This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/texture_pointdensity.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

982 lines
26 KiB
C
Raw Normal View History

/*
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup render
2011-02-27 19:31:27 +00:00
*/
#include <math.h>
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
#include <stdio.h>
#include <stdlib.h>
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_kdopbvh.h"
#include "BLI_math.h"
#include "BLI_noise.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
#include "BLT_translation.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_particle_types.h"
#include "DNA_texture_types.h"
#include "BKE_colorband.h"
#include "BKE_colortools.h"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_lattice.h"
#include "BKE_object.h"
Point Density texture The Point Density texture now has some additional options for how the point locations are cached. Previously it was all relative to worldspace, but there are now some other options that make things a lot more convenient for mapping the texture to Local (or Orco). Thanks to theeth for helping with the space conversions! The new Object space options allow this sort of thing to be possible - a particle system, instanced on a transformed renderable object: http://mke3.net/blender/devel/rendering/volumetrics/pd_objectspace.mov It's also a lot easier to use multiple instances, just duplicate the renderable objects and move them around. The new particle cache options are: * Emit Object space This caches the particles relative to the emitter object's coordinate space (i.e. relative to the emitter's object center). This makes it possible to map the Texture to Local or Orco easily, so you can easily move, rotate or scale the rendering object that has the Point Density texture. It's relative to the emitter's location, rotation and scale, so if the object you're rendering the texture on is aligned differently to the emitter, the results will be rotated etc. * Emit Object Location This offsets the particles to the emitter object's location in 3D space. It's similar to Emit Object Space, however the emitter object's rotation and scale are ignored. This is probably the easiest to use, since you don't need to worry about the rotation and scale of the emitter object (just the rendered object), so it's the default. * Global Space This is the same as previously, the particles are cached in global space, so to use this effectively you'll need to map the texture to Global, and have the rendered object in the right global location.
2008-09-29 04:19:24 +00:00
#include "BKE_particle.h"
#include "BKE_scene.h"
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
#include "render_types.h"
#include "texture_common.h"
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
#include "RE_texture.h"
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
static ThreadMutex sample_mutex = PTHREAD_MUTEX_INITIALIZER;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
static int point_data_used(PointDensity *pd)
{
int pd_bitflag = 0;
if (pd->source == TEX_PD_PSYS) {
Remove Blender Internal and legacy viewport from Blender 2.8. Brecht authored this commit, but he gave me the honours to actually do it. Here it goes; Blender Internal. Bye bye, you did great! * Point density, voxel data, ocean, environment map textures were removed, as these only worked within BI rendering. Note that the ocean modifier and the Cycles point density shader node continue to work. * Dynamic paint using material shading was removed, as this only worked with BI. If we ever wanted to support this again probably it should go through the baking API. * GPU shader export through the Python API was removed. This only worked for the old BI GLSL shaders, which no longer exists. Doing something similar for Eevee would be significantly more complicated because it uses a lot of multiplass rendering and logic outside the shader, it's probably impractical. * Collada material import / export code is mostly gone, as it only worked for BI materials. We need to add Cycles / Eevee material support at some point. * The mesh noise operator was removed since it only worked with BI material texture slots. A displacement modifier can be used instead. * The delete texture paint slot operator was removed since it only worked for BI material texture slots. Could be added back with node support. * Not all legacy viewport features are supported in the new viewport, but their code was removed. If we need to bring anything back we can look at older git revisions. * There is some legacy viewport code that I could not remove yet, and some that I probably missed. * Shader node execution code was left mostly intact, even though it is not used anywhere now. We may eventually use this to replace the texture nodes with Cycles / Eevee shader nodes. * The Cycles Bake panel now includes settings for baking multires normal and displacement maps. The underlying code needs to be merged properly, and we plan to add back support for multires AO baking and add support to Cycles baking for features like vertex color, displacement, and other missing baking features. * This commit removes DNA and the Python API for BI material, lamp, world and scene settings. This breaks a lot of addons. * There is more DNA that can be removed or renamed, where Cycles or Eevee are reusing some old BI properties but the names are not really correct anymore. * Texture slots for materials, lamps and world were removed. They remain for brushes, particles and freestyle linestyles. * 'BLENDER_RENDER' remains in the COMPAT_ENGINES of UI panels. Cycles and other renderers use this to find all panels to show, minus a few panels that they have their own replacement for.
2018-04-19 17:34:44 +02:00
if ((pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) ||
(pd->color_source == TEX_PD_COLOR_PARTVEL) ||
(pd->color_source == TEX_PD_COLOR_PARTSPEED)) {
pd_bitflag |= POINT_DATA_VEL;
}
Remove Blender Internal and legacy viewport from Blender 2.8. Brecht authored this commit, but he gave me the honours to actually do it. Here it goes; Blender Internal. Bye bye, you did great! * Point density, voxel data, ocean, environment map textures were removed, as these only worked within BI rendering. Note that the ocean modifier and the Cycles point density shader node continue to work. * Dynamic paint using material shading was removed, as this only worked with BI. If we ever wanted to support this again probably it should go through the baking API. * GPU shader export through the Python API was removed. This only worked for the old BI GLSL shaders, which no longer exists. Doing something similar for Eevee would be significantly more complicated because it uses a lot of multiplass rendering and logic outside the shader, it's probably impractical. * Collada material import / export code is mostly gone, as it only worked for BI materials. We need to add Cycles / Eevee material support at some point. * The mesh noise operator was removed since it only worked with BI material texture slots. A displacement modifier can be used instead. * The delete texture paint slot operator was removed since it only worked for BI material texture slots. Could be added back with node support. * Not all legacy viewport features are supported in the new viewport, but their code was removed. If we need to bring anything back we can look at older git revisions. * There is some legacy viewport code that I could not remove yet, and some that I probably missed. * Shader node execution code was left mostly intact, even though it is not used anywhere now. We may eventually use this to replace the texture nodes with Cycles / Eevee shader nodes. * The Cycles Bake panel now includes settings for baking multires normal and displacement maps. The underlying code needs to be merged properly, and we plan to add back support for multires AO baking and add support to Cycles baking for features like vertex color, displacement, and other missing baking features. * This commit removes DNA and the Python API for BI material, lamp, world and scene settings. This breaks a lot of addons. * There is more DNA that can be removed or renamed, where Cycles or Eevee are reusing some old BI properties but the names are not really correct anymore. * Texture slots for materials, lamps and world were removed. They remain for brushes, particles and freestyle linestyles. * 'BLENDER_RENDER' remains in the COMPAT_ENGINES of UI panels. Cycles and other renderers use this to find all panels to show, minus a few panels that they have their own replacement for.
