Merge branch 'master' into greasepencil-object

This commit is contained in:
2019-11-06 17:44:40 +01:00
15 changed files with 226 additions and 216 deletions

View File

@@ -3,7 +3,9 @@
include("${CMAKE_CURRENT_LIST_DIR}/../../cmake/config/blender_release.cmake")
message(STATUS "Building in CentOS 7 64bit environment")
set(LIBDIR_NAME "linux_centos7_x86_64")
set(WITH_CXX11_ABI OFF CACHE BOOL "" FORCE)
# Default to only build Blender
set(WITH_BLENDER ON CACHE BOOL "" FORCE)

View File

@@ -102,6 +102,7 @@ using Alembic::AbcGeom::kFacevaryingScope;
using Alembic::AbcGeom::kVaryingScope;
using Alembic::AbcGeom::kVertexScope;
using Alembic::AbcGeom::kWrapExisting;
using Alembic::AbcGeom::N3fArraySample;
using Alembic::AbcGeom::N3fArraySamplePtr;
using Alembic::AbcGeom::UInt32ArraySample;
@@ -124,12 +125,13 @@ static void get_vertices(struct Mesh *mesh, std::vector<Imath::V3f> &points)
static void get_topology(struct Mesh *mesh,
std::vector<int32_t> &poly_verts,
std::vector<int32_t> &loop_counts,
bool &r_export_loop_normals)
bool &r_has_flat_shaded_poly)
{
const int num_poly = mesh->totpoly;
const int num_loops = mesh->totloop;
MLoop *mloop = mesh->mloop;
MPoly *mpoly = mesh->mpoly;
r_has_flat_shaded_poly = false;
poly_verts.clear();
loop_counts.clear();
@@ -141,7 +143,7 @@ static void get_topology(struct Mesh *mesh,
MPoly &poly = mpoly[i];
loop_counts.push_back(poly.totloop);
r_export_loop_normals |= (poly.flag & ME_SMOOTH) != 0;
r_has_flat_shaded_poly |= (poly.flag & ME_SMOOTH) == 0;
MLoop *loop = mloop + poly.loopstart + (poly.totloop - 1);
@@ -177,66 +179,31 @@ static void get_creases(struct Mesh *mesh,
lengths.resize(sharpnesses.size(), 2);
}
static void get_vertex_normals(struct Mesh *mesh, std::vector<Imath::V3f> &normals)
static void get_loop_normals(struct Mesh *mesh,
std::vector<Imath::V3f> &normals,
bool has_flat_shaded_poly)
{
normals.clear();
normals.resize(mesh->totvert);
MVert *verts = mesh->mvert;
float no[3];
for (int i = 0, e = mesh->totvert; i < e; i++) {
normal_short_to_float_v3(no, verts[i].no);
copy_yup_from_zup(normals[i].getValue(), no);
/* If all polygons are smooth shaded, and there are no custom normals, we don't need to export
* normals at all. This is also done by other software, see T71246. */
if (!has_flat_shaded_poly && !CustomData_has_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL)) {
return;
}
}
static void get_loop_normals(struct Mesh *mesh, std::vector<Imath::V3f> &normals)
{
MPoly *mp = mesh->mpoly;
MLoop *mloop = mesh->mloop;
MLoop *ml = mloop;
MVert *verts = mesh->mvert;
BKE_mesh_calc_normals_split(mesh);
const float(*lnors)[3] = static_cast<float(*)[3]>(CustomData_get_layer(&mesh->ldata, CD_NORMAL));
BLI_assert(lnors != NULL || !"BKE_mesh_calc_normals_split() should have computed CD_NORMAL");
normals.clear();
normals.resize(mesh->totloop);
/* NOTE: data needs to be written in the reverse order. */
int abc_index = 0;
if (lnors) {
for (int i = 0, e = mesh->totpoly; i < e; i++, mp++) {
for (int j = mp->totloop - 1; j >= 0; j--, abc_index++) {
int blender_index = mp->loopstart + j;
copy_yup_from_zup(normals[abc_index].getValue(), lnors[blender_index]);
}
}
}
else {
float no[3];
for (int i = 0, e = mesh->totpoly; i < e; i++, mp++) {
ml = mloop + mp->loopstart + (mp->totloop - 1);
/* Flat shaded, use common normal for all verts. */
if ((mp->flag & ME_SMOOTH) == 0) {
BKE_mesh_calc_poly_normal(mp, ml - (mp->totloop - 1), verts, no);
