This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/effect.c

1475 lines
36 KiB
C
Raw Normal View History

/* effect.c
2002-10-12 11:37:38 +00:00
*
*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <math.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "DNA_listBase.h"
#include "DNA_effect_types.h"
#include "DNA_object_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
2002-10-12 11:37:38 +00:00
#include "DNA_material_types.h"
#include "DNA_curve_types.h"
#include "DNA_key_types.h"
#include "DNA_texture_types.h"
#include "DNA_scene_types.h"
#include "DNA_lattice_types.h"
#include "DNA_ipo_types.h"
2002-10-12 11:37:38 +00:00
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "BLI_rand.h"
#include "BKE_utildefines.h"
#include "BKE_bad_level_calls.h"
#include "BKE_global.h"
#include "BKE_material.h"
#include "BKE_effect.h"
#include "BKE_key.h"
#include "BKE_ipo.h"
#include "BKE_screen.h"
#include "BKE_main.h"
2002-10-12 11:37:38 +00:00
#include "BKE_blender.h"
#include "BKE_object.h"
#include "BKE_displist.h"
#include "BKE_lattice.h"
#include "BKE_mesh.h"
#include "BKE_action.h"
#include "BKE_constraint.h"
Phew, a lot of work, and no new features... Main target was to make the inner rendering loop using no globals anymore. This is essential for proper usage while raytracing, it caused a lot of hacks in the raycode as well, which even didn't work correctly for all situations (textures especially). Done this by creating a new local struct RenderInput, which replaces usage of the global struct Render R. The latter now only is used to denote image size, viewmatrix, and the like. Making the inner render loops using no globals caused 1000s of vars to be changed... but the result definitely is much nicer code, which enables making 'real' shaders in a next stage. It also enabled me to remove the hacks from ray.c Then i went to the task of removing redundant code. Especially the calculus of texture coords took place (identical) in three locations. Most obvious is the change in the unified render part, which is much less code now; it uses the same rendering routines as normal render now. (Note; not for halos yet!) I also removed 6 files called 'shadowbuffer' something. This was experimen- tal stuff from NaN days. And again saved a lot of double used code. Finally I went over the blenkernel and blender/src calls to render stuff. Here the same local data is used now, resulting in less dependency. I also moved render-texture to the render module, this was still in Kernel. (new file: texture.c) So! After this commit I will check on the autofiles, to try to fix that. MSVC people have to do it themselves. This commit will need quite some testing help, but I'm around!
2003-12-21 21:52:51 +00:00
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2002-10-12 11:37:38 +00:00
Effect *add_effect(int type)
{
Effect *eff=0;
BuildEff *bld;
PartEff *paf;
WaveEff *wav;
int a;
switch(type) {
case EFF_BUILD:
bld= MEM_callocN(sizeof(BuildEff), "neweff");
eff= (Effect *)bld;
bld->sfra= 1.0;
bld->len= 100.0;
break;
case EFF_PARTICLE:
paf= MEM_callocN(sizeof(PartEff), "neweff");
eff= (Effect *)paf;
paf->sta= 1.0;
paf->end= 100.0;
paf->lifetime= 50.0;
for(a=0; a<PAF_MAXMULT; a++) {
paf->life[a]= 50.0;
paf->child[a]= 4;
paf->mat[a]= 1;
}
paf->totpart= 1000;
paf->totkey= 8;
paf->staticstep= 5;
paf->defvec[2]= 1.0f;
paf->nabla= 0.05f;
break;
case EFF_WAVE:
wav= MEM_callocN(sizeof(WaveEff), "neweff");
eff= (Effect *)wav;
wav->flag |= (WAV_X+WAV_Y+WAV_CYCL);
wav->height= 0.5f;
wav->width= 1.5f;
wav->speed= 0.5f;
wav->narrow= 1.5f;
wav->lifetime= 0.0f;
wav->damp= 10.0f;
break;
}
eff->type= eff->buttype= type;
eff->flag |= SELECT;
return eff;
}
void free_effect(Effect *eff)
{
PartEff *paf;
if(eff->type==EFF_PARTICLE) {
paf= (PartEff *)eff;
if(paf->keys) MEM_freeN(paf->keys);
}
MEM_freeN(eff);
}
void free_effects(ListBase *lb)
{
Effect *eff;
eff= lb->first;
while(eff) {
BLI_remlink(lb, eff);
free_effect(eff);
eff= lb->first;
}
}
Effect *copy_effect(Effect *eff)
{
Effect *effn;
2004-10-14 22:39:13 +00:00
effn= MEM_dupallocN(eff);
2002-10-12 11:37:38 +00:00
if(effn->type==EFF_PARTICLE) ((PartEff *)effn)->keys= 0;
return effn;
}
void copy_act_effect(Object *ob)
{
/* return a copy of the active effect */
2002-10-12 11:37:38 +00:00
Effect *effn, *eff;
eff= ob->effect.first;
while(eff) {
if(eff->flag & SELECT) {
effn= copy_effect(eff);
BLI_addtail(&ob->effect, effn);
eff->flag &= ~SELECT;
return;
}
eff= eff->next;
}
/* when it comes here: add new effect */
2002-10-12 11:37:38 +00:00
eff= add_effect(EFF_BUILD);
BLI_addtail(&ob->effect, eff);
}