2018-04-19 17:34:44 +02:00
if ((pd->color_source == TEX_PD_COLOR_PARTAGE) ||
(pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE)) {
pd_bitflag |= POINT_DATA_LIFE;
}
}
else if (pd->source == TEX_PD_OBJECT) {
if (ELEM(pd->ob_color_source,
TEX_PD_COLOR_VERTCOL,
TEX_PD_COLOR_VERTWEIGHT,
TEX_PD_COLOR_VERTNOR)) {
pd_bitflag |= POINT_DATA_COLOR;
}
}
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
return pd_bitflag;
}
static void point_data_pointers(PointDensity *pd,
float **r_data_velocity,
float **r_data_life,
float **r_data_color)
{
const int data_used = point_data_used(pd);
const int totpoint = pd->totpoints;
float *data = pd->point_data;
int offset = 0;
if (data_used & POINT_DATA_VEL) {
2019-04-22 09:08:06 +10:00
if (r_data_velocity) {
*r_data_velocity = data + offset;
2019-04-22 09:08:06 +10:00
}
offset += 3 * totpoint;
}
else {
2019-04-22 09:08:06 +10:00
if (r_data_velocity) {
*r_data_velocity = NULL;
2019-04-22 09:08:06 +10:00
}
}
if (data_used & POINT_DATA_LIFE) {
2019-04-22 09:08:06 +10:00
if (r_data_life) {
*r_data_life = data + offset;
2019-04-22 09:08:06 +10:00
}
offset += totpoint;
}
else {
2019-04-22 09:08:06 +10:00
if (r_data_life) {
*r_data_life = NULL;
2019-04-22 09:08:06 +10:00
}
}
if (data_used & POINT_DATA_COLOR) {
2019-04-22 09:08:06 +10:00
if (r_data_color) {
*r_data_color = data + offset;
2019-04-22 09:08:06 +10:00
}
offset += 3 * totpoint;
}
else {
2019-04-22 09:08:06 +10:00
if (r_data_color) {
*r_data_color = NULL;
2019-04-22 09:08:06 +10:00
}
}
}
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
/* additional data stored alongside the point density BVH,
* accessible by point index number to retrieve other information
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
* such as particle velocity or lifetime */
static void alloc_point_data(PointDensity *pd)
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
{
const int totpoints = pd->totpoints;
int data_used = point_data_used(pd);
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
int data_size = 0;
if (data_used & POINT_DATA_VEL) {
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
/* store 3 channels of velocity data */
data_size += 3;
}
if (data_used & POINT_DATA_LIFE) {
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
/* store 1 channel of lifetime data */
data_size += 1;
}
if (data_used & POINT_DATA_COLOR) {
/* store 3 channels of RGB data */
data_size += 3;
}
if (data_size) {
pd->point_data = MEM_callocN(sizeof(float) * data_size * totpoints, "particle point data");
}
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
static void pointdensity_cache_psys(
Depsgraph *depsgraph, Scene *scene, PointDensity *pd, Object *ob, ParticleSystem *psys)
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
{
ParticleKey state;
ParticleCacheKey *cache;
ParticleSimulationData sim = {NULL};
ParticleData *pa = NULL;
float cfra = BKE_scene_ctime_get(scene);
int i /*, Childexists*/ /* UNUSED */;
int total_particles;
int data_used;
float *data_vel, *data_life;
Point Density texture The Point Density texture now has some additional options for how the point locations are cached. Previously it was all relative to worldspace, but there are now some other options that make things a lot more convenient for mapping the texture to Local (or Orco). Thanks to theeth for helping with the space conversions! The new Object space options allow this sort of thing to be possible - a particle system, instanced on a transformed renderable object: http://mke3.net/blender/devel/rendering/volumetrics/pd_objectspace.mov It's also a lot easier to use multiple instances, just duplicate the renderable objects and move them around. The new particle cache options are: * Emit Object space This caches the particles relative to the emitter object's coordinate space (i.e. relative to the emitter's object center). This makes it possible to map the Texture to Local or Orco easily, so you can easily move, rotate or scale the rendering object that has the Point Density texture. It's relative to the emitter's location, rotation and scale, so if the object you're rendering the texture on is aligned differently to the emitter, the results will be rotated etc. * Emit Object Location This offsets the particles to the emitter object's location in 3D space. It's similar to Emit Object Space, however the emitter object's rotation and scale are ignored. This is probably the easiest to use, since you don't need to worry about the rotation and scale of the emitter object (just the rendered object), so it's the default. * Global Space This is the same as previously, the particles are cached in global space, so to use this effectively you'll need to map the texture to Global, and have the rendered object in the right global location.
2008-09-29 04:19:24 +00:00
float partco[3];
const bool use_render_params = (DEG_get_mode(depsgraph) == DAG_EVAL_RENDER);
data_used = point_data_used(pd);
if (!psys_check_enabled(ob, psys, use_render_params)) {
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
return;
}
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
Point Density texture The Point Density texture now has some additional options for how the point locations are cached. Previously it was all relative to worldspace, but there are now some other options that make things a lot more convenient for mapping the texture to Local (or Orco). Thanks to theeth for helping with the space conversions! The new Object space options allow this sort of thing to be possible - a particle system, instanced on a transformed renderable object: http://mke3.net/blender/devel/rendering/volumetrics/pd_objectspace.mov It's also a lot easier to use multiple instances, just duplicate the renderable objects and move them around. The new particle cache options are: * Emit Object space This caches the particles relative to the emitter object's coordinate space (i.e. relative to the emitter's object center). This makes it possible to map the Texture to Local or Orco easily, so you can easily move, rotate or scale the rendering object that has the Point Density texture. It's relative to the emitter's location, rotation and scale, so if the object you're rendering the texture on is aligned differently to the emitter, the results will be rotated etc. * Emit Object Location This offsets the particles to the emitter object's location in 3D space. It's similar to Emit Object Space, however the emitter object's rotation and scale are ignored. This is probably the easiest to use, since you don't need to worry about the rotation and scale of the emitter object (just the rendered object), so it's the default. * Global Space This is the same as previously, the particles are cached in global space, so to use this effectively you'll need to map the texture to Global, and have the rendered object in the right global location.
