin, nsout, in, out);
/* for groups, only execute outputs for edited group */
if(node->typeinfo->nclass==NODE_CLASS_OUTPUT) {
if(gnode->flag & NODE_GROUP_EDIT)
if(node->flag & NODE_DO_OUTPUT)
node->typeinfo->execfunc(data, node, nsin, nsout);
}
else
node->typeinfo->execfunc(data, node, nsin, nsout);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
}
/* free internal group output nodes */
if(ntree->type==NTREE_COMPOSIT) {
for(node= ntree->nodes.first; node; node= node->next) {
if(node->typeinfo->execfunc) {
bNodeSocket *sock;
for(sock= node->outputs.first; sock; sock= sock->next) {
if(sock->intern) {
bNodeStack *ns= stack + sock->stack_index;
if(ns->data) {
free_compbuf(ns->data);
ns->data= NULL;
}
}
}
}
}
}
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
/* recursively called for groups */
/* we set all trees on own local indices, but put a total counter
in the groups, so each instance of a group has own stack */
static int ntree_begin_exec_tree(bNodeTree *ntree)
{
bNode *node;
bNodeSocket *sock;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
int index= 0, index_in= 0, index_out= 0;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
if((ntree->init & NTREE_TYPE_INIT)==0)
ntreeInitTypes(ntree);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
/* create indices for stack, check preview */
for(node= ntree->nodes.first; node; node= node->next) {
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->intern==0)
sock->stack_index_ext= index_in++;
}
for(sock= node->outputs.first; sock; sock= sock->next) {
sock->stack_index= index++;
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(sock->intern==0)
sock->stack_index_ext= index_out++;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(node->type==NODE_GROUP) {
if(node->id) {
node->stack_index= index;
index+= ntree_begin_exec_tree((bNodeTree *)node->id);
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
}
}
}
return index;
}
/* copy socket compbufs to stack, initialize usage of curve nodes */
static void composit_begin_exec(bNodeTree *ntree, int is_group)
{
bNode *node;
bNodeSocket *sock;
for(node= ntree->nodes.first; node; node= node->next) {
if(is_group==0) {
for(sock= node->outputs.first; sock; sock= sock->next) {
bNodeStack *ns= ntree->stack[0] + sock->stack_index;
if(sock->ns.data) {
ns->data= sock->ns.data;
sock->ns.data= NULL;
}
}
}
/* cannot initialize them while using in threads */
if(ELEM3(node->type, CMP_NODE_TIME, CMP_NODE_CURVE_VEC, CMP_NODE_CURVE_RGB)) {
curvemapping_initialize(node->storage);
if(node->type==CMP_NODE_CURVE_RGB)
curvemapping_premultiply(node->storage, 0);
}
if(node->type==NODE_GROUP)
composit_begin_exec((bNodeTree *)node->id, 1);
}
}
/* copy stack compbufs to sockets */
static void composit_end_exec(bNodeTree *ntree, int is_group)
{
extern void print_compbuf(char *str, struct CompBuf *cbuf);
bNode *node;
bNodeStack *ns;
int a;
for(node= ntree->nodes.first; node; node= node->next) {
if(is_group==0) {
bNodeSocket *sock;
for(sock= node->outputs.first; sock; sock= sock->next) {
ns= ntree->stack[0] + sock->stack_index;
if(ns->data) {
sock->ns.data= ns->data;
ns->data= NULL;
}
}
}
if(node->type==CMP_NODE_CURVE_RGB)
curvemapping_premultiply(node->storage, 1);
if(node->type==NODE_GROUP)
composit_end_exec((bNodeTree *)node->id, 1);
node->need_exec= 0;
}
if(is_group==0) {
/* internally, group buffers are not stored */
for(ns= ntree->stack[0], a=0; a<ntree->stacksize; a++, ns++) {
if(ns->data) {
printf("freed leftover buffer from stack\n");
free_compbuf(ns->data);
}
}
}
}
static void group_tag_used_outputs(bNode *gnode, bNodeStack *stack)
{
bNodeTree *ntree= (bNodeTree *)gnode->id;
bNode *node;
stack+= gnode->stack_index;
for(node= ntree->nodes.first; node; node= node->next) {
if(node->typeinfo->execfunc) {
bNodeSocket *sock;
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->intern) {
if(sock->link) {
bNodeStack *ns= stack + sock->link->fromsock->stack_index;
ns->hasoutput= 1;
ns->sockettype= sock->link->fromsock->type;
}
else
sock->ns.sockettype= sock->type;
}
}
}
}
}
/* stack indices make sure all nodes only write in allocated data, for making it thread safe */
/* only root tree gets the stack, to enable instances to have own stack entries */
/* only two threads now! */
/* per tree (and per group) unique indices are created */
/* the index_ext we need to be able to map from groups to the group-node own stack */
void ntreeBeginExecTree(bNodeTree *ntree)
{
/* let's make it sure */
if(ntree->init & NTREE_EXEC_INIT)
return;
/* allocate the stack pointer array */
ntree->stack= MEM_callocN(BLENDER_MAX_THREADS*sizeof(void *), "stack array");
/* goes recursive over all groups */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
ntree->stacksize= ntree_begin_exec_tree(ntree);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if(ntree->stacksize) {