void copy_effects(ListBase *lbn, ListBase *lb)
{
Effect *eff, *effn;
lbn->first= lbn->last= 0;
eff= lb->first;
while(eff) {
effn= copy_effect(eff);
BLI_addtail(lbn, effn);
eff= eff->next;
}
}
void deselectall_eff(Object *ob)
{
Effect *eff= ob->effect.first;
while(eff) {
eff->flag &= ~SELECT;
eff= eff->next;
}
}
void set_buildvars(Object *ob, int *start, int *end)
{
BuildEff *bld;
float ctime;
bld= ob->effect.first;
while(bld) {
if(bld->type==EFF_BUILD) {
ctime= bsystem_time(ob, 0, (float)G.scene->r.cfra, bld->sfra-1.0f);
if(ctime < 0.0) {
*end= *start;
}
else if(ctime < bld->len) {
*end= *start+ (int)((*end - *start)*ctime/bld->len);
}
return;
}
bld= bld->next;
}
}
/* ***************** PARTICLES ***************** */
Particle *new_particle(PartEff *paf)
{
static Particle *pa;
static int cur;
/* we agree: when paf->keys==0: alloc */
2002-10-12 11:37:38 +00:00
if(paf->keys==0) {
pa= paf->keys= MEM_callocN( paf->totkey*paf->totpart*sizeof(Particle), "particlekeys" );
cur= 0;
}
else {
if(cur && cur<paf->totpart) pa+=paf->totkey;
cur++;
}
return pa;
}
PartEff *give_parteff(Object *ob)
{
PartEff *paf;
paf= ob->effect.first;
while(paf) {
if(paf->type==EFF_PARTICLE) return paf;
paf= paf->next;
}
return 0;
}
void where_is_particle(PartEff *paf, Particle *pa, float ctime, float *vec)
{
Particle *p[4];
float dt, t[4];
int a;
if(paf->totkey==1) {
VECCOPY(vec, pa->co);
return;
}
/* first find the first particlekey */
2002-10-12 11:37:38 +00:00
a= (int)((paf->totkey-1)*(ctime-pa->time)/pa->lifetime);
if(a>=paf->totkey) a= paf->totkey-1;
pa+= a;
if(a>0) p[0]= pa-1; else p[0]= pa;
p[1]= pa;
if(a+1<paf->totkey) p[2]= pa+1; else p[2]= pa;
if(a+2<paf->totkey) p[3]= pa+2; else p[3]= p[2];
if(p[1]==p[2]) dt= 0.0;
else dt= (ctime-p[1]->time)/(p[2]->time - p[1]->time);
if(paf->flag & PAF_BSPLINE) set_four_ipo(dt, t, KEY_BSPLINE);
else set_four_ipo(dt, t, KEY_CARDINAL);
vec[0]= t[0]*p[0]->co[0] + t[1]*p[1]->co[0] + t[2]*p[2]->co[0] + t[3]*p[3]->co[0];
vec[1]= t[0]*p[0]->co[1] + t[1]*p[1]->co[1] + t[2]*p[2]->co[1] + t[3]*p[3]->co[1];
vec[2]= t[0]*p[0]->co[2] + t[1]*p[1]->co[2] + t[2]*p[2]->co[2] + t[3]*p[3]->co[2];
}
void particle_tex(MTex *mtex, PartEff *paf, float *co, float *no)
{
extern float Tin, Tr, Tg, Tb;
2003-12-21 22:23:20 +00:00
extern void externtex(struct MTex *mtex, float *vec);
2002-10-12 11:37:38 +00:00
float old;
externtex(mtex, co);
2002-10-12 11:37:38 +00:00
if(paf->texmap==PAF_TEXINT) {
Tin*= paf->texfac;
no[0]+= Tin*paf->defvec[0];
no[1]+= Tin*paf->defvec[1];
no[2]+= Tin*paf->defvec[2];
}
else if(paf->texmap==PAF_TEXRGB) {
no[0]+= (Tr-0.5f)*paf->texfac;
no[1]+= (Tg-0.5f)*paf->texfac;
no[2]+= (Tb-0.5f)*paf->texfac;
}
else { /* PAF_TEXGRAD */
old= Tin;
co[0]+= paf->nabla;
externtex(mtex, co);
no[0]+= (old-Tin)*paf->texfac;
co[0]-= paf->nabla;
co[1]+= paf->nabla;
externtex(mtex, co);
no[1]+= (old-Tin)*paf->texfac;
co[1]-= paf->nabla;
co[2]+= paf->nabla;
externtex(mtex, co);
no[2]+= (old-Tin)*paf->texfac;
}
}
static int linetriangle(float p1[3], float p2[3], float v0[3], float v1[3], float v2[3], float *labda)
{
float p[3], s[3], d[3], e1[3], e2[3], q[3];
float a, f, u, v;
VECSUB(e1, v1, v0);
VECSUB(e2, v2, v0);
VECSUB(d, p2, p1);
Crossf(p, d, e2);
a = INPR(e1, p);
if ((a > -0.000001) && (a < 0.000001)) return 0;
f = 1.0f/a;
VECSUB(s, p1, v0);
Crossf(q, s, e1);
*labda = f * INPR(e2, q);
if ((*labda < 0.0)||(*labda > 1.0)) return 0;
u = f * INPR(s, p);
if ((u < 0.0)||(u > 1.0)) return 0;
v = f * INPR(d, q);
if ((v < 0.0)||((u + v) > 1.0)) return 0;
return 1;
}
static void get_effector(float opco[], float force[], float speed[], float cur_time, unsigned int par_layer)
{
/*
Particle effector field code
Modifies the force on a particle according to its
relation with the effector object
Different kind of effectors include:
Forcefields: Gravity-like attractor
(force power is related to the inverse of distance to the power of a falloff value)
Vortex fields: swirling effectors
(particles rotate around Z-axis of the object. otherwise, same relation as)
(Forcefields, but this is not done through a force/acceleration)
*/
Object *ob;
Base *base;
float vect_to_vert[3];
float force_vec[3];
float f_force, distance;
float obloc[3];
float force_val, ffall_val;
short cur_frame;
/* Cycle through objects, get total of (1/(gravity_strength * dist^gravity_power)) */
/* Check for min distance here? */
base = G.scene->base.first;
while (base) {
if(base->lay & par_layer) {
ob= base->object;
if(ob->pd && ob->pd->forcefield == PFIELD_FORCE) {
/* Need to set r.cfra for paths (investigate, ton) */
cur_frame = G.scene->r.cfra;
G.scene->r.cfra = (short)cur_time;
where_is_object_time(ob, cur_time);