2008-09-29 04:19:24 +00:00
/* in case ob->imat isn't up-to-date */
invert_m4_m4(ob->imat, ob->obmat);
total_particles = psys->totpart + psys->totchild;
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
pd->point_tree = BLI_bvhtree_new(total_particles, 0.0, 4, 6);
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
pd->totpoints = total_particles;
alloc_point_data(pd);
point_data_pointers(pd, &data_vel, &data_life, NULL);
#if 0 /* UNUSED */
if (psys->totchild > 0 && !(psys->part->draw & PART_DRAW_PARENT)) {
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
childexists = 1;
}
#endif
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
if (psys->part->type == PART_HAIR) {
/* hair particles */
2019-04-22 09:08:06 +10:00
if (i < psys->totpart && psys->pathcache) {
cache = psys->pathcache[i];
2019-04-22 09:08:06 +10:00
}
else if (i >= psys->totpart && psys->childcache) {
cache = psys->childcache[i - psys->totpart];
2019-04-22 09:08:06 +10:00
}
else {
continue;
2019-04-22 09:08:06 +10:00
}
cache += cache->segments; /* use endpoint */
copy_v3_v3(state.co, cache->co);
zero_v3(state.vel);
state.time = 0.0f;
}
else {
/* emitter particles */
state.time = cfra;
2019-04-22 09:08:06 +10:00
if (!psys_get_particle_state(&sim, i, &state, 0)) {
continue;
2019-04-22 09:08:06 +10:00
}
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
if (data_used & POINT_DATA_LIFE) {
if (i < psys->totpart) {
state.time = (cfra - pa->time) / pa->lifetime;
}
else {
ChildParticle *cpa = (psys->child + i) - psys->totpart;
float pa_birthtime, pa_dietime;
state.time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
}
}
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
}
copy_v3_v3(partco, state.co);
2019-04-22 09:08:06 +10:00
if (pd->psys_cache_space == TEX_PD_OBJECTSPACE) {
mul_m4_v3(ob->imat, partco);
2019-04-22 09:08:06 +10:00
}
else if (pd->psys_cache_space == TEX_PD_OBJECTLOC) {
sub_v3_v3(partco, ob->loc);
}
else {
/* TEX_PD_WORLDSPACE */
}
BLI_bvhtree_insert(pd->point_tree, i, partco, 1);
if (data_vel) {
2019-03-25 11:55:36 +11:00
data_vel[i * 3 + 0] = state.vel[0];
data_vel[i * 3 + 1] = state.vel[1];
data_vel[i * 3 + 2] = state.vel[2];
}
if (data_life) {
data_life[i] = state.time;
}
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
}
BLI_bvhtree_balance(pd->point_tree);
if (psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
}
static void pointdensity_cache_vertex_color(PointDensity *pd,
Object *UNUSED(ob),
Mesh *mesh,
float *data_color)
{
const MLoop *mloop = mesh->mloop;
const int totloop = mesh->totloop;
const MLoopCol *mcol;
char layername[MAX_CUSTOMDATA_LAYER_NAME];
int i;
BLI_assert(data_color);
2019-04-22 09:08:06 +10:00
if (!CustomData_has_layer(&mesh->ldata, CD_MLOOPCOL)) {
return;
2019-04-22 09:08:06 +10:00
}
CustomData_validate_layer_name(&mesh->ldata, CD_MLOOPCOL, pd->vertex_attribute_name, layername);
mcol = CustomData_get_layer_named(&mesh->ldata, CD_MLOOPCOL, layername);
2019-04-22 09:08:06 +10:00
if (!mcol) {
return;
2019-04-22 09:08:06 +10:00
}
/* Stores the number of MLoops using the same vertex, so we can normalize colors. */
int *mcorners = MEM_callocN(sizeof(int) * pd->totpoints, "point density corner count");
for (i = 0; i < totloop; i++) {
int v = mloop[i].v;
if (mcorners[v] == 0) {
rgb_uchar_to_float(&data_color[v * 3], &mcol[i].r);
}
else {
float col[3];
rgb_uchar_to_float(col, &mcol[i].r);
add_v3_v3(&data_color[v * 3], col);
}
++mcorners[v];
}
/* Normalize colors by averaging over mcorners.
* All the corners share the same vertex, ie. occupy the same point in space.