for (int j = 0; j < mp->totloop; ml--, j++, abc_index++) {
copy_yup_from_zup(normals[abc_index].getValue(), no);
}
}
else {
/* Smooth shaded, use individual vert normals. */
for (int j = 0; j < mp->totloop; ml--, j++, abc_index++) {
normal_short_to_float_v3(no, verts[ml->v].no);
copy_yup_from_zup(normals[abc_index].getValue(), no);
}
}
MPoly *mp = mesh->mpoly;
for (int i = 0, e = mesh->totpoly; i < e; i++, mp++) {
for (int j = mp->totloop - 1; j >= 0; j--, abc_index++) {
int blender_index = mp->loopstart + j;
copy_yup_from_zup(normals[abc_index].getValue(), lnors[blender_index]);
}
}
}
@@ -409,11 +376,10 @@ void AbcGenericMeshWriter::writeMesh(struct Mesh *mesh)
std::vector<Imath::V3f> points, normals;
std::vector<int32_t> poly_verts, loop_counts;
std::vector<Imath::V3f> velocities;
bool export_loop_normals = (mesh->flag & ME_AUTOSMOOTH) != 0;
bool has_flat_shaded_poly = false;
get_vertices(mesh, points);
get_topology(mesh, poly_verts, loop_counts, export_loop_normals);
get_topology(mesh, poly_verts, loop_counts, has_flat_shaded_poly);
if (m_first_frame && m_settings.export_face_sets) {
writeFaceSets(mesh, m_mesh_schema);
@@ -441,16 +407,11 @@ void AbcGenericMeshWriter::writeMesh(struct Mesh *mesh)
}
if (m_settings.export_normals) {
if (export_loop_normals) {
get_loop_normals(mesh, normals);
}
else {
get_vertex_normals(mesh, normals);
}
get_loop_normals(mesh, normals, has_flat_shaded_poly);
ON3fGeomParam::Sample normals_sample;
if (!normals.empty()) {
normals_sample.setScope(export_loop_normals ? kFacevaryingScope : kVertexScope);
normals_sample.setScope(kFacevaryingScope);
normals_sample.setVals(V3fArraySample(normals));
}
@@ -475,11 +436,10 @@ void AbcGenericMeshWriter::writeSubD(struct Mesh *mesh)
std::vector<Imath::V3f> points;
std::vector<int32_t> poly_verts, loop_counts;
std::vector<int32_t> crease_indices, crease_lengths;
bool export_loop_normals = false;
bool has_flat_poly = false;
get_vertices(mesh, points);
get_topology(mesh, poly_verts, loop_counts, export_loop_normals);
get_topology(mesh, poly_verts, loop_counts, has_flat_poly);
get_creases(mesh, crease_indices, crease_lengths, crease_sharpness);
if (m_first_frame && m_settings.export_face_sets) {
@@ -756,10 +716,6 @@ struct AbcMeshData {
P3fArraySamplePtr positions;
P3fArraySamplePtr ceil_positions;
N3fArraySamplePtr vertex_normals;
N3fArraySamplePtr loop_normals;
bool poly_flag_smooth;
V2fArraySamplePtr uvs;
UInt32ArraySamplePtr uvs_indices;
};
@@ -786,7 +742,6 @@ static void read_mverts(CDStreamConfig &config, const AbcMeshData &mesh_data)
{
MVert *mverts = config.mvert;
const P3fArraySamplePtr &positions = mesh_data.positions;
const N3fArraySamplePtr &normals = mesh_data.vertex_normals;
if (config.weight != 0.0f && mesh_data.ceil_positions != NULL &&
mesh_data.ceil_positions->size() == positions->size()) {
@@ -794,12 +749,10 @@ static void read_mverts(CDStreamConfig &config, const AbcMeshData &mesh_data)
return;
}
read_mverts(mverts, positions, normals);
read_mverts(mverts, positions, nullptr);
}
void read_mverts(MVert *mverts,
const P3fArraySamplePtr &positions,
const N3fArraySamplePtr &normals)
void read_mverts(MVert *mverts, const P3fArraySamplePtr positions, const N3fArraySamplePtr normals)
{
for (int i = 0; i < positions->size(); i++) {
MVert &mvert = mverts[i];
@@ -846,12 +799,9 @@ static void read_mpolys(CDStreamConfig &config, const AbcMeshData &mesh_data)