G.scene->r.cfra = cur_frame;
/* only use center of object */
obloc[0] = ob->obmat[3][0];
obloc[1] = ob->obmat[3][1];
obloc[2] = ob->obmat[3][2];
/* Get IPO force strength and fall off values here */
if (has_ipo_code(ob->ipo, OB_PD_FSTR))
force_val = IPO_GetFloatValue(ob->ipo, OB_PD_FSTR, cur_time);
else
force_val = ob->pd->f_strength;
if (has_ipo_code(ob->ipo, OB_PD_FFALL))
ffall_val = IPO_GetFloatValue(ob->ipo, OB_PD_FFALL, cur_time);
else
ffall_val = ob->pd->f_power;
/* Now calculate the gravitational force */
VECSUB(vect_to_vert, obloc, opco);
distance = Normalise(vect_to_vert);
/* Limit minimum distance to vertex so that */
/* the force is not too big */
if (distance < 0.001) distance = 0.001f;
f_force = (force_val)*(1/(1000 * (float)pow((double)distance, (double)ffall_val)));
force[0] += (vect_to_vert[0] * f_force );
force[1] += (vect_to_vert[1] * f_force );
force[2] += (vect_to_vert[2] * f_force );
}
else if(ob->pd && ob->pd->forcefield == PFIELD_VORTEX) {
/* Need to set r.cfra for paths (investigate, ton) */
cur_frame = G.scene->r.cfra;
G.scene->r.cfra = (short)cur_time;
where_is_object_time(ob, cur_time);
G.scene->r.cfra = cur_frame;
/* only use center of object */
obloc[0] = ob->obmat[3][0];
obloc[1] = ob->obmat[3][1];
obloc[2] = ob->obmat[3][2];
/* Get IPO force strength and fall off values here */
if (has_ipo_code(ob->ipo, OB_PD_FSTR))
force_val = IPO_GetFloatValue(ob->ipo, OB_PD_FSTR, cur_time);
else
force_val = ob->pd->f_strength;
if (has_ipo_code(ob->ipo, OB_PD_FFALL))
ffall_val = IPO_GetFloatValue(ob->ipo, OB_PD_FFALL, cur_time);
else
ffall_val = ob->pd->f_power;
/* Now calculate the vortex force */
VECSUB(vect_to_vert, obloc, opco);
distance = Normalise(vect_to_vert);
Crossf(force_vec, ob->obmat[2], vect_to_vert);
Normalise(force_vec);
/* Limit minimum distance to vertex so that */
/* the force is not too big */
if (distance < 0.001) distance = 0.001f;
f_force = (force_val)*(1/(100 * (float)pow((double)distance, (double)ffall_val)));
speed[0] -= (force_vec[0] * f_force );
speed[1] -= (force_vec[1] * f_force );
speed[2] -= (force_vec[2] * f_force );
}
}
base = base->next;
}
}
static void cache_object_vertices(Object *ob)
{
Mesh *me;
MVert *mvert;
float *fp;
int a;
me= ob->data;
if(me->totvert==0) return;
fp= ob->sumohandle= MEM_mallocN(3*sizeof(float)*me->totvert, "cache particles");
mvert= me->mvert;
a= me->totvert;
while(a--) {
VECCOPY(fp, mvert->co);
Mat4MulVecfl(ob->obmat, fp);
mvert++;
fp+= 3;
}
}
static int get_deflection(float opco[3], float npco[3], float opno[3],
float npno[3], float life, float force[3], int def_depth,
float cur_time, unsigned int par_layer, int *last_object,
int *last_face, int *same_face)
{
/* Particle deflection code */
/* The code is in two sections: the first part checks whether a particle has */
/* intersected a face of a deflector mesh, given its old and new co-ords, opco and npco */
/* and which face it hit first */
/* The second part calculates the new co-ordinates given that collision and updates */
/* the new co-ordinates accordingly */
Base *base;
Object *ob, *deflection_object = NULL;
Mesh *def_mesh;
MFace *mface, *deflection_face = NULL;
float *v1, *v2, *v3, *v4, *vcache=NULL;
float nv1[3], nv2[3], nv3[3], nv4[3], edge1[3], edge2[3];
float dv1[3], dv2[3], dv3[3];
float vect_to_int[3], refl_vel[3];
float d_intersect_co[3], d_intersect_vect[3], d_nvect[3], d_i_co_above[3];
float forcec[3];
float k_point3, dist_to_plane;
float first_dist, ref_plane_mag;
float dk_plane=0, dk_point1=0;
float icalctop, icalcbot, n_mag;
float mag_iv, x_m,y_m,z_m;
float damping, perm_thresh;
float perm_val, rdamp_val;
int a, deflected=0, deflected_now=0;
float t, min_t;
float mat[3][3], obloc[3];
short cur_frame;
float time_before, time_after;
float force_mag_norm;
int d_object=0, d_face=0, ds_object=0, ds_face=0;
first_dist = 200000;
min_t = 200000;
/* The first part of the code, finding the first intersected face*/
base= G.scene->base.first;
while (base) {
/*Only proceed for mesh object in same layer */
if(base->object->type==OB_MESH && (base->lay & par_layer)) {
ob= base->object;
/* only with deflecting set */
if(ob->pd && ob->pd->deflect) {
def_mesh= ob->data;
d_object = d_object + 1;
d_face = d_face + 1;
mface= def_mesh->mface;
a = def_mesh->totface;
if(ob->parent==NULL && ob->ipo==NULL) { // static
if(ob->sumohandle==NULL) cache_object_vertices(ob);
vcache= ob->sumohandle;
}
else {
/*Find out where the object is at this time*/
cur_frame = G.scene->r.cfra;
G.scene->r.cfra = (short)cur_time;
where_is_object_time(ob, cur_time);
G.scene->r.cfra = cur_frame;
/*Pass the values from ob->obmat to mat*/