*/
for (i = 0; i < pd->totpoints; i++) {
2019-04-22 09:08:06 +10:00
if (mcorners[i] > 0) {
2019-03-25 11:55:36 +11:00
mul_v3_fl(&data_color[i * 3], 1.0f / mcorners[i]);
2019-04-22 09:08:06 +10:00
}
}
MEM_freeN(mcorners);
}
static void pointdensity_cache_vertex_weight(PointDensity *pd,
Object *ob,
Mesh *mesh,
float *data_color)
{
const int totvert = mesh->totvert;
const MDeformVert *mdef, *dv;
int mdef_index;
int i;
BLI_assert(data_color);
mdef = CustomData_get_layer(&mesh->vdata, CD_MDEFORMVERT);
2019-04-22 09:08:06 +10:00
if (!mdef) {
return;
2019-04-22 09:08:06 +10:00
}
mdef_index = BKE_id_defgroup_name_index(&mesh->id, pd->vertex_attribute_name);
2019-04-22 09:08:06 +10:00
if (mdef_index < 0) {
mdef_index = BKE_object_defgroup_active_index_get(ob) - 1;
2019-04-22 09:08:06 +10:00
}
if (mdef_index < 0) {
return;
2019-04-22 09:08:06 +10:00
}
for (i = 0, dv = mdef; i < totvert; i++, dv++, data_color += 3) {
MDeformWeight *dw;
int j;
for (j = 0, dw = dv->dw; j < dv->totweight; j++, dw++) {
if (dw->def_nr == mdef_index) {
copy_v3_fl(data_color, dw->weight);
break;
}
}
}
}
static void pointdensity_cache_vertex_normal(PointDensity *pd,
Object *UNUSED(ob),
Mesh *mesh,
float *data_color)
{
MVert *mvert = mesh->mvert, *mv;
int i;
BLI_assert(data_color);
for (i = 0, mv = mvert; i < pd->totpoints; i++, mv++, data_color += 3) {
normal_short_to_float_v3(data_color, mv->no);
}
}
static void pointdensity_cache_object(PointDensity *pd, Object *ob)
{
float *data_color;
int i;
MVert *mvert = NULL, *mv;
Mesh *mesh = ob->data;
#if 0 /* UNUSED */
CustomData_MeshMasks mask = CD_MASK_BAREMESH;
mask.fmask |= CD_MASK_MTFACE | CD_MASK_MCOL;
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
mask.lmask |= CD_MASK_MLOOPCOL;
break;
case TEX_PD_COLOR_VERTWEIGHT:
mask.vmask |= CD_MASK_MDEFORMVERT;
break;
}
#endif
mvert = mesh->mvert; /* local object space */
pd->totpoints = mesh->totvert;
if (pd->totpoints == 0) {
return;
}
pd->point_tree = BLI_bvhtree_new(pd->totpoints, 0.0, 4, 6);
alloc_point_data(pd);
point_data_pointers(pd, NULL, NULL, &data_color);
for (i = 0, mv = mvert; i < pd->totpoints; i++, mv++) {
float co[3];
copy_v3_v3(co, mv->co);
switch (pd->ob_cache_space) {
case TEX_PD_OBJECTSPACE:
break;
case TEX_PD_OBJECTLOC:
mul_m4_v3(ob->obmat, co);
sub_v3_v3(co, ob->loc);
break;
case TEX_PD_WORLDSPACE:
default:
mul_m4_v3(ob->obmat, co);
break;
}
BLI_bvhtree_insert(pd->point_tree, i, co, 1);
}
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
pointdensity_cache_vertex_color(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTWEIGHT:
pointdensity_cache_vertex_weight(pd, ob, mesh, data_color);
break;
case TEX_PD_COLOR_VERTNOR:
pointdensity_cache_vertex_normal(pd, ob, mesh, data_color);
break;
}
BLI_bvhtree_balance(pd->point_tree);
}
Remove Blender Internal and legacy viewport from Blender 2.8. Brecht authored this commit, but he gave me the honours to actually do it. Here it goes; Blender Internal. Bye bye, you did great! * Point density, voxel data, ocean, environment map textures were removed, as these only worked within BI rendering. Note that the ocean modifier and the Cycles point density shader node continue to work. * Dynamic paint using material shading was removed, as this only worked with BI. If we ever wanted to support this again probably it should go through the baking API. * GPU shader export through the Python API was removed. This only worked for the old BI GLSL shaders, which no longer exists. Doing something similar for Eevee would be significantly more complicated because it uses a lot of multiplass rendering and logic outside the shader, it's probably impractical. * Collada material import / export code is mostly gone, as it only worked for BI materials. We need to add Cycles / Eevee material support at some point. * The mesh noise operator was removed since it only worked with BI material texture slots. A displacement modifier can be used instead. * The delete texture paint slot operator was removed since it only worked for BI material texture slots. Could be added back with node support. * Not all legacy viewport features are supported in the new viewport, but their code was removed. If we need to bring anything back we can look at older git revisions. * There is some legacy viewport code that I could not remove yet, and some that I probably missed. * Shader node execution code was left mostly intact, even though it is not used anywhere now. We may eventually use this to replace the texture nodes with Cycles / Eevee shader nodes. * The Cycles Bake panel now includes settings for baking multires normal and displacement maps. The underlying code needs to be merged properly, and we plan to add back support for multires AO baking and add support to Cycles baking for features like vertex color, displacement, and other missing baking features. * This commit removes DNA and the Python API for BI material, lamp, world and scene settings. This breaks a lot of addons. * There is more DNA that can be removed or renamed, where Cycles or Eevee are reusing some old BI properties but the names are not really correct anymore. * Texture slots for materials, lamps and world were removed. They remain for brushes, particles and freestyle linestyles. * 'BLENDER_RENDER' remains in the COMPAT_ENGINES of UI panels. Cycles and other renderers use this to find all panels to show, minus a few panels that they have their own replacement for.
2018-04-19 17:34:44 +02:00
static void cache_pointdensity(Depsgraph *depsgraph, Scene *scene, PointDensity *pd)
{
if (pd == NULL) {
return;
}
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
pd->point_tree = NULL;
}
Point Density texture The Point Density texture now has some additional options for how the point locations are cached. Previously it was all relative to worldspace, but there are now some other options that make things a lot more convenient for mapping the texture to Local (or Orco). Thanks to theeth for helping with the space conversions! The new Object space options allow this sort of thing to be possible - a particle system, instanced on a transformed renderable object: http://mke3.net/blender/devel/rendering/volumetrics/pd_objectspace.mov It's also a lot easier to use multiple instances, just duplicate the renderable objects and move them around. The new particle cache options are: * Emit Object space This caches the particles relative to the emitter object's coordinate space (i.e. relative to the emitter's object center). This makes it possible to map the Texture to Local or Orco easily, so you can easily move, rotate or scale the rendering object that has the Point Density texture. It's relative to the emitter's location, rotation and scale, so if the object you're rendering the texture on is aligned differently to the emitter, the results will be rotated etc. * Emit Object Location This offsets the particles to the emitter object's location in 3D space. It's similar to Emit Object Space, however the emitter object's rotation and scale are ignored. This is probably the easiest to use, since you don't need to worry about the rotation and scale of the emitter object (just the rendered object), so it's the default. * Global Space This is the same as previously, the particles are cached in global space, so to use this effectively you'll need to map the texture to Global, and have the rendered object in the right global location.