bNode *node;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
bNodeStack *ns;
int a;
/* allocate the base stack */
ns=ntree->stack[0]= MEM_callocN(ntree->stacksize*sizeof(bNodeStack), "node stack");
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
/* tag inputs, the get_stack() gives own socket stackdata if not in use */
for(a=0; a<ntree->stacksize; a++, ns++) ns->hasinput= 1;
/* tag used outputs, so we know when we can skip operations */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
for(node= ntree->nodes.first; node; node= node->next) {
bNodeSocket *sock;
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->link) {
ns= ntree->stack[0] + sock->link->fromsock->stack_index;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
ns->hasoutput= 1;
ns->sockettype= sock->link->fromsock->type;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
else
sock->ns.sockettype= sock->type;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
if(node->type==NODE_GROUP && node->id)
group_tag_used_outputs(node, ntree->stack[0]);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
/* composite does 1 node per thread, so no multiple stacks needed */
if(ntree->type==NTREE_COMPOSIT)
composit_begin_exec(ntree, 0);
else {
for(a=1; a<BLENDER_MAX_THREADS; a++)
ntree->stack[a]= MEM_dupallocN(ntree->stack[0]);
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
ntree->init |= NTREE_EXEC_INIT;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
void ntreeEndExecTree(bNodeTree *ntree)
{
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
if(ntree->init & NTREE_EXEC_INIT) {
int a;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
/* another callback candidate! */
if(ntree->type==NTREE_COMPOSIT)
composit_end_exec(ntree, 0);
if(ntree->stack) {
for(a=0; a<BLENDER_MAX_THREADS; a++)
if(ntree->stack[a])
MEM_freeN(ntree->stack[a]);
MEM_freeN(ntree->stack);
ntree->stack= NULL;
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
Orange: more noodle updates! **** NEW: Group Nodes Node trees usually become messy and confusing quickly, so we need not only a way to collapse Nodes into single 'groups', but also a way to re-use that data to create libraries of effects. This has been done by making a new Library data type, the NodeTree. Everything that has been grouped is stored here, and available for re-use, appending or linking. These NodeTrees are fully generic, i.e. can store shader trees, composit trees, and so on. The 'type' value as stored in the NodeTree will keep track of internal type definitions and execute/drawing callbacks. Needless to say, re-using shader trees in a composit tree is a bit useless, and will be prevented in the browsing code. :) So; any NodeTree can become a "Goup Node" inside in a NodeTree. This Group Node then works just like any Node. To prevent the current code to become too complex, I've disabled the possibility to insert Groups inside of Groups. That might be enabled later, but is a real nasty piece of code to get OK. Since Group Nodes are a dynamic Node type, a lot of work has been done to ensure Node definitions can be dynamic too, but still allow to be stored in files, and allow to be verified for type-definition changes on reloading. This system needs a little bit maturing still, so the Python gurus should better wait a little bit! (Also for me to write the definite API docs for it). What works now: - Press CTRL+G to create a new Group. The grouping code checks for impossible selections (like an unselected node between selected nodes). Everthing that's selected then gets removed from the current tree, and inserted in a new NodeTree library data block. A Group Node then is added which links to this new NodeTree. - Press ALT+G to ungroup. This will not delete the NodeTree library data, but just duplicate the Group into the current tree. - Press TAB, or click on the NodeTree icon to edit Groups. Note that NodeTrees are instances, so editing one Group will also change the other users. This also means that when removing nodes in a Group (or hiding sockets or changing internal links) this is immediately corrected for all users of this Group, also in other Materials. - While editing Groups, only the internal Nodes can be edited. A single click outside of the Group boundary will close this 'edit mode'. What needs to be done: - SHIFT+A menu in toolbox style, also including a list of Groups - Enable the single-user button in the Group Node - Displaying all (visible) internal group UI elements in the Node Panel - Enable Library linking and prevent editing of Groups then. **** NEW: Socket Visibility control Node types will be generated with a lot of possible inputs or outputs, and drawing all sockets all the time isn't very useful then. A new option in the Node header ('plus' icon) allows to either hide all unused sockets (first