/*and the location values to obloc */
Mat3CpyMat4(mat,ob->obmat);
obloc[0] = ob->obmat[3][0];
obloc[1] = ob->obmat[3][1];
obloc[2] = ob->obmat[3][2];
}
while (a--) {
if(vcache) {
v1= vcache+ 3*(mface->v1);
VECCOPY(nv1, v1);
v1= vcache+ 3*(mface->v2);
VECCOPY(nv2, v1);
v1= vcache+ 3*(mface->v3);
VECCOPY(nv3, v1);
v1= vcache+ 3*(mface->v4);
VECCOPY(nv4, v1);
}
else {
/* Calculate the global co-ordinates of the vertices*/
v1= (def_mesh->mvert+(mface->v1))->co;
v2= (def_mesh->mvert+(mface->v2))->co;
v3= (def_mesh->mvert+(mface->v3))->co;
v4= (def_mesh->mvert+(mface->v4))->co;
VECCOPY(nv1, v1);
VECCOPY(nv2, v2);
VECCOPY(nv3, v3);
VECCOPY(nv4, v4);
/*Apply the objects deformation matrix*/
Mat3MulVecfl(mat, nv1);
Mat3MulVecfl(mat, nv2);
Mat3MulVecfl(mat, nv3);
Mat3MulVecfl(mat, nv4);
VECADD(nv1, nv1, obloc);
VECADD(nv2, nv2, obloc);
VECADD(nv3, nv3, obloc);
VECADD(nv4, nv4, obloc);
}
deflected_now = 0;
t= 0.5; // this is labda of line, can use it optimize quad intersection
if( linetriangle(opco, npco, nv1, nv2, nv3, &t) ) {
if (t < min_t) {
deflected = 1;
deflected_now = 1;
}
}
else if (mface->v4 && (t>=0.0 && t<=1.0)) {
if( linetriangle(opco, npco, nv1, nv3, nv4, &t) ) {
if (t < min_t) {
deflected = 1;
deflected_now = 2;
}
}
}
if ((deflected_now > 0) && (t < min_t)) {
min_t = t;
ds_object = d_object;
ds_face = d_face;
deflection_object = ob;
deflection_face = mface;
if (deflected_now==1) {
VECCOPY(dv1, nv1);
VECCOPY(dv2, nv2);
VECCOPY(dv3, nv3);
}
else {
VECCOPY(dv1, nv1);
VECCOPY(dv2, nv3);
VECCOPY(dv3, nv4);
}
}
mface++;
}
}
}
base = base->next;
}
/* Here's the point to do the permeability calculation */
/* Set deflected to 0 if a random number is below the value */
/* Get the permeability IPO here*/
if (deflected) {
if (has_ipo_code(deflection_object->ipo, OB_PD_PERM))
perm_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_PERM, cur_time);
else
perm_val = deflection_object->pd->pdef_perm;
perm_thresh = (float)BLI_drand() - perm_val;
if (perm_thresh < 0 ) {
deflected = 0;
}
}
/* Now for the second part of the deflection code - work out the new speed */
/* and position of the particle if a collision occurred */
if (deflected) {
VECSUB(edge1, dv1, dv2);
VECSUB(edge2, dv3, dv2);
Crossf(d_nvect, edge2, edge1);
n_mag = Normalise(d_nvect);
dk_plane = INPR(d_nvect, nv1);
dk_point1 = INPR(d_nvect,opco);
VECSUB(d_intersect_vect, npco, opco);
d_intersect_co[0] = opco[0] + (min_t * (npco[0] - opco[0]));
d_intersect_co[1] = opco[1] + (min_t * (npco[1] - opco[1]));
d_intersect_co[2] = opco[2] + (min_t * (npco[2] - opco[2]));
d_i_co_above[0] = (d_intersect_co[0] + (0.001f * d_nvect[0]));
d_i_co_above[1] = (d_intersect_co[1] + (0.001f * d_nvect[1]));
d_i_co_above[2] = (d_intersect_co[2] + (0.001f * d_nvect[2]));
mag_iv = Normalise(d_intersect_vect);
VECCOPY(npco, d_intersect_co);
VECSUB(vect_to_int, opco, d_intersect_co);
first_dist = Normalise(vect_to_int);
/* Work out the lengths of time before and after collision*/
time_before = (life*(first_dist / (mag_iv)));
time_after = (life*((mag_iv - first_dist) / (mag_iv)));
/* We have to recalculate what the speed would have been at the */
/* point of collision, not the key frame time */
npno[0]= opno[0] + time_before*force[0];
npno[1]= opno[1] + time_before*force[1];
npno[2]= opno[2] + time_before*force[2];
/* Reflect the speed vector in the face */
x_m = (2 * npno[0] * d_nvect[0]);
y_m = (2 * npno[1] * d_nvect[1]);
z_m = (2 * npno[2] * d_nvect[2]);
refl_vel[0] = npno[0] - (d_nvect[0] * (x_m + y_m + z_m));
refl_vel[1] = npno[1] - (d_nvect[1] * (x_m + y_m + z_m));
refl_vel[2] = npno[2] - (d_nvect[2] * (x_m + y_m + z_m));
/*A random variation in the damping factor........ */
/*Get the IPO values for damping here*/
if (has_ipo_code(deflection_object->ipo, OB_PD_SDAMP))
damping = IPO_GetFloatValue(deflection_object->ipo, OB_PD_SDAMP, cur_time);
else
damping = deflection_object->pd->pdef_damp;
if (has_ipo_code(deflection_object->ipo, OB_PD_RDAMP))
rdamp_val = IPO_GetFloatValue(deflection_object->ipo, OB_PD_RDAMP, cur_time);
else
rdamp_val = deflection_object->pd->pdef_rdamp;
damping = damping + ((1 - damping) * ((float)BLI_drand()*rdamp_val));
damping = damping * damping;
ref_plane_mag = INPR(refl_vel,d_nvect);
if (damping > 0.999) damping = 0.999f;
/* Now add in the damping force - only damp in the direction of */
/* the faces normal vector */
npno[0] = (refl_vel[0] - (d_nvect[0] * ref_plane_mag * damping));
npno[1] = (refl_vel[1] - (d_nvect[1] * ref_plane_mag * damping));
npno[2] = (refl_vel[2] - (d_nvect[2] * ref_plane_mag * damping));
/* Now reset opno */
VECCOPY(opno,npno);
VECCOPY(forcec, force);