poly.loopstart = loop_index;
poly.totloop = face_size;
if (mesh_data.poly_flag_smooth) {
poly.flag |= ME_SMOOTH;
}
else {
poly.flag &= ~ME_SMOOTH;
}
/* Polygons are always assumed to be smooth-shaded. If the Alembic mesh should be flat-shaded,
* this is encoded in custom loop normals. See T71246. */
poly.flag |= ME_SMOOTH;
/* NOTE: Alembic data is stored in the reverse order. */
rev_loop_index = loop_index + (face_size - 1);
@@ -879,26 +829,27 @@ static void read_mpolys(CDStreamConfig &config, const AbcMeshData &mesh_data)
BKE_mesh_calc_edges(config.mesh, false, false);
}
static void process_normals(CDStreamConfig &config, const AbcMeshData &mesh_data)
static void process_no_normals(CDStreamConfig &config)
{
Mesh *mesh = config.mesh;
/* Absense of normals in the Alembic mesh is interpreted as 'smooth'. */
BKE_mesh_calc_normals(config.mesh);
}
if (!mesh_data.loop_normals) {
BKE_mesh_calc_normals(config.mesh);
/* Don't touch the ME_AUTOSMOOTH flag in this case. It can be used by artists to toggle between
* flat/smooth shaded when the Alembic mesh doesn't contain loop normals. */
static void process_loop_normals(CDStreamConfig &config, const N3fArraySamplePtr loop_normals_ptr)
{
size_t loop_count = loop_normals_ptr->size();
if (loop_count == 0) {
process_no_normals(config);
return;
}
config.mesh->flag |= ME_AUTOSMOOTH;
const Alembic::AbcGeom::N3fArraySample &loop_normals = *mesh_data.loop_normals;
long int loop_count = loop_normals.size();
float(*lnors)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(loop_count, sizeof(float[3]), "ABC::FaceNormals"));
Mesh *mesh = config.mesh;
MPoly *mpoly = mesh->mpoly;
const N3fArraySample &loop_normals = *loop_normals_ptr;
int abc_index = 0;
for (int i = 0, e = mesh->totpoly; i < e; i++, mpoly++) {
/* As usual, ABC orders the loops in reverse. */
@@ -907,11 +858,63 @@ static void process_normals(CDStreamConfig &config, const AbcMeshData &mesh_data
copy_zup_from_yup(lnors[blender_index], loop_normals[abc_index].getValue());
}
}
BKE_mesh_set_custom_normals(config.mesh, lnors);
mesh->flag |= ME_AUTOSMOOTH;
BKE_mesh_set_custom_normals(mesh, lnors);
MEM_freeN(lnors);
}
static void process_vertex_normals(CDStreamConfig &config,
const N3fArraySamplePtr vertex_normals_ptr)
{
size_t normals_count = vertex_normals_ptr->size();
if (normals_count == 0) {
process_no_normals(config);
return;
}
float(*vnors)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(normals_count, sizeof(float[3]), "ABC::VertexNormals"));
const N3fArraySample &vertex_normals = *vertex_normals_ptr;
for (int index = 0; index < normals_count; index++) {
copy_zup_from_yup(vnors[index], vertex_normals[index].getValue());
}
config.mesh->flag |= ME_AUTOSMOOTH;
BKE_mesh_set_custom_normals_from_vertices(config.mesh, vnors);
MEM_freeN(vnors);
}
static void process_normals(CDStreamConfig &config,
const IN3fGeomParam &normals,
const ISampleSelector &selector)
{
if (!normals.valid()) {
process_no_normals(config);
return;
}
IN3fGeomParam::Sample normsamp = normals.getExpandedValue(selector);
Alembic::AbcGeom::GeometryScope scope = normals.getScope();
switch (scope) {
case Alembic::AbcGeom::kFacevaryingScope: // 'Vertex Normals' in Houdini.
process_loop_normals(config, normsamp.getVals());
break;
case Alembic::AbcGeom::kVertexScope:
case Alembic::AbcGeom::kVaryingScope: // 'Point Normals' in Houdini.
process_vertex_normals(config, normsamp.getVals());
break;