keypress) or to reveil them (when there are hidden sockets, the icon displays black, otherwise it's blended). Hidden sockets in Nodes also are not exported to a Group, so this way you can control what options (in/outputs) exactly are available. To be done: - a way to hide individual sockets, like with a RMB click on it. **** NEW: Nodes now render! This is still quite primitive, more on a level to replace the (now obsolete and disabled) Material Layers. What needs to be done: - make the "Geometry" node work properly, also for AA textures - make the Texture Node work (does very little at the moment) - give Material Nodes all inputs as needed (like Map-to Panel) - find a way to export more data from a Material Node, like the shadow value, or light intensity only, etc Very important also to separate from the Material Buttons the "global" options, like "Ztransp" or "Wire" or "Halo". These can not be set for each Material-Node individually. Also note that the Preview Render (Buttons window) now renders a bit differently. This was a horrid piece of antique code, using a totally incompatible way of rendering. Target is to fully re-use internal render code for previews. OK... that's it mostly. Now test!
2006-01-02 13:06:05 +00:00
ntree->init &= ~NTREE_EXEC_INIT;
}
}
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
static void node_get_stack(bNode *node, bNodeStack *stack, bNodeStack **in, bNodeStack **out)
{
bNodeSocket *sock;
/* build pointer stack */
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->link)
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
*(in++)= stack + sock->link->fromsock->stack_index;
else
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
*(in++)= &sock->ns;
}
for(sock= node->outputs.first; sock; sock= sock->next) {
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
*(out++)= stack + sock->stack_index;
}
}
/* nodes are presorted, so exec is in order of list */
void ntreeExecTree(bNodeTree *ntree, void *callerdata, int thread)
{
bNode *node;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
bNodeStack *nsin[MAX_SOCKET]; /* arbitrary... watch this */
bNodeStack *nsout[MAX_SOCKET]; /* arbitrary... watch this */
bNodeStack *stack;
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
/* only when initialized */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if((ntree->init & NTREE_EXEC_INIT)==0)
ntreeBeginExecTree(ntree);
stack= ntree->stack[thread];
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
for(node= ntree->nodes.first; node; node= node->next) {
if(node->typeinfo->execfunc) {
node_get_stack(node, stack, nsin, nsout);
node->typeinfo->execfunc(callerdata, node, nsin, nsout);
}
else if(node->type==NODE_GROUP && node->id) {
node_get_stack(node, stack, nsin, nsout);
node_group_execute(stack, callerdata, node, nsin, nsout);
Christmas coding work! ********* Node editor work: - To enable Nodes for Materials, you have to set the "Use Nodes" button, in the new Material buttons "Nodes" Panel or in header of the Node editor. Doing this will disable Material-Layers. - Nodes now execute materials ("shaders"), but still only using the previewrender code. - Nodes have (optional) previews for rendered images. - Node headers allow to hide buttons and/or preview image - Nodes can be dragged larger/smaller (right-bottom corner) - Nodes can be hidden (minimized) with hotkey H - CTRL+click on an Input Socket gives a popup with default values. - Changing Material/Texture or Mix node will adjust Node title. - Click-drag outside of a Node changes cursor to "Knife' and allows to draw a rect where to cut Links. - Added new node types RGBtoBW, Texture, In/Output, ColorRamp - Material Nodes have options to ouput diffuse or specular, or to use a negative normal. The input socket 'Normal' will force the material to use that normal, otherwise it uses the normal from the Material that has the node tree. - When drawing a link between two not-matching sockets, Blender inserts a converting node (now only for value/rgb combos) - When drawing a link to an input socket that's already in use, the old link will either disappear or flip to another unused socket. - A click on a Material Node will activate it, and show all its settings in the Material Buttons. Active Material Nodes draw the material icon in red. - A click on any node will show its options in the Node Panel in the Material buttons. - Multiple Output Nodes can be used, to sample contents of a tree, but only one Output is the real one, which is indicated in a different color and red material icon. - Added ThemeColors for node types - ALT+C will convert existing Material-Layers to Node... this currently only adds the material/mix nodes and connects them. Dunno if this is worth a lot of coding work to make perfect? - Press C to call another "Solve order", which will show all