/* If the particle has bounced more than four times on the same */
/* face within this cycle (depth > 4, same face > 4 ) */
/* Then set the force to be only that component of the force */
/* in the same direction as the face normal */
/* i.e. subtract the component of the force in the direction */
/* of the face normal from the actual force */
if ((ds_object == *last_object) && (ds_face == *last_face)) {
/* Increment same_face */
*same_face = *same_face + 1;
if ((*same_face > 3) && (def_depth > 3)) {
force_mag_norm = INPR(forcec, d_nvect);
forcec[0] = forcec[0] - (d_nvect[0] * force_mag_norm);
forcec[1] = forcec[1] - (d_nvect[1] * force_mag_norm);
forcec[2] = forcec[2] - (d_nvect[2] * force_mag_norm);
}
}
else *same_face = 1;
*last_object = ds_object;
*last_face = ds_face;
/* We have the particles speed at the point of collision */
/* Now we want the particles speed at the current key frame */
npno[0]= npno[0] + time_after*forcec[0];
npno[1]= npno[1] + time_after*forcec[1];
npno[2]= npno[2] + time_after*forcec[2];
/* Now we have to recalculate pa->co for the remainder*/
/* of the time since the intersect*/
npco[0]= npco[0] + time_after*npno[0];
npco[1]= npco[1] + time_after*npno[1];
npco[2]= npco[2] + time_after*npno[2];
/* And set the old co-ordinates back to the point just above the intersection */
VECCOPY(opco, d_i_co_above);
/* Finally update the time */
life = time_after;
cur_time += time_before;
/* The particle may have fallen through the face again by now!!*/
/* So check if the particle has changed sides of the plane compared*/
/* the co-ordinates at the last keyframe*/
/* But only do this as a last resort, if we've got to the end of the */
/* number of collisions allowed */
if (def_depth==9) {
k_point3 = INPR(d_nvect,npco);
if (((dk_plane > k_point3) && (dk_plane < dk_point1))||((dk_plane < k_point3) && (dk_plane > dk_point1))) {
/* Yup, the pesky particle may have fallen through a hole!!! */
/* So we'll cheat a bit and move the particle along the normal vector */
/* until it's just the other side of the plane */
icalctop = (dk_plane - d_nvect[0]*npco[0] - d_nvect[1]*npco[1] - d_nvect[2]*npco[2]);
icalcbot = (d_nvect[0]*d_nvect[0] + d_nvect[1]*d_nvect[1] + d_nvect[2]*d_nvect[2]);
dist_to_plane = icalctop / icalcbot;
/* Now just increase the distance a little to place */
/* the point the other side of the plane */
dist_to_plane *= 1.1f;
npco[0]= npco[0] + (dist_to_plane * d_nvect[0]);
npco[1]= npco[1] + (dist_to_plane * d_nvect[1]);
npco[2]= npco[2] + (dist_to_plane * d_nvect[2]);
}
}
}
return deflected;
}
void make_particle_keys(int depth, int nr, PartEff *paf, Particle *part, float *force, int deform, MTex *mtex, unsigned int par_layer)
2002-10-12 11:37:38 +00:00
{
Particle *pa, *opa = NULL;
float damp, deltalife, life;
float cur_time;
float opco[3], opno[3], npco[3], npno[3], new_force[3], new_speed[3];
int b, rt1, rt2, deflected, deflection, finish_defs, def_count;
int last_ob, last_fc, same_fc;
2002-10-12 11:37:38 +00:00
damp= 1.0f-paf->damp;
pa= part;
/* start speed: random */
2002-10-12 11:37:38 +00:00
if(paf->randfac!=0.0) {
pa->no[0]+= (float)(paf->randfac*( BLI_drand() -0.5));
pa->no[1]+= (float)(paf->randfac*( BLI_drand() -0.5));
pa->no[2]+= (float)(paf->randfac*( BLI_drand() -0.5));
}
/* start speed: texture */
2002-10-12 11:37:38 +00:00
if(mtex && paf->texfac!=0.0) {
particle_tex(mtex, paf, pa->co, pa->no);
2002-10-12 11:37:38 +00:00
}
if(paf->totkey>1) deltalife= pa->lifetime/(paf->totkey-1);
else deltalife= pa->lifetime;
opa= pa;
pa++;
b= paf->totkey-1;
while(b--) {
/* new time */
pa->time= opa->time+deltalife;
/* set initial variables */
opco[0] = opa->co[0];
opco[1] = opa->co[1];
opco[2] = opa->co[2];
new_force[0] = force[0];
new_force[1] = force[1];
new_force[2] = force[2];
new_speed[0] = 0.0;
new_speed[1] = 0.0;
new_speed[2] = 0.0;
/* Check force field */
cur_time = pa->time;
get_effector(opco, new_force, new_speed, cur_time, par_layer);
/* new location */
pa->co[0]= opa->co[0] + deltalife * (opa->no[0] + new_speed[0] + 0.5f*new_force[0]);
pa->co[1]= opa->co[1] + deltalife * (opa->no[1] + new_speed[1] + 0.5f*new_force[1]);
pa->co[2]= opa->co[2] + deltalife * (opa->no[2] + new_speed[2] + 0.5f*new_force[2]);
/* new speed */
pa->no[0]= opa->no[0] + deltalife*new_force[0];
pa->no[1]= opa->no[1] + deltalife*new_force[1];
pa->no[2]= opa->no[2] + deltalife*new_force[2];
/* Particle deflection code */
deflection = 0;
finish_defs = 1;
def_count = 0;
VECCOPY(opno, opa->no);
VECCOPY(npco, pa->co);
VECCOPY(npno, pa->no);
life = deltalife;
cur_time -= deltalife;
last_ob = -1;
last_fc = -1;
same_fc = 0;