case Alembic::AbcGeom::kConstantScope:
case Alembic::AbcGeom::kUniformScope:
case Alembic::AbcGeom::kUnknownScope:
process_no_normals(config);
break;
}
}
ABC_INLINE void read_uvs_params(CDStreamConfig &config,
AbcMeshData &abc_data,
const IV2fGeomParam &uv,
@@ -942,34 +945,6 @@ ABC_INLINE void read_uvs_params(CDStreamConfig &config,
}
}
ABC_INLINE void read_normals_params(AbcMeshData &abc_data,
const IN3fGeomParam &normals,
const ISampleSelector &selector)
{
if (!normals.valid()) {
return;
}
IN3fGeomParam::Sample normsamp = normals.getExpandedValue(selector);
Alembic::AbcGeom::GeometryScope scope = normals.getScope();
switch (scope) {
case Alembic::AbcGeom::kFacevaryingScope:
abc_data.loop_normals = normsamp.getVals();
break;
case Alembic::AbcGeom::kVertexScope:
case Alembic::AbcGeom::kVaryingScope:
/* Vertex normals from ABC aren't handled for now. */
abc_data.poly_flag_smooth = true;
abc_data.vertex_normals = N3fArraySamplePtr();
break;
case Alembic::AbcGeom::kConstantScope:
case Alembic::AbcGeom::kUniformScope:
case Alembic::AbcGeom::kUnknownScope:
break;
}
}
static void *add_customdata_cb(Mesh *mesh, const char *name, int data_type)
{
CustomDataType cd_data_type = static_cast<CustomDataType>(data_type);
@@ -1020,12 +995,6 @@ static void read_mesh_sample(const std::string &iobject_full_name,
abc_mesh_data.face_indices = sample.getFaceIndices();
abc_mesh_data.positions = sample.getPositions();
/* The auto-smoothing flag can be used by artists when the Alembic file does not contain custom
* loop normals. Auto-smoothing only works when polys are marked as smooth. */
abc_mesh_data.poly_flag_smooth = (config.mesh->flag & ME_AUTOSMOOTH);
read_normals_params(abc_mesh_data, schema.getNormalsParam(), selector);
get_weight_and_index(config, schema.getTimeSampling(), schema.getNumSamples());
if (config.weight != 0.0f) {
@@ -1044,7 +1013,7 @@ static void read_mesh_sample(const std::string &iobject_full_name,
if ((settings->read_flag & MOD_MESHSEQ_READ_POLY) != 0) {
read_mpolys(config, abc_mesh_data);
process_normals(config, abc_mesh_data);
process_normals(config, schema.getNormalsParam(), selector);
}
if ((settings->read_flag & (MOD_MESHSEQ_READ_UV | MOD_MESHSEQ_READ_COLOR)) != 0) {
@@ -1316,8 +1285,6 @@ static void read_subd_sample(const std::string &iobject_full_name,
AbcMeshData abc_mesh_data;
abc_mesh_data.face_counts = sample.getFaceCounts();
abc_mesh_data.face_indices = sample.getFaceIndices();
abc_mesh_data.vertex_normals = N3fArraySamplePtr();
abc_mesh_data.loop_normals = N3fArraySamplePtr();
abc_mesh_data.positions = sample.getPositions();
get_weight_and_index(config, schema.getTimeSampling(), schema.getNumSamples());
@@ -1339,12 +1306,9 @@ static void read_subd_sample(const std::string &iobject_full_name,
if ((settings->read_flag & MOD_MESHSEQ_READ_POLY) != 0) {
/* Alembic's 'SubD' scheme is used to store subdivision surfaces, i.e. the pre-subdivision
* mesh. Currently we don't add a subdivision modifier when we load such data. This code is
* assuming that the subdivided surface should be smooth, and sets a flag that will eventually
* mark all polygons as such. */
abc_mesh_data.poly_flag_smooth = true;
* assuming that the subdivided surface should be smooth. */
read_mpolys(config, abc_mesh_data);
process_normals(config, abc_mesh_data);
process_no_normals(config);
}
if ((settings->read_flag & (MOD_MESHSEQ_READ_UV | MOD_MESHSEQ_READ_COLOR)) != 0) {