2008-09-29 04:19:24 +00:00
if (pd->source == TEX_PD_PSYS) {
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
Object *ob = pd->object;
ParticleSystem *psys;
if (!ob || !pd->psys) {
return;
}
psys = BLI_findlink(&ob->particlesystem, pd->psys - 1);
if (!psys) {
return;
}
pointdensity_cache_psys(depsgraph, scene, pd, ob, psys);
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
}
else if (pd->source == TEX_PD_OBJECT) {
Object *ob = pd->object;
2019-04-22 09:08:06 +10:00
if (ob && ob->type == OB_MESH) {
pointdensity_cache_object(pd, ob);
2019-04-22 09:08:06 +10:00
}
}
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
}
Remove Blender Internal and legacy viewport from Blender 2.8. Brecht authored this commit, but he gave me the honours to actually do it. Here it goes; Blender Internal. Bye bye, you did great! * Point density, voxel data, ocean, environment map textures were removed, as these only worked within BI rendering. Note that the ocean modifier and the Cycles point density shader node continue to work. * Dynamic paint using material shading was removed, as this only worked with BI. If we ever wanted to support this again probably it should go through the baking API. * GPU shader export through the Python API was removed. This only worked for the old BI GLSL shaders, which no longer exists. Doing something similar for Eevee would be significantly more complicated because it uses a lot of multiplass rendering and logic outside the shader, it's probably impractical. * Collada material import / export code is mostly gone, as it only worked for BI materials. We need to add Cycles / Eevee material support at some point. * The mesh noise operator was removed since it only worked with BI material texture slots. A displacement modifier can be used instead. * The delete texture paint slot operator was removed since it only worked for BI material texture slots. Could be added back with node support. * Not all legacy viewport features are supported in the new viewport, but their code was removed. If we need to bring anything back we can look at older git revisions. * There is some legacy viewport code that I could not remove yet, and some that I probably missed. * Shader node execution code was left mostly intact, even though it is not used anywhere now. We may eventually use this to replace the texture nodes with Cycles / Eevee shader nodes. * The Cycles Bake panel now includes settings for baking multires normal and displacement maps. The underlying code needs to be merged properly, and we plan to add back support for multires AO baking and add support to Cycles baking for features like vertex color, displacement, and other missing baking features. * This commit removes DNA and the Python API for BI material, lamp, world and scene settings. This breaks a lot of addons. * There is more DNA that can be removed or renamed, where Cycles or Eevee are reusing some old BI properties but the names are not really correct anymore. * Texture slots for materials, lamps and world were removed. They remain for brushes, particles and freestyle linestyles. * 'BLENDER_RENDER' remains in the COMPAT_ENGINES of UI panels. Cycles and other renderers use this to find all panels to show, minus a few panels that they have their own replacement for.
2018-04-19 17:34:44 +02:00
static void free_pointdensity(PointDensity *pd)
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
{
if (pd == NULL) {
return;
}
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
pd->point_tree = NULL;
}
2021-08-06 13:59:38 +10:00
MEM_SAFE_FREE(pd->point_data);
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
pd->totpoints = 0;
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
}
2012-06-06 22:38:39 +00:00
typedef struct PointDensityRangeData {
float *density;
float squared_radius;
float *point_data_life;
float *point_data_velocity;
float *point_data_color;
float *vec;
float *col;
float softness;
short falloff_type;
short noise_influence;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
float *age;
struct CurveMapping *density_curve;
float velscale;
} PointDensityRangeData;
static float density_falloff(PointDensityRangeData *pdr, int index, float squared_dist)
{
const float dist = (pdr->squared_radius - squared_dist) / pdr->squared_radius * 0.5f;
float density = 0.0f;
switch (pdr->falloff_type) {
case TEX_PD_FALLOFF_STD:
density = dist;
break;
case TEX_PD_FALLOFF_SMOOTH:
density = 3.0f * dist * dist - 2.0f * dist * dist * dist;
break;
case TEX_PD_FALLOFF_SOFT:
density = pow(dist, pdr->softness);
break;
case TEX_PD_FALLOFF_CONSTANT:
density = pdr->squared_radius;
break;
case TEX_PD_FALLOFF_ROOT:
density = sqrtf(dist);
break;
case TEX_PD_FALLOFF_PARTICLE_AGE:
2019-04-22 09:08:06 +10:00
if (pdr->point_data_life) {
density = dist * MIN2(pdr->point_data_life[index], 1.0f);
2019-04-22 09:08:06 +10:00
}
else {
density = dist;
2019-04-22 09:08:06 +10:00
}
break;
case TEX_PD_FALLOFF_PARTICLE_VEL:
2019-04-22 09:08:06 +10:00
if (pdr->point_data_velocity) {
density = dist * len_v3(&pdr->point_data_velocity[index * 3]) * pdr->velscale;
2019-04-22 09:08:06 +10:00
}
else {
density = dist;
2019-04-22 09:08:06 +10:00
}
break;
}
if (pdr->density_curve && dist != 0.0f) {
BKE_curvemapping_init(pdr->density_curve);
density = BKE_curvemapping_evaluateF(pdr->density_curve, 0, density / dist) * dist;
}
return density;
}
static void accum_density(void *userdata, int index, const float co[3], float squared_dist)
{
PointDensityRangeData *pdr = (PointDensityRangeData *)userdata;
float density = 0.0f;
UNUSED_VARS(co);
if (pdr->point_data_velocity) {
pdr->vec[0] += pdr->point_data_velocity[index * 3 + 0]; // * density;
pdr->vec[1] += pdr->point_data_velocity[index * 3 + 1]; // * density;
pdr->vec[2] += pdr->point_data_velocity[index * 3 + 2]; // * density;
}
if (pdr->point_data_life) {
*pdr->age += pdr->point_data_life[index]; // * density;
}
if (pdr->point_data_color) {
add_v3_v3(pdr->col, &pdr->point_data_color[index * 3]); // * density;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