/* First call the particle deflection check for the particle moving */
/* between the old co-ordinates and the new co-ordinates */
/* If a deflection occurs, call the code again, this time between the */
/* intersection point and the updated new co-ordinates */
/* Bail out if we've done the calculation 10 times - this seems ok */
/* for most scenes I've tested */
while (finish_defs) {
deflected = get_deflection(opco, npco, opno, npno, life, new_force,
def_count, cur_time, par_layer,
&last_ob, &last_fc, &same_fc);
if (deflected) {
def_count = def_count + 1;
deflection = 1;
if (def_count==10) finish_defs = 0;
}
else {
finish_defs = 0;
}
}
/* Only update the particle positions and speed if we had a deflection */
if (deflection) {
pa->co[0] = npco[0];
pa->co[1] = npco[1];
pa->co[2] = npco[2];
pa->no[0] = npno[0];
pa->no[1] = npno[1];
pa->no[2] = npno[2];
}
/* speed: texture */
if(mtex && paf->texfac!=0.0) {
particle_tex(mtex, paf, pa->co, pa->no);
}
if(damp!=1.0) {
pa->no[0]*= damp;
pa->no[1]*= damp;
pa->no[2]*= damp;
}
2002-10-12 11:37:38 +00:00
opa= pa;
pa++;
/* opa is used later on too! */
2002-10-12 11:37:38 +00:00
}
if(deform) {
/* deform all keys */
2002-10-12 11:37:38 +00:00
pa= part;
b= paf->totkey;
while(b--) {
calc_latt_deform(pa->co);
pa++;
}
}
/* the big multiplication */
2002-10-12 11:37:38 +00:00
if(depth<PAF_MAXMULT && paf->mult[depth]!=0.0) {
/* new 'child' emerges from an average 'mult' part from
the particles */
2002-10-12 11:37:38 +00:00
damp = (float)nr;
rt1= (int)(damp*paf->mult[depth]);
rt2= (int)((damp+1.0)*paf->mult[depth]);
if(rt1!=rt2) {
for(b=0; b<paf->child[depth]; b++) {
pa= new_particle(paf);
*pa= *opa;
pa->lifetime= paf->life[depth];
if(paf->randlife!=0.0) {
pa->lifetime*= 1.0f+ (float)(paf->randlife*( BLI_drand() - 0.5));
}
pa->mat_nr= paf->mat[depth];
make_particle_keys(depth+1, b, paf, pa, force, deform, mtex, par_layer);
2002-10-12 11:37:38 +00:00
}
}
}
}
void init_mv_jit(float *jit, int num,int seed2)
2002-10-12 11:37:38 +00:00
{
float *jit2, x, rad1, rad2, rad3;
2002-10-30 00:37:19 +00:00
int i, num2;
2002-10-12 11:37:38 +00:00
if(num==0) return;
rad1= (float)(1.0/sqrt((float)num));
rad2= (float)(1.0/((float)num));
rad3= (float)sqrt((float)num)/((float)num);
BLI_srand(31415926 + num + seed2);
2002-10-12 11:37:38 +00:00
x= 0;
2002-10-30 00:37:19 +00:00
num2 = 2 * num;
for(i=0; i<num2; i+=2) {
2002-10-12 11:37:38 +00:00
jit[i]= x+ (float)(rad1*(0.5-BLI_drand()));
jit[i+1]= ((float)i/2)/num +(float)(rad1*(0.5-BLI_drand()));
jit[i]-= (float)floor(jit[i]);
jit[i+1]-= (float)floor(jit[i+1]);
x+= rad3;
x -= (float)floor(x);
}
jit2= MEM_mallocN(12 + 2*sizeof(float)*num, "initjit");
for (i=0 ; i<4 ; i++) {
RE_jitterate1(jit, jit2, num, rad1);
RE_jitterate1(jit, jit2, num, rad1);
RE_jitterate2(jit, jit2, num, rad2);
}
MEM_freeN(jit2);
}
void give_mesh_mvert(Mesh *me, int nr, float *co, short *no, int seed2)
2002-10-12 11:37:38 +00:00
{
static float *jit=0;
static int jitlevel=1;
MVert *mvert, *mvertbase=NULL;
MFace *mface, *mfacebase=NULL;
2002-10-12 11:37:38 +00:00
float u, v, *v1, *v2, *v3, *v4;
int totface=0, totvert=0, curface, curjit;
2002-10-12 11:37:38 +00:00
short *n1, *n2, *n3, *n4;
/* signal */
if(me==0) {
if(jit) MEM_freeN(jit);
jit= 0;
return;
}
/* get it from displist? */
if(me->disp.first) {
DispList *dl= me->disp.first;
if(dl->type==DL_MESH) {
DispListMesh *dlm= dl->mesh;
mvertbase= dlm->mvert;
mfacebase= dlm->mface;
totface= dlm->totface;
totvert= dlm->totvert;
}
}
if(totvert==0) {
mvertbase= me->mvert;
mfacebase= me->mface;
totface= me->totface;
totvert= me->totvert;
}
if(totface==0 || nr<totvert) {
mvert= mvertbase + (nr % totvert);
2002-10-12 11:37:38 +00:00
VECCOPY(co, mvert->co);
VECCOPY(no, mvert->no);
}
else {
nr-= totvert;
2002-10-12 11:37:38 +00:00
if(jit==0) {
jitlevel= nr/totface;
2002-10-12 11:37:38 +00:00
if(jitlevel==0) jitlevel= 1;
if(jitlevel>100) jitlevel= 100;
2002-10-12 11:37:38 +00:00
jit= MEM_callocN(2+ jitlevel*2*sizeof(float), "jit");
init_mv_jit(jit, jitlevel,seed2);
2002-10-12 11:37:38 +00:00
}
curjit= nr/totface;
2002-10-12 11:37:38 +00:00
curjit= curjit % jitlevel;
curface= nr % totface;
2002-10-12 11:37:38 +00:00
mface= mfacebase;
2002-10-12 11:37:38 +00:00
mface+= curface;
v1= (mvertbase+(mface->v1))->co;
v2= (mvertbase+(mface->v2))->co;
n1= (mvertbase+(mface->v1))->no;
n2= (mvertbase+(mface->v2))->no;
2002-10-12 11:37:38 +00:00
if(mface->v3==0) {
v3= (mvertbase+(mface->v2))->co;
v4= (mvertbase+(mface->v1))->co;
n3= (mvertbase+(mface->v2))->no;
n4= (mvertbase+(mface->v1))->no;
2002-10-12 11:37:38 +00:00
}
else if(mface->v4==0) {
v3= (mvertbase+(mface->v3))->co;
v4= (mvertbase+(mface->v1))->co;