View File

@@ -148,8 +148,8 @@ class AbcSubDReader : public AbcObjectReader {
/* ************************************************************************** */
void read_mverts(MVert *mverts,
const Alembic::AbcGeom::P3fArraySamplePtr &positions,
const Alembic::AbcGeom::N3fArraySamplePtr &normals);
const Alembic::AbcGeom::P3fArraySamplePtr positions,
const Alembic::AbcGeom::N3fArraySamplePtr normals);
CDStreamConfig get_config(struct Mesh *mesh);

View File

@@ -191,12 +191,8 @@ struct bConstraintOb *BKE_constraints_make_evalob(struct Depsgraph *depsgraph,
short datatype);
void BKE_constraints_clear_evalob(struct bConstraintOb *cob);
void BKE_constraint_mat_convertspace(struct Object *ob,
struct bPoseChannel *pchan,
float mat[4][4],
short from,
short to,
const bool keep_scale);
void BKE_constraint_mat_convertspace(
struct Object *ob, struct bPoseChannel *pchan, float mat[4][4], short from, short to);
void BKE_constraint_target_matrix_get(struct Depsgraph *depsgraph,
struct Scene *scene,

View File

@@ -255,7 +255,7 @@ void BKE_constraints_clear_evalob(bConstraintOb *cob)
* For now, this is only implemented for Objects and PoseChannels.
*/
void BKE_constraint_mat_convertspace(
Object *ob, bPoseChannel *pchan, float mat[4][4], short from, short to, const bool keep_scale)
Object *ob, bPoseChannel *pchan, float mat[4][4], short from, short to)
{
float diff_mat[4][4];
float imat[4][4];
@@ -282,7 +282,7 @@ void BKE_constraint_mat_convertspace(
/* use pose-space as stepping stone for other spaces... */
if (ELEM(to, CONSTRAINT_SPACE_LOCAL, CONSTRAINT_SPACE_PARLOCAL)) {
/* call self with slightly different values */
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to, keep_scale);
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
break;
}
@@ -318,7 +318,7 @@ void BKE_constraint_mat_convertspace(
/* use pose-space as stepping stone for other spaces */
if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_PARLOCAL)) {
/* call self with slightly different values */
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to, keep_scale);
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
break;
}
@@ -332,7 +332,7 @@ void BKE_constraint_mat_convertspace(
/* use pose-space as stepping stone for other spaces */
if (ELEM(to, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
/* call self with slightly different values */
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to, keep_scale);
BKE_constraint_mat_convertspace(ob, pchan, mat, CONSTRAINT_SPACE_POSE, to);
}
break;
}
@@ -348,27 +348,6 @@ void BKE_constraint_mat_convertspace(
invert_m4_m4_safe(imat, diff_mat);
mul_m4_m4m4(mat, imat, mat);
}
else {
/* Local space in this case will have to be defined as local to the owner's
* transform-property-rotated axes. So subtract this rotation component.
*/
/* XXX This is actually an ugly hack, local space of a parent-less object *is* the same as
* global space!
* Think what we want actually here is some kind of 'Final Space', i.e
* . once transformations are applied - users are often confused about this too,
* this is not consistent with bones
* local space either... Meh :|
* --mont29
*/
BKE_object_to_mat4(ob, diff_mat);
if (!keep_scale) {
normalize_m4(diff_mat);
}
zero_v3(diff_mat[3]);
invert_m4_m4_safe(imat, diff_mat);
mul_m4_m4m4(mat, imat, mat);
}
}
else if (from == CONSTRAINT_SPACE_LOCAL && to == CONSTRAINT_SPACE_WORLD) {
/* check that object has a parent - otherwise this won't work */
@@ -377,19 +356,6 @@ void BKE_constraint_mat_convertspace(
mul_m4_m4m4(diff_mat, ob->parent->obmat, ob->parentinv);
mul_m4_m4m4(mat, diff_mat, mat);
}
else {
/* Local space in this case will have to be defined as local to the owner's
* transform-property-rotated axes. So add back this rotation component.
*/
/* XXX See comment above for world->local case... */
BKE_object_to_mat4(ob, diff_mat);
if (!keep_scale) {
normalize_m4(diff_mat);
}
zero_v3(diff_mat[3]);
mul_m4_m4m4(mat, diff_mat, mat);
}
}
}
}
@@ -575,7 +541,7 @@ static void constraint_target_to_mat4(Object *ob,
/* Case OBJECT */
if (substring[0] == '\0') {
copy_m4_m4(mat, ob->obmat);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to, false);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to);
}
/* Case VERTEXGROUP */
/* Current method just takes the average location of all the points in the
@@ -588,11 +554,11 @@ static void constraint_target_to_mat4(Object *ob,
*/
else if (ob->type == OB_MESH) {
contarget_get_mesh_mat(ob, substring, mat);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to, false);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to);
}
else if (ob->type == OB_LATTICE) {
contarget_get_lattice_mat(ob, substring, mat);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to, false);
BKE_constraint_mat_convertspace(ob, NULL, mat, from, to);
}
/* Case BONE */
else {
@@ -656,7 +622,7 @@ static void constraint_target_to_mat4(Object *ob,
}
/* convert matrix space as required */
BKE_constraint_mat_convertspace(ob, pchan, mat, from, to, false);
BKE_constraint_mat_convertspace(ob, pchan, mat, from, to);
}
}
@@ -4095,12 +4061,9 @@ static void shrinkwrap_get_tarmat(struct Depsgraph *UNUSED(depsgraph),
}
/* Transform normal into requested space */
/* Note that in this specific case, we need to keep scaling in non-parented 'local2world'
* object case, because SpaceTransform also takes it into account when handling normals.
* See T42447. */
unit_m4(mat);
BKE_constraint_mat_convertspace(
cob->ob, cob->pchan, mat, CONSTRAINT_SPACE_LOCAL, scon->projAxisSpace, true);
cob->ob, cob->pchan, mat, CONSTRAINT_SPACE_LOCAL, scon->projAxisSpace);
invert_m4(mat);
mul_mat3_m4_v3(mat, no);
@@ -5834,7 +5797,7 @@ void BKE_constraints_solve(struct Depsgraph *depsgraph,
/* move owner matrix into right space */
BKE_constraint_mat_convertspace(
cob->ob, cob->pchan, cob->matrix, CONSTRAINT_SPACE_WORLD, con->ownspace, false);
cob->ob, cob->pchan, cob->matrix, CONSTRAINT_SPACE_WORLD, con->ownspace);
/* prepare targets for constraint solving */
BKE_constraint_targets_for_solving_get(depsgraph, con, cob, &targets, ctime);
@@ -5853,7 +5816,7 @@ void BKE_constraints_solve(struct Depsgraph *depsgraph,
/* move owner back into worldspace for next constraint/other business */
if ((con->flag & CONSTRAINT_SPACEONCE) == 0) {
BKE_constraint_mat_convertspace(
cob->ob, cob->pchan, cob->matrix, con->ownspace, CONSTRAINT_SPACE_WORLD, false);
cob->ob, cob->pchan, cob->matrix, con->ownspace, CONSTRAINT_SPACE_WORLD);
}
/* Interpolate the enforcement, to blend result of constraint into final owner transform