possible cyclic conflicts (if there are). - Technical: nodes now use "Type" structs which define the structure of nodes and in/output sockets. The Type structs store all fixed info, callbacks, and allow to reconstruct saved Nodes to match what is required by Blender. - Defining (new) nodes now is as simple as filling in a fixed Type struct, plus code some callbacks. A doc will be made! - Node preview images are by default float ********* Icon drawing: - Cleanup of how old icons were implemented in new system, making them 16x16 too, correctly centered *and* scaled. - Made drawing Icons use float coordinates - Moved BIF_calcpreview_image() into interface_icons.c, renamed it icon_from_image(). Removed a lot of unneeded Imbuf magic here! :) - Skipped scaling and imbuf copying when icons are OK size ********* Preview render: - Huge cleanup of code.... - renaming BIF_xxx calls that only were used internally - BIF_previewrender() now accepts an argument for rendering method, so it supports icons, buttonwindow previewrender and node editor - Only a single BIF_preview_changed() call now exists, supporting all signals as needed for buttos and node editor ********* More stuff: - glutil.c, glaDrawPixelsSafe() and glaDrawPixelsTex() now accept format argument for GL_FLOAT rects - Made the ColorBand become a built-in button for interface.c Was a load of cleanup work in buttons_shading.c... - removed a load of unneeded glBlendFunc() calls - Fixed bug in calculating text length for buttons (ancient!)
2005-12-28 15:42:51 +00:00
}
}
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* ***************************** threaded version for execute composite nodes ************* */
#define NODE_PROCESSING 1
#define NODE_READY 2
#define NODE_FINISHED 4
#define NODE_FREEBUFS 8
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* not changing info, for thread callback */
typedef struct ThreadData {
bNodeStack *stack;
RenderData *rd;
} ThreadData;
static void *exec_composite_node(void *node_v)
{
bNodeStack *nsin[MAX_SOCKET]; /* arbitrary... watch this */
bNodeStack *nsout[MAX_SOCKET]; /* arbitrary... watch this */
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
bNode *node= node_v;
ThreadData *thd= (ThreadData *)node->new_node; /* abuse */
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
node_get_stack(node, thd->stack, nsin, nsout);
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
if(node->typeinfo->execfunc) {
node->typeinfo->execfunc(thd->rd, node, nsin, nsout);
}
else if(node->type==NODE_GROUP && node->id) {
node_group_execute(thd->stack, thd->rd, node, nsin, nsout);
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
node->exec |= NODE_READY;
return 0;
}
/* these are nodes without input, only giving values */
/* or nodes with only value inputs */
static int node_only_value(bNode *node)
{
bNodeSocket *sock;
if(ELEM3(node->type, CMP_NODE_TIME, CMP_NODE_VALUE, CMP_NODE_RGB))
return 1;
if(node->inputs.first) {
int retval= 1;
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->link)
retval &= node_only_value(sock->link->fromnode);
}
return retval;
}
return 0;
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* return total of executable nodes, for timecursor */
/* only compositor uses it */
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
static int setExecutableNodes(bNodeTree *ntree, ThreadData *thd)
{
bNodeStack *nsin[MAX_SOCKET]; /* arbitrary... watch this */
bNodeStack *nsout[MAX_SOCKET]; /* arbitrary... watch this */
bNode *node;
bNodeSocket *sock;
int totnode= 0, group_edit= 0;
/* note; do not add a dependency sort here, the stack was created already */
/* if we are in group edit, viewer nodes get skipped when group has viewer */
for(node= ntree->nodes.first; node; node= node->next)
if(node->type==NODE_GROUP && (node->flag & NODE_GROUP_EDIT))
if(ntreeHasType((bNodeTree *)node->id, CMP_NODE_VIEWER))
group_edit= 1;
for(node= ntree->nodes.first; node; node= node->next) {
int a;
node_get_stack(node, thd->stack, nsin, nsout);
/* test the outputs */
/* skip value-only nodes (should be in type!) */
if(!node_only_value(node)) {
for(a=0, sock= node->outputs.first; sock; sock= sock->next, a++) {
if(nsout[a]->data==NULL && nsout[a]->hasoutput) {
node->need_exec= 1;
break;
}
}
}
/* test the inputs */
for(a=0, sock= node->inputs.first; sock; sock= sock->next, a++) {
/* skip viewer nodes in bg render or group edit */
if( ELEM(node->type, CMP_NODE_VIEWER, CMP_NODE_SPLITVIEWER) && (G.background || group_edit))
node->need_exec= 0;
/* is sock in use? */
else if(sock->link) {
bNodeLink *link= sock->link;
/* this is the test for a cyclic case */
if(link->fromnode->level >= link->tonode->level && link->tonode->level!=0xFFF) {
if(link->fromnode->need_exec) {
node->need_exec= 1;
break;
}
}
else {
node->need_exec= 0;
printf("Node %s skipped, cyclic dependency\n", node->name);