n3= (mvertbase+(mface->v3))->no;
n4= (mvertbase+(mface->v1))->no;
2002-10-12 11:37:38 +00:00
}
else {
v3= (mvertbase+(mface->v3))->co;
v4= (mvertbase+(mface->v4))->co;
n3= (mvertbase+(mface->v3))->no;
n4= (mvertbase+(mface->v4))->no;
2002-10-12 11:37:38 +00:00
}
u= jit[2*curjit];
v= jit[2*curjit+1];
co[0]= (float)((1.0-u)*(1.0-v)*v1[0] + (1.0-u)*(v)*v2[0] + (u)*(v)*v3[0] + (u)*(1.0-v)*v4[0]);
co[1]= (float)((1.0-u)*(1.0-v)*v1[1] + (1.0-u)*(v)*v2[1] + (u)*(v)*v3[1] + (u)*(1.0-v)*v4[1]);
co[2]= (float)((1.0-u)*(1.0-v)*v1[2] + (1.0-u)*(v)*v2[2] + (u)*(v)*v3[2] + (u)*(1.0-v)*v4[2]);
no[0]= (short)((1.0-u)*(1.0-v)*n1[0] + (1.0-u)*(v)*n2[0] + (u)*(v)*n3[0] + (u)*(1.0-v)*n4[0]);
no[1]= (short)((1.0-u)*(1.0-v)*n1[1] + (1.0-u)*(v)*n2[1] + (u)*(v)*n3[1] + (u)*(1.0-v)*n4[1]);
no[2]= (short)((1.0-u)*(1.0-v)*n1[2] + (1.0-u)*(v)*n2[2] + (u)*(v)*n3[2] + (u)*(1.0-v)*n4[2]);
}
}
void build_particle_system(Object *ob)
{
Base *base;
2002-10-12 11:37:38 +00:00
Object *par;
PartEff *paf;
Particle *pa;
Mesh *me;
MVert *mvert;
MTex *mtexmove=0;
Material *ma;
int armature_parent;
2002-10-12 11:37:38 +00:00
float framelenont, ftime, dtime, force[3], imat[3][3], vec[3];
float fac, prevobmat[4][4], sfraont, co[3];
int deform=0, a, b, c, cur, cfraont, cfralast, totpart;
2002-10-12 11:37:38 +00:00
short no[3];
2002-10-12 11:37:38 +00:00
if(ob->type!=OB_MESH) return;
me= ob->data;
if(me->totvert==0) return;
2002-10-12 11:37:38 +00:00
ma= give_current_material(ob, 1);
if(ma) {
mtexmove= ma->mtex[7];
}
2002-10-12 11:37:38 +00:00
paf= give_parteff(ob);
if(paf==NULL) return;
2002-10-12 11:37:38 +00:00
waitcursor(1);
2002-10-12 11:37:38 +00:00
disable_speed_curve(1);
/* generate all particles */
2002-10-12 11:37:38 +00:00
if(paf->keys) MEM_freeN(paf->keys);
paf->keys= NULL;
new_particle(paf);
2002-10-12 11:37:38 +00:00
/* reset deflector cache, sumohandle is free, but its still sorta abuse... (ton) */
for(base= G.scene->base.first; base; base= base->next) {
base->object->sumohandle= NULL;
}
2002-10-12 11:37:38 +00:00
cfraont= G.scene->r.cfra;
cfralast= -1000;
framelenont= G.scene->r.framelen;
G.scene->r.framelen= 1.0;
sfraont= ob->sf;
ob->sf= 0.0;
/* mult generations? */
2002-10-12 11:37:38 +00:00
totpart= paf->totpart;
for(a=0; a<PAF_MAXMULT; a++) {
if(paf->mult[a]!=0.0) {
/* interessant formula! this way after 'x' generations the total is paf->totpart */
2002-10-12 11:37:38 +00:00
totpart= (int)(totpart / (1.0+paf->mult[a]*paf->child[a]));
}
else break;
}
ftime= paf->sta;
dtime= (paf->end - paf->sta)/totpart;
/* remember full hierarchy */
2002-10-12 11:37:38 +00:00
par= ob;
while(par) {
pushdata(par, sizeof(Object));
par= par->parent;
}
/* for static particles, calculate system on current frame */
do_mat_ipo(ma);
2002-10-12 11:37:38 +00:00
/* set it all at first frame */
2002-10-12 11:37:38 +00:00
G.scene->r.cfra= cfralast= (int)floor(ftime);
par= ob;
armature_parent = 0;
2002-10-12 11:37:38 +00:00
while(par) {
/* do_ob_ipo(par); */
do_ob_key(par);
/* Just checking whether theres an armature in the */
/* parent chain of the emitter, so we know whether */
/* to recalculate the armatures */
if(par->type==OB_ARMATURE) {
armature_parent = 1;
}
2002-10-12 11:37:38 +00:00
par= par->parent;
}
2002-10-12 11:37:38 +00:00
if((paf->flag & PAF_STATIC)==0) {
do_mat_ipo(ma); // nor for static
2002-10-12 11:37:38 +00:00
where_is_object(ob);
Mat4CpyMat4(prevobmat, ob->obmat);
Mat4Invert(ob->imat, ob->obmat);
Mat3CpyMat4(imat, ob->imat);
}
else {
Mat4One(prevobmat);
Mat3One(imat);
}
BLI_srand(paf->seed);
/* otherwise it goes way too fast */
2002-10-12 11:37:38 +00:00
force[0]= paf->force[0]*0.05f;
force[1]= paf->force[1]*0.05f;
force[2]= paf->force[2]*0.05f;
if( paf->flag & PAF_STATIC ) deform= 0;
else {
deform= (ob->parent && ob->parent->type==OB_LATTICE);
if(deform) init_latt_deform(ob->parent, 0);
}
2002-10-12 11:37:38 +00:00
/* init */
give_mesh_mvert(me, totpart, co, no, paf->seed);
printf("\n");
printf("Calculating particles......... \n");
2002-10-12 11:37:38 +00:00
for(a=0; a<totpart; a++, ftime+=dtime) {
pa= new_particle(paf);
pa->time= ftime;
c = totpart/100;
if (c==0){
c = 1;
}
b=(a%c);
if (b==0) {
printf("\r Particle: %d / %d ", a, totpart);
fflush(stdout);
}
/* set ob at correct time */
2002-10-12 11:37:38 +00:00
if((paf->flag & PAF_STATIC)==0) {
cur= (int)floor(ftime) + 1 ; /* + 1 has a reason: (obmat/prevobmat) otherwise comet-tails start too late */
2002-10-12 11:37:38 +00:00
if(cfralast != cur) {
G.scene->r.cfra= cfralast= cur;
/* added later: blur? */
2002-10-12 11:37:38 +00:00
bsystem_time(ob, ob->parent, (float)G.scene->r.cfra, 0.0);
/* Update the armatures */