View File

@@ -1560,7 +1560,7 @@ static float dvar_eval_locDiff(ChannelDriver *driver, DriverVar *dvar)
/* extract transform just like how the constraints do it! */
copy_m4_m4(mat, pchan->pose_mat);
BKE_constraint_mat_convertspace(
ob, pchan, mat, CONSTRAINT_SPACE_POSE, CONSTRAINT_SPACE_LOCAL, false);
ob, pchan, mat, CONSTRAINT_SPACE_POSE, CONSTRAINT_SPACE_LOCAL);
/* ... and from that, we get our transform */
copy_v3_v3(tmp_loc, mat[3]);
@@ -1586,7 +1586,7 @@ static float dvar_eval_locDiff(ChannelDriver *driver, DriverVar *dvar)
/* extract transform just like how the constraints do it! */
copy_m4_m4(mat, ob->obmat);
BKE_constraint_mat_convertspace(
ob, NULL, mat, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL, false);
ob, NULL, mat, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL);
/* ... and from that, we get our transform */
copy_v3_v3(tmp_loc, mat[3]);
@@ -1663,7 +1663,7 @@ static float dvar_eval_transChan(ChannelDriver *driver, DriverVar *dvar)
/* just like how the constraints do it! */
copy_m4_m4(mat, pchan->pose_mat);
BKE_constraint_mat_convertspace(
ob, pchan, mat, CONSTRAINT_SPACE_POSE, CONSTRAINT_SPACE_LOCAL, false);
ob, pchan, mat, CONSTRAINT_SPACE_POSE, CONSTRAINT_SPACE_LOCAL);
}
else {
/* specially calculate local matrix, since chan_mat is not valid
@@ -1691,7 +1691,7 @@ static float dvar_eval_transChan(ChannelDriver *driver, DriverVar *dvar)
/* just like how the constraints do it! */
copy_m4_m4(mat, ob->obmat);
BKE_constraint_mat_convertspace(
ob, NULL, mat, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL, false);
ob, NULL, mat, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL);
}
else {
/* transforms to matrix */

View File

@@ -146,7 +146,8 @@ bool python_driver_exression_depends_on_time(const char *expression)
bool driver_target_depends_on_time(const DriverTarget *target)
{
if (target->idtype == ID_SCE && STREQ(target->rna_path, "frame_current")) {
if (target->idtype == ID_SCE &&
(target->rna_path != NULL && STREQ(target->rna_path, "frame_current"))) {
return true;
}
return false;

View File

@@ -323,7 +323,7 @@ static void rna_Object_mat_convert_space(Object *ob,
}
}
BKE_constraint_mat_convertspace(ob, pchan, (float(*)[4])mat_ret, from, to, false);
BKE_constraint_mat_convertspace(ob, pchan, (float(*)[4])mat_ret, from, to);
}
static void rna_Object_calc_matrix_camera(Object *ob,