density = density_falloff(pdr, index, squared_dist);
*pdr->density += density;
}
2019-03-25 11:55:36 +11:00
static void init_pointdensityrangedata(PointDensity *pd,
PointDensityRangeData *pdr,
float *density,
float *vec,
float *age,
float *col,
struct CurveMapping *density_curve,
float velscale)
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
{
pdr->squared_radius = pd->radius * pd->radius;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
pdr->density = density;
pdr->falloff_type = pd->falloff_type;
pdr->vec = vec;
pdr->age = age;
pdr->col = col;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
pdr->softness = pd->falloff_softness;
pdr->noise_influence = pd->noise_influence;
point_data_pointers(
pd, &pdr->point_data_velocity, &pdr->point_data_life, &pdr->point_data_color);
pdr->density_curve = density_curve;
pdr->velscale = velscale;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
static int pointdensity(PointDensity *pd,
const float texvec[3],
TexResult *texres,
float r_vec[3],
float *r_age,
float r_col[3])
* Volumetrics Removed all the old particle rendering code and options I had in there before, in order to make way for... A new procedural texture: 'Point Density' Point Density is a 3d texture that find the density of a group of 'points' in space and returns that in the texture as an intensity value. Right now, its at an early stage and it's only enabled for particles, but it would be cool to extend it later for things like object vertices, or point cache files from disk - i.e. to import point cloud data into Blender for rendering volumetrically. Currently there are just options for an Object and its particle system number, this is the particle system that will get cached before rendering, and then used for the texture's density estimation. It works totally consistent with as any other procedural texture, so previously where I've mapped a clouds texture to volume density to make some of those test renders, now I just map a point density texture to volume density. Here's a version of the same particle smoke test file from before, updated to use the point density texture instead: http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend There are a few cool things about implementing this as a texture: - The one texture (and cache) can be instanced across many different materials: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png This means you can calculate and bake one particle system, but render it multiple times across the scene, with different material settings, at no extra memory cost. Right now, the particles are cached in world space, so you have to map it globally, and if you want it offset, you have to do it in the material (as in the file above). I plan to add an option to bake in local space, so you can just map the texture to local and it just works. - It also works for solid surfaces too, it just gets the density at that particular point on the surface, eg: http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov - You can map it to whatever you want, not only density but the various emissions and colours as well. I'd like to investigate using the other outputs in the texture too (like the RGB or normal outputs), perhaps with options to colour by particle age, generating normals for making particle 'dents' in a surface, whatever!
2008-09-28 08:00:22 +00:00
{
int retval = TEX_INT;
PointDensityRangeData pdr;
Remove Blender Internal and legacy viewport from Blender 2.8. Brecht authored this commit, but he gave me the honours to actually do it. Here it goes; Blender Internal. Bye bye, you did great! * Point density, voxel data, ocean, environment map textures were removed, as these only worked within BI rendering. Note that the ocean modifier and the Cycles point density shader node continue to work. * Dynamic paint using material shading was removed, as this only worked with BI. If we ever wanted to support this again probably it should go through the baking API. * GPU shader export through the Python API was removed. This only worked for the old BI GLSL shaders, which no longer exists. Doing something similar for Eevee would be significantly more complicated because it uses a lot of multiplass rendering and logic outside the shader, it's probably impractical. * Collada material import / export code is mostly gone, as it only worked for BI materials. We need to add Cycles / Eevee material support at some point. * The mesh noise operator was removed since it only worked with BI material texture slots. A displacement modifier can be used instead. * The delete texture paint slot operator was removed since it only worked for BI material texture slots. Could be added back with node support. * Not all legacy viewport features are supported in the new viewport, but their code was removed. If we need to bring anything back we can look at older git revisions. * There is some legacy viewport code that I could not remove yet, and some that I probably missed. * Shader node execution code was left mostly intact, even though it is not used anywhere now. We may eventually use this to replace the texture nodes with Cycles / Eevee shader nodes. * The Cycles Bake panel now includes settings for baking multires normal and displacement maps. The underlying code needs to be merged properly, and we plan to add back support for multires AO baking and add support to Cycles baking for features like vertex color, displacement, and other missing baking features. * This commit removes DNA and the Python API for BI material, lamp, world and scene settings. This breaks a lot of addons. * There is more DNA that can be removed or renamed, where Cycles or Eevee are reusing some old BI properties but the names are not really correct anymore. * Texture slots for materials, lamps and world were removed. They remain for brushes, particles and freestyle linestyles. * 'BLENDER_RENDER' remains in the COMPAT_ENGINES of UI panels. Cycles and other renderers use this to find all panels to show, minus a few panels that they have their own replacement for.