if (armature_parent) {
do_all_actions();
rebuild_all_armature_displists();
}
2002-10-12 11:37:38 +00:00
par= ob;
while(par) {
/* do_ob_ipo(par); */
par->ctime= -1234567.0;
do_ob_key(par);
par= par->parent;
}
do_mat_ipo(ma);
Mat4CpyMat4(prevobmat, ob->obmat);
where_is_object(ob);
Mat4Invert(ob->imat, ob->obmat);
Mat3CpyMat4(imat, ob->imat);
}
}
/* get coordinates */
if(paf->flag & PAF_FACE) give_mesh_mvert(me, a, co, no,paf->seed);
2002-10-12 11:37:38 +00:00
else {
mvert= me->mvert + (a % me->totvert);
VECCOPY(co, mvert->co);
VECCOPY(no, mvert->no);
}
VECCOPY(pa->co, co);
if(paf->flag & PAF_STATIC);
else {
Mat4MulVecfl(ob->obmat, pa->co);
VECCOPY(vec, co);
Mat4MulVecfl(prevobmat, vec);
/* first start speed: object */
VECSUB(pa->no, pa->co, vec);
2002-10-12 11:37:38 +00:00
VecMulf(pa->no, paf->obfac);
/* calculate the correct inter-frame */
2002-10-12 11:37:38 +00:00
fac= (ftime- (float)floor(ftime));
pa->co[0]= fac*pa->co[0] + (1.0f-fac)*vec[0];
pa->co[1]= fac*pa->co[1] + (1.0f-fac)*vec[1];
pa->co[2]= fac*pa->co[2] + (1.0f-fac)*vec[2];
}
/* start speed: normal */
2002-10-12 11:37:38 +00:00
if(paf->normfac!=0.0) {
/* sp= mvert->no; */
/* transpose ! */
vec[0]= imat[0][0]*no[0] + imat[0][1]*no[1] + imat[0][2]*no[2];
vec[1]= imat[1][0]*no[0] + imat[1][1]*no[1] + imat[1][2]*no[2];
vec[2]= imat[2][0]*no[0] + imat[2][1]*no[1] + imat[2][2]*no[2];
Normalise(vec);
VecMulf(vec, paf->normfac);
VECADD(pa->no, pa->no, vec);
2002-10-12 11:37:38 +00:00
}
pa->lifetime= paf->lifetime;
if(paf->randlife!=0.0) {
pa->lifetime*= 1.0f+ (float)(paf->randlife*( BLI_drand() - 0.5));
}
pa->mat_nr= 1;
make_particle_keys(0, a, paf, pa, force, deform, mtexmove, ob->lay);
2002-10-12 11:37:38 +00:00
}
printf("\r Particle: %d / %d \n", totpart, totpart);
fflush(stdout);
2002-10-12 11:37:38 +00:00
if(deform) end_latt_deform();
/* restore */
G.scene->r.cfra= cfraont;
G.scene->r.framelen= framelenont;
give_mesh_mvert(0, 0, 0, 0,paf->seed);
2002-10-12 11:37:38 +00:00
/*Restore armature settings*/
if((paf->flag & PAF_STATIC)==0) {
if (armature_parent) {
do_all_actions();
rebuild_all_armature_displists();
}
}
/* put hierarchy back */
2002-10-12 11:37:38 +00:00
par= ob;
while(par) {
popfirst(par);
/* do not do ob->ipo: keep insertkey */
2002-10-12 11:37:38 +00:00
do_ob_key(par);
par= par->parent;
}
/* reset deflector cache */
for(base= G.scene->base.first; base; base= base->next) {
if(base->object->sumohandle) {
MEM_freeN(base->object->sumohandle);
base->object->sumohandle= NULL;
}
}
/* restore: AFTER popfirst */
2002-10-12 11:37:38 +00:00
ob->sf= sfraont;
disable_speed_curve(0);
waitcursor(0);
}
/* ************* WAVE **************** */
void calc_wave_deform(WaveEff *wav, float ctime, float *co)
{
/* co is in local coords */
2002-10-12 11:37:38 +00:00
float lifefac, x, y, amplit;
/* actually this should not happen */
2002-10-12 11:37:38 +00:00
if((wav->flag & (WAV_X+WAV_Y))==0) return;
lifefac= wav->height;
if( wav->lifetime!=0.0) {
x= ctime - wav->timeoffs;
if(x>wav->lifetime) {
lifefac= x-wav->lifetime;
if(lifefac > wav->damp) lifefac= 0.0;
else lifefac= (float)(wav->height*(1.0 - sqrt(lifefac/wav->damp)));
}
}
if(lifefac==0.0) return;
x= co[0]-wav->startx;
y= co[1]-wav->starty;
if(wav->flag & WAV_X) {
if(wav->flag & WAV_Y) amplit= (float)sqrt( (x*x + y*y));
else amplit= x;
}
else amplit= y;
/* this way it makes nice circles */
2002-10-12 11:37:38 +00:00
amplit-= (ctime-wav->timeoffs)*wav->speed;
if(wav->flag & WAV_CYCL) {
amplit = (float)fmod(amplit-wav->width, 2.0*wav->width) + wav->width;
}
/* GAUSSIAN */
if(amplit> -wav->width && amplit<wav->width) {
amplit = amplit*wav->narrow;
amplit= (float)(1.0/exp(amplit*amplit) - wav->minfac);
co[2]+= lifefac*amplit;
}
}
/* return 1 if deformed
Note: it works on mvert now, so assumes to be callied in modifier stack \
*/
int object_wave(Object *ob)
2002-10-12 11:37:38 +00:00
{
WaveEff *wav;
Mesh *me;
MVert *mvert;
float ctime;
int a;
2002-10-12 11:37:38 +00:00
/* is there a wave */
2002-10-12 11:37:38 +00:00
wav= ob->effect.first;
while(wav) {
if(wav->type==EFF_WAVE) break;
wav= wav->next;
}
if(wav==NULL) return 0;
2002-10-12 11:37:38 +00:00
if(ob->type==OB_MESH) {
ctime= bsystem_time(ob, 0, (float)G.scene->r.cfra, 0.0);
me= ob->data;
wav= ob->effect.first;
while(wav) {
if(wav->type==EFF_WAVE) {
/* precalculate */
2002-10-12 11:37:38 +00:00
wav->minfac= (float)(1.0/exp(wav->width*wav->narrow*wav->width*wav->narrow));
if(wav->damp==0) wav->damp= 10.0f;
mvert= me->mvert;
for(a=0; a<me->totvert; a++, mvert++) {
calc_wave_deform(wav, ctime, mvert->co);
2002-10-12 11:37:38 +00:00
}
}
wav= wav->next;
}
}
return 1;
2002-10-12 11:37:38 +00:00
}