View File

@@ -82,7 +82,10 @@ void *node_initexec_curves(bNodeExecContext *UNUSED(context),
void node_blend_label(bNodeTree *UNUSED(ntree), bNode *node, char *label, int maxlen)
{
const char *name;
RNA_enum_name(rna_enum_ramp_blend_items, node->custom1, &name);
bool enum_label = RNA_enum_name(rna_enum_ramp_blend_items, node->custom1, &name);
if (!enum_label) {
name = "Unknown";
}
BLI_strncpy(label, IFACE_(name), maxlen);
}
@@ -96,21 +99,30 @@ void node_image_label(bNodeTree *UNUSED(ntree), bNode *node, char *label, int ma
void node_math_label(bNodeTree *UNUSED(ntree), bNode *node, char *label, int maxlen)
{
const char *name;
RNA_enum_name(rna_enum_node_math_items, node->custom1, &name);
bool enum_label = RNA_enum_name(rna_enum_node_math_items, node->custom1, &name);
if (!enum_label) {
name = "Unknown";
}
BLI_strncpy(label, IFACE_(name), maxlen);
}
void node_vector_math_label(bNodeTree *UNUSED(ntree), bNode *node, char *label, int maxlen)
{
const char *name;
RNA_enum_name(rna_enum_node_vec_math_items, node->custom1, &name);
bool enum_label = RNA_enum_name(rna_enum_node_vec_math_items, node->custom1, &name);
if (!enum_label) {
name = "Unknown";
}
BLI_strncpy(label, IFACE_(name), maxlen);
}
void node_filter_label(bNodeTree *UNUSED(ntree), bNode *node, char *label, int maxlen)
{
const char *name;
RNA_enum_name(rna_enum_node_filter_items, node->custom1, &name);
bool enum_label = RNA_enum_name(rna_enum_node_filter_items, node->custom1, &name);
if (!enum_label) {
name = "Unknown";
}
BLI_strncpy(label, IFACE_(name), maxlen);
}

View File

@@ -50,7 +50,12 @@ static int gpu_shader_mapping(GPUMaterial *mat,
[NODE_MAPPING_TYPE_NORMAL] = "mapping_normal",
};
return GPU_stack_link(mat, node, names[node->custom1], in, out);
if (node->custom1 < ARRAY_SIZE(names) && names[node->custom1]) {
return GPU_stack_link(mat, node, names[node->custom1], in, out);
}
else {
return 0;
}
}
static void node_shader_update_mapping(bNodeTree *UNUSED(ntree), bNode *node)

View File

@@ -68,14 +68,19 @@ static int gpu_shader_math(GPUMaterial *mat,
[NODE_MATH_ARCTAN2] = "math_arctan2",
};
GPU_stack_link(mat, node, names[node->custom1], in, out);
if (node->custom1 < ARRAY_SIZE(names) && names[node->custom1]) {
int ret = GPU_stack_link(mat, node, names[node->custom1], in, out);
if (node->custom2 & SHD_MATH_CLAMP) {
float min[3] = {0.0f, 0.0f, 0.0f};
float max[3] = {1.0f, 1.0f, 1.0f};
GPU_link(mat, "clamp_value", out[0].link, GPU_constant(min), GPU_constant(max), &out[0].link);
if (ret && node->custom2 & SHD_MATH_CLAMP) {
float min[3] = {0.0f, 0.0f, 0.0f};
float max[3] = {1.0f, 1.0f, 1.0f};
GPU_link(mat, "clamp_value", out[0].link, GPU_constant(min), GPU_constant(max), &out[0].link);
}
return ret;
}
else {
return 0;
}
return 1;
}
static void node_shader_update_math(bNodeTree *UNUSED(ntree), bNode *node)

View File

@@ -88,13 +88,18 @@ static int gpu_shader_mix_rgb(GPUMaterial *mat,
"mix_linear",
};
int ret = GPU_stack_link(mat, node, names[node->custom1], in, out);
if (ret && node->custom2 & SHD_MIXRGB_CLAMP) {
float min[3] = {0.0f, 0.0f, 0.0f};
float max[3] = {1.0f, 1.0f, 1.0f};
GPU_link(mat, "clamp_color", out[0].link, GPU_constant(min), GPU_constant(max), &out[0].link);
if (node->custom1 < ARRAY_SIZE(names) && names[node->custom1]) {
int ret = GPU_stack_link(mat, node, names[node->custom1], in, out);
if (ret && node->custom2 & SHD_MIXRGB_CLAMP) {
float min[3] = {0.0f, 0.0f, 0.0f};
float max[3] = {1.0f, 1.0f, 1.0f};
GPU_link(mat, "clamp_color", out[0].link, GPU_constant(min), GPU_constant(max), &out[0].link);
}
return ret;
}
else {
return 0;
}
return ret;
}
void register_node_type_sh_mix_rgb(void)