2018-04-19 17:34:44 +02:00
float density = 0.0f, age = 0.0f;
float vec[3] = {0.0f, 0.0f, 0.0f}, col[3] = {0.0f, 0.0f, 0.0f}, co[3];
float turb, noise_fac;
int num = 0;
texres->tin = 0.0f;
init_pointdensityrangedata(pd,
&pdr,
&density,
vec,
&age,
col,
2019-03-25 11:55:36 +11:00
(pd->flag & TEX_PD_FALLOFF_CURVE ? pd->falloff_curve : NULL),
pd->falloff_speed_scale * 0.001f);
noise_fac = pd->noise_fac * 0.5f; /* better default */
copy_v3_v3(co, texvec);
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
if (point_data_used(pd)) {
/* does a BVH lookup to find accumulated density and additional point data *
* stores particle velocity vector in 'vec', and particle lifetime in 'time' */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
/* reset */
density = 0.0f;
zero_v3(vec);
zero_v3(col);
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
if (pd->flag & TEX_PD_TURBULENCE) {
turb = BLI_noise_generic_turbulence(pd->noise_size,
texvec[0] + vec[0],
texvec[1] + vec[1],
texvec[2] + vec[2],
pd->noise_depth,
0,
pd->noise_basis);
2019-03-25 11:55:36 +11:00
turb -= 0.5f; /* re-center 0.0-1.0 range around 0 to prevent offsetting result */
/* now we have an offset coordinate to use for the density lookup */
co[0] = texvec[0] + noise_fac * turb;
co[1] = texvec[1] + noise_fac * turb;
co[2] = texvec[2] + noise_fac * turb;
}
/* BVH query with the potentially perturbed coordinates */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f / num);
mul_v3_fl(col, 1.0f / num);
}
texres->tin = density;
if (r_age != NULL) {
*r_age = age;
}
if (r_vec != NULL) {
copy_v3_v3(r_vec, vec);
}
if (r_col != NULL) {
copy_v3_v3(r_col, col);
}
return retval;
}
2018-05-13 14:10:05 +02:00
static void pointdensity_color(
PointDensity *pd, TexResult *texres, float age, const float vec[3], const float col[3])
{
2018-05-13 14:10:05 +02:00
texres->tr = texres->tg = texres->tb = texres->ta = 1.0f;
if (pd->source == TEX_PD_PSYS) {
float rgba[4];
switch (pd->color_source) {
case TEX_PD_COLOR_PARTAGE:
if (pd->coba) {
2017-12-07 15:52:59 +11:00
if (BKE_colorband_evaluate(pd->coba, age, rgba)) {
texres->talpha = true;
copy_v3_v3(&texres->tr, rgba);
texres->tin *= rgba[3];
texres->ta = texres->tin;
}
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
break;
case TEX_PD_COLOR_PARTSPEED: {
float speed = len_v3(vec) * pd->speed_scale;
if (pd->coba) {
2017-12-07 15:52:59 +11:00
if (BKE_colorband_evaluate(pd->coba, speed, rgba)) {
texres->talpha = true;
copy_v3_v3(&texres->tr, rgba);
texres->tin *= rgba[3];
texres->ta = texres->tin;
}
}
break;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
case TEX_PD_COLOR_PARTVEL:
texres->talpha = true;
mul_v3_v3fl(&texres->tr, vec, pd->speed_scale);
texres->ta = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
}
}
else {
float rgba[4];
switch (pd->ob_color_source) {
case TEX_PD_COLOR_VERTCOL:
texres->talpha = true;
copy_v3_v3(&texres->tr, col);
texres->ta = texres->tin;
break;
case TEX_PD_COLOR_VERTWEIGHT:
texres->talpha = true;
2017-12-07 15:52:59 +11:00
if (pd->coba && BKE_colorband_evaluate(pd->coba, col[0], rgba)) {
copy_v3_v3(&texres->tr, rgba);
texres->tin *= rgba[3];
}
else {
copy_v3_v3(&texres->tr, col);
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
texres->ta = texres->tin;
break;
case TEX_PD_COLOR_VERTNOR:
texres->talpha = true;
copy_v3_v3(&texres->tr, col);
texres->ta = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
break;
Point Density texture: colouring This introduces a few new ways of modifying the intensity and colour output generated by the Point Density texture. Previously, the texture only output intensity information, but now you can map it to colours along a gradient ramp, based on information coming out of a particle system. This lets you do things like colour a particle system based on the individual particles' age - the main reason I need it is to fade particles out over time. The colorband influences both the colour and intensity (using the colorband's alpha value), which makes it easy to map a single point density texture to both intensity values in the Map To panel (such as density or emit) and colour values (such as absorb col or emit col). This is how the below examples are set up, an example .blend file is available here: http://mke3.net/blender/devel/rendering/volumetrics/pd_test4.blend The different modes: * Constant No modifications to intensity or colour (pure white) * Particle Age Maps the color ramp along the particles' lifetimes: http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_partage.mov * Particle Speed Maps the color ramp to the particles' absolute speed per frame (in Blender units). There's an additional scale parameter that you can use to bring this speed into a 0.0 - 1.0 range, if your particles are travelling too faster or slower than 0-1. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_speed.mov * Velocity -> RGB Outputs the particle XYZ velocity vector as RGB colours. This may be useful for comp work, or maybe in the future things like displacement. Again, there's a scale parameter to control it. http://mke3.net/blender/devel/rendering/volumetrics/pd_mod_velrgb.mov
2008-11-09 01:16:12 +00:00
}
}
}
static void sample_dummy_point_density(int resolution, float *values)
{
memset(values, 0, sizeof(float[4]) * resolution * resolution * resolution);
}
static void particle_system_minmax(Depsgraph *depsgraph,
Scene *scene,
Object *object,
ParticleSystem *psys,
float radius,
float min[3],
float max[3])
{
const float size[3] = {radius, radius, radius};
const float cfra = BKE_scene_ctime_get(scene);
ParticleSettings *part = psys->part;
ParticleSimulationData sim = {NULL};
ParticleData *pa = NULL;
int i;
int total_particles;
float mat[4][4], imat[4][4];
INIT_MINMAX(min, max);
if (part->type == PART_HAIR) {
/* TODO(sergey): Not supported currently. */
return;
}
unit_m4(mat);
sim.depsgraph = depsgraph;
sim.scene = scene;
sim.ob = object;
sim.psys = psys;
sim.psmd = psys_get_modifier(object, psys);
invert_m4_m4(imat, object->obmat);
total_particles = psys->totpart + psys->totchild;
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
for (i = 0, pa = psys->particles; i < total_particles; i++, pa++) {
float co_object[3], co_min[3], co_max[3];
ParticleKey state;
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, 0)) {
continue;
}
mul_v3_m4v3(co_object, imat, state.co);
sub_v3_v3v3(co_min, co_object, size);
add_v3_v3v3(co_max, co_object, size);
minmax_v3v3_v3(min, max, co_min);
minmax_v3v3_v3(min, max, co_max);
}
if (psys->lattice_deform_data) {
BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
}
void RE_point_density_cache(struct Depsgraph *depsgraph, PointDensity *pd)
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
2019-09-19 11:30:01 +02:00
/* Same matrices/resolution as dupli_render_particle_set(). */
BLI_mutex_lock(&sample_mutex);
cache_pointdensity(depsgraph, scene, pd);
BLI_mutex_unlock(&sample_mutex);
}
void RE_point_density_minmax(struct Depsgraph *depsgraph,
struct PointDensity *pd,
float r_min[3],
float r_max[3])
{
Scene *scene = DEG_get_evaluated_scene(depsgraph);
Object *object = pd->object;
if (object == NULL) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
if (pd->source == TEX_PD_PSYS) {
ParticleSystem *psys;
if (pd->psys == 0) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
psys = BLI_findlink(&object->particlesystem, pd->psys - 1);
if (psys == NULL) {
zero_v3(r_min);
zero_v3(r_max);
return;
}
particle_system_minmax(depsgraph, scene, object, psys, pd->radius, r_min, r_max);
}
else {
const float radius[3] = {pd->radius, pd->radius, pd->radius};
BoundBox *bb = BKE_object_boundbox_get(object);
if (bb != NULL) {
BLI_assert((bb->flag & BOUNDBOX_DIRTY) == 0);
copy_v3_v3(r_min, bb->vec[0]);
copy_v3_v3(r_max, bb->vec[6]);
/* Adjust texture space to include density points on the boundaries. */
sub_v3_v3(r_min, radius);
add_v3_v3(r_max, radius);
}
else {
zero_v3(r_min);
zero_v3(r_max);
}
}
}
typedef struct SampleCallbackData {
PointDensity *pd;
int resolution;
float *min, *dim;
float *values;
} SampleCallbackData;
static void point_density_sample_func(void *__restrict data_v,
const int iter,
const TaskParallelTLS *__restrict UNUSED(tls))
{
SampleCallbackData *data = (SampleCallbackData *)data_v;
const int resolution = data->resolution;
const int resolution2 = resolution * resolution;
const float *min = data->min, *dim = data->dim;
PointDensity *pd = data->pd;
float *values = data->values;
2018-05-13 14:10:05 +02:00
if (!pd || !pd->point_tree) {
return;
}
size_t z = (size_t)iter;
for (size_t y = 0; y < resolution; y++) {
for (size_t x = 0; x < resolution; x++) {
size_t index = z * resolution2 + y * resolution + x;
float texvec[3];
float age, vec[3], col[3];
TexResult texres;
copy_v3_v3(texvec, min);
texvec[0] += dim[0] * (float)x / (float)resolution;
texvec[1] += dim[1] * (float)y / (float)resolution;
texvec[2] += dim[2] * (float)z / (float)resolution;
2018-04-21 19:35:12 +02:00
pointdensity(pd, texvec, &texres, vec, &age, col);
pointdensity_color(pd, &texres, age, vec, col);
2019-03-25 11:55:36 +11:00
copy_v3_v3(&values[index * 4 + 0], &texres.tr);
values[index * 4 + 3] = texres.tin;
}
}
}
/* NOTE 1: Requires RE_point_density_cache() to be called first.
* NOTE 2: Frees point density structure after sampling.
*/
void RE_point_density_sample(Depsgraph *depsgraph,
PointDensity *pd,
const int resolution,
float *values)
{
Object *object = pd->object;
float min[3], max[3], dim[3];
/* TODO(sergey): Implement some sort of assert() that point density
* was cached already.
*/
if (object == NULL) {
sample_dummy_point_density(resolution, values);
return;
}
BLI_mutex_lock(&sample_mutex);
RE_point_density_minmax(depsgraph, pd, min, max);
BLI_mutex_unlock(&sample_mutex);
sub_v3_v3v3(dim, max, min);
if (dim[0] <= 0.0f || dim[1] <= 0.0f || dim[2] <= 0.0f) {
sample_dummy_point_density(resolution, values);
return;
}
SampleCallbackData data;
data.pd = pd;
data.resolution = resolution;
data.min = min;
data.dim = dim;
data.values = values;
TaskParallelSettings settings;
BLI_parallel_range_settings_defaults(&settings);
settings.use_threading = (resolution > 32);
BLI_task_parallel_range(0, resolution, &data, point_density_sample_func, &settings);
free_pointdensity(pd);
}
void RE_point_density_free(struct PointDensity *pd)
{
free_pointdensity(pd);
}
Remove Blender Internal and legacy viewport from Blender 2.8. Brecht authored this commit, but he gave me the honours to actually do it. Here it goes; Blender Internal. Bye bye, you did great! * Point density, voxel data, ocean, environment map textures were removed, as these only worked within BI rendering. Note that the ocean modifier and the Cycles point density shader node continue to work. * Dynamic paint using material shading was removed, as this only worked with BI. If we ever wanted to support this again probably it should go through the baking API. * GPU shader export through the Python API was removed. This only worked for the old BI GLSL shaders, which no longer exists. Doing something similar for Eevee would be significantly more complicated because it uses a lot of multiplass rendering and logic outside the shader, it's probably impractical. * Collada material import / export code is mostly gone, as it only worked for BI materials. We need to add Cycles / Eevee material support at some point. * The mesh noise operator was removed since it only worked with BI material texture slots. A displacement modifier can be used instead. * The delete texture paint slot operator was removed since it only worked for BI material texture slots. Could be added back with node support. * Not all legacy viewport features are supported in the new viewport, but their code was removed. If we need to bring anything back we can look at older git revisions. * There is some legacy viewport code that I could not remove yet, and some that I probably missed. * Shader node execution code was left mostly intact, even though it is not used anywhere now. We may eventually use this to replace the texture nodes with Cycles / Eevee shader nodes. * The Cycles Bake panel now includes settings for baking multires normal and displacement maps. The underlying code needs to be merged properly, and we plan to add back support for multires AO baking and add support to Cycles baking for features like vertex color, displacement, and other missing baking features. * This commit removes DNA and the Python API for BI material, lamp, world and scene settings. This breaks a lot of addons. * There is more DNA that can be removed or renamed, where Cycles or Eevee are reusing some old BI properties but the names are not really correct anymore. * Texture slots for materials, lamps and world were removed. They remain for brushes, particles and freestyle linestyles. * 'BLENDER_RENDER' remains in the COMPAT_ENGINES of UI panels. Cycles and other renderers use this to find all panels to show, minus a few panels that they have their own replacement for.
2018-04-19 17:34:44 +02:00
void RE_point_density_fix_linking(void)
{
}