}
}
}
if(node->need_exec) {
/* free output buffers */
for(a=0, sock= node->outputs.first; sock; sock= sock->next, a++) {
if(nsout[a]->data) {
free_compbuf(nsout[a]->data);
nsout[a]->data= NULL;
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
totnode++;
/* printf("node needs exec %s\n", node->name); */
/* tag for getExecutableNode() */
node->exec= 0;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
else {
/* tag for getExecutableNode() */
node->exec= NODE_READY|NODE_FINISHED;
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
/* last step: set the stack values for only-value nodes */
/* just does all now, compared to a full buffer exec this is nothing */
if(totnode) {
for(node= ntree->nodes.first; node; node= node->next) {
if(node->need_exec==0 && node_only_value(node)) {
if(node->typeinfo->execfunc) {
node_get_stack(node, thd->stack, nsin, nsout);
node->typeinfo->execfunc(thd->rd, node, nsin, nsout);
}
}
}
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
return totnode;
}
/* while executing tree, free buffers from nodes that are not needed anymore */
static void freeExecutableNode(bNodeTree *ntree)
{
/* node outputs can be freed when:
- not a render result or image node
- when node outputs go to nodes all being set NODE_FINISHED
*/
bNode *node;
bNodeSocket *sock;
/* set exec flag for finished nodes that might need freed */
for(node= ntree->nodes.first; node; node= node->next) {
if(node->type!=CMP_NODE_R_LAYERS)
if(node->exec & NODE_FINISHED)
node->exec |= NODE_FREEBUFS;
}
/* clear this flag for input links that are not done yet */
for(node= ntree->nodes.first; node; node= node->next) {
if((node->exec & NODE_FINISHED)==0) {
for(sock= node->inputs.first; sock; sock= sock->next)
if(sock->link)
sock->link->fromnode->exec &= ~NODE_FREEBUFS;
}
}
/* now we can free buffers */
for(node= ntree->nodes.first; node; node= node->next) {
if(node->exec & NODE_FREEBUFS) {
for(sock= node->outputs.first; sock; sock= sock->next) {
bNodeStack *ns= ntree->stack[0] + sock->stack_index;
if(ns->data) {
free_compbuf(ns->data);
ns->data= NULL;
// printf("freed buf node %s \n", node->name);
}
}
}
}
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
static bNode *getExecutableNode(bNodeTree *ntree)
{
bNode *node;
bNodeSocket *sock;
for(node= ntree->nodes.first; node; node= node->next) {
if(node->exec==0) {
/* input sockets should be ready */
for(sock= node->inputs.first; sock; sock= sock->next) {
if(sock->link)
if((sock->link->fromnode->exec & NODE_READY)==0)
break;
}
if(sock==NULL)
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
return node;
}
}
return NULL;
}
/* optimized tree execute test for compositing */
void ntreeCompositExecTree(bNodeTree *ntree, RenderData *rd, int do_preview)
{
bNode *node;
ListBase threads;
ThreadData thdata;
int totnode, rendering= 1;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
if(ntree==NULL) return;
if(do_preview)
ntreeInitPreview(ntree, 0, 0);
ntreeBeginExecTree(ntree);
Compositing workflow upgrade; You now can set a Preview panel in the Image window, to define a sub-rect of an image to be processed. Works like the preview in 3D Window. Just press SHIFT+P to get it activated. Very nice speedup! This is how it works: - The compositor still uses the scene image size (including % setting) for Viewer or Composite output size - If a preview exists, it calculates the cropped rect from its position in the Image window, and stores that in the Scene render data - On composite execute, it copies only this part from the 'generator nodes', right now Images or Render Results. That makes the entire composite tree only using small rects, so it will execute fast. - Also the render window will only display the cropped rect, and on F12 only the cropped part is being executed - On rendering in background mode, the cropping is ignored though. Usability notes: - translating or zooming view will automatically invoke a recalculation - if you zoom in on details, the calculated rect will even become smaller - only one Imagewindow can have this Preview Panel, to prevent conflicts of what the cropped area should be. Compositing is on Scene level, not local per image window. (Note; 3D Previews are local per window!) - Closing the preview panel will invoke a full-size recalculation - All passes/layers from rendering are nicely cropped, including Z and vectors. The work to make the compositor do cropping was simple, but getting the Image window displaying correctly and get all events OK was a lot of work... indeed, we need to refactor Image Window usage once. Sorry for making the mess even bigger now. :) I've tried not to interfere with UV edit or Paint though... only when you're in compositing mode the panel will work. BUG fix: 3D Preview render didn't work when multiple layers were set in the current scene.