View File

@@ -50,7 +50,12 @@ static int gpu_shader_tex_white_noise(GPUMaterial *mat,
"node_white_noise_4d",
};
return GPU_stack_link(mat, node, names[node->custom1], in, out);
if (node->custom1 < ARRAY_SIZE(names) && names[node->custom1]) {
return GPU_stack_link(mat, node, names[node->custom1], in, out);
}
else {
return 0;
}
}
static void node_shader_update_tex_white_noise(bNodeTree *UNUSED(ntree), bNode *node)

View File

@@ -65,8 +65,12 @@ static int gpu_shader_vector_math(GPUMaterial *mat,
[NODE_VECTOR_MATH_MAXIMUM] = "vector_math_maximum",
};
GPU_stack_link(mat, node, names[node->custom1], in, out);
return true;
if (node->custom1 < ARRAY_SIZE(names) && names[node->custom1]) {
return GPU_stack_link(mat, node, names[node->custom1], in, out);
}
else {
return 0;
}
}
static void node_shader_update_vector_math(bNodeTree *UNUSED(ntree), bNode *node)

View File

@@ -810,7 +810,8 @@ static PyObject *M_Geometry_intersect_point_line(PyObject *UNUSED(self), PyObjec
PyDoc_STRVAR(M_Geometry_intersect_point_tri_doc,
".. function:: intersect_point_tri(pt, tri_p1, tri_p2, tri_p3)\n"
"\n"
" Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
" Takes 4 vectors: one is the point and the next 3 define the triangle. Projects "
"the point onto the triangle plane and checks if it is within the triangle.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
@@ -853,6 +854,49 @@ static PyObject *M_Geometry_intersect_point_tri(PyObject *UNUSED(self), PyObject
}
}
PyDoc_STRVAR(M_Geometry_closest_point_on_tri_doc,
".. function:: closest_point_on_tri(pt, tri_p1, tri_p2, tri_p3)\n"
"\n"
" Takes 4 vectors: one is the point and the next 3 define the triangle.\n"
"\n"
" :arg pt: Point\n"
" :type pt: :class:`mathutils.Vector`\n"
" :arg tri_p1: First point of the triangle\n"
" :type tri_p1: :class:`mathutils.Vector`\n"
" :arg tri_p2: Second point of the triangle\n"
" :type tri_p2: :class:`mathutils.Vector`\n"
" :arg tri_p3: Third point of the triangle\n"
" :type tri_p3: :class:`mathutils.Vector`\n"
" :return: The closest point of the triangle.\n"
" :rtype: :class:`mathutils.Vector`\n");
static PyObject *M_Geometry_closest_point_on_tri(PyObject *UNUSED(self), PyObject *args)
{
const char *error_prefix = "closest_point_on_tri";
PyObject *py_pt, *py_tri[3];
float pt[3], tri[3][3];
float vi[3];
int i;
if (!PyArg_ParseTuple(args, "OOOO:closest_point_on_tri", &py_pt, UNPACK3_EX(&, py_tri, ))) {
return NULL;
}
if (mathutils_array_parse(pt, 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_pt, error_prefix) ==
-1) {
return NULL;
}
for (i = 0; i < ARRAY_SIZE(tri); i++) {
if (mathutils_array_parse(
tri[i], 2, 3 | MU_ARRAY_SPILL | MU_ARRAY_ZERO, py_tri[i], error_prefix) == -1) {
return NULL;
}
}
closest_on_tri_to_point_v3(vi, pt, UNPACK3(tri));
return Vector_CreatePyObject(vi, 3, NULL);
}
PyDoc_STRVAR(
M_Geometry_intersect_point_tri_2d_doc,
".. function:: intersect_point_tri_2d(pt, tri_p1, tri_p2, tri_p3)\n"
@@ -1683,6 +1727,10 @@ static PyMethodDef M_Geometry_methods[] = {
(PyCFunction)M_Geometry_intersect_point_tri,
METH_VARARGS,
M_Geometry_intersect_point_tri_doc},
{"closest_point_on_tri",
(PyCFunction)M_Geometry_closest_point_on_tri,
METH_VARARGS,
M_Geometry_closest_point_on_tri_doc},
{"intersect_point_tri_2d",
(PyCFunction)M_Geometry_intersect_point_tri_2d,
METH_VARARGS,