2006-02-09 11:07:04 +00:00
/* prevent unlucky accidents */
if(G.background)
rd->scemode &= ~R_COMP_CROP;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* setup callerdata for thread callback */
thdata.rd= rd;
thdata.stack= ntree->stack[0];
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* fixed seed, for example noise texture */
BLI_srandom(rd->cfra);
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
/* sets need_exec tags in nodes */
totnode= setExecutableNodes(ntree, &thdata);
BLI_init_threads(&threads, exec_composite_node, rd->threads);
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
while(rendering) {
if(BLI_available_threads(&threads)) {
node= getExecutableNode(ntree);
if(node) {
if(ntree->timecursor)
ntree->timecursor(totnode);
if(ntree->stats_draw) {
char str[64];
sprintf(str, "Compositing %d %s", totnode, node->name);
ntree->stats_draw(str);
}
totnode--;
node->new_node = (bNode *)&thdata;
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
node->exec= NODE_PROCESSING;
BLI_insert_thread(&threads, node);
}
else
PIL_sleep_ms(50);
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
else
PIL_sleep_ms(50);
rendering= 0;
/* test for ESC */
if(ntree->test_break && ntree->test_break()) {
for(node= ntree->nodes.first; node; node= node->next)
node->exec |= NODE_READY;
}
/* check for ready ones, and if we need to continue */
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
for(node= ntree->nodes.first; node; node= node->next) {
if(node->exec & NODE_READY) {
if((node->exec & NODE_FINISHED)==0) {
BLI_remove_thread(&threads, node);
node->exec |= NODE_FINISHED;
/* freeing unused buffers */
if(rd->scemode & R_COMP_FREE)
freeExecutableNode(ntree);
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
}
}
else rendering= 1;
}
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00
BLI_end_threads(&threads);
ntreeEndExecTree(ntree);
}
Three-in-one commit: - Compositor now is threaded Enable it with the Scene buttons "Threads". This will handle over nodes to individual threads to be calculated. However, if nodes depend on others they have to wait. The current system only threads per entire node, not for calculating results in parts. I've reshuffled the node execution code to evaluate 'changed' events, and prepare the entire tree to become simply parsed for open jobs with a call to node = getExecutableNode() By default, even without 'thread' option active, all node execution is done within a separate thread. Also fixed issues in yesterdays commit for 'event based' calculations, it didn't do animated images, or execute (on rendering) the correct nodes when you don't have Render-Result nodes included. - Added generic Thread support in blenlib/ module The renderer and the node system now both use same code for controlling the threads. This has been moved to a new C file in blenlib/intern/threads.c. Check this c file for an extensive doc and example how to use it. The current implementation for Compositing allows unlimited amount of threads. For rendering it is still tied to two threads, although it is pretty easy to extend to 4 already. People with giant amounts of cpus can poke me once for tests. :) - Bugfix in creating group nodes Group node definitions demand a clear separation of 'internal sockets' and 'external sockets'. The first are sockets being linked internally, the latter are sockets exposed as sockets for the group itself. When sockets were linked both internal and external, Blender crashed. It is solved now by removing the external link(s).
2006-01-29 11:36:33 +00:00