and the new voxel data files..
This commit is contained in:
45
source/blender/render/intern/include/voxeldata.h
Normal file
45
source/blender/render/intern/include/voxeldata.h
Normal file
@@ -0,0 +1,45 @@
|
||||
/**
|
||||
*
|
||||
* ***** BEGIN GPL LICENSE BLOCK *****
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software Foundation,
|
||||
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
*
|
||||
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
||||
* All rights reserved.
|
||||
*
|
||||
* The Original Code is: all of this file.
|
||||
*
|
||||
* Contributor(s): Raul Fernandez Hernandez (Farsthary), Matt Ebb.
|
||||
*
|
||||
* ***** END GPL LICENSE BLOCK *****
|
||||
*/
|
||||
|
||||
#ifndef VOXELDATA_H
|
||||
#define VOXELDATA_H
|
||||
|
||||
/**
|
||||
* Load voxel data for all point density textures in the scene
|
||||
*/
|
||||
|
||||
struct Render;
|
||||
struct TexResult;
|
||||
|
||||
int _I(int x,int y,int z,int n);
|
||||
void make_voxeldata(struct Render *re);
|
||||
void free_voxeldata(struct Render *re);
|
||||
int voxeldatatex(struct Tex *tex, float *texvec, struct TexResult *texres);
|
||||
|
||||
|
||||
#endif /* VOXELDATA_H */
|
||||
444
source/blender/render/intern/source/voxeldata.c
Normal file
444
source/blender/render/intern/source/voxeldata.c
Normal file
@@ -0,0 +1,444 @@
|
||||
/**
|
||||
*
|
||||
* ***** BEGIN GPL LICENSE BLOCK *****
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version 2
|
||||
* of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software Foundation,
|
||||
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
*
|
||||
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
||||
* All rights reserved.
|
||||
*
|
||||
* The Original Code is: all of this file.
|
||||
*
|
||||
* Contributor(s): Raul Fernandez Hernandez (Farsthary), Matt Ebb.
|
||||
*
|
||||
* ***** END GPL LICENSE BLOCK *****
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "MEM_guardedalloc.h"
|
||||
|
||||
#include "BLI_arithb.h"
|
||||
#include "BLI_blenlib.h"
|
||||
|
||||
#include "BKE_global.h"
|
||||
#include "BKE_main.h"
|
||||
|
||||
#include "DNA_texture_types.h"
|
||||
#include "render_types.h"
|
||||
#include "renderdatabase.h"
|
||||
#include "texture.h"
|
||||
|
||||
/*---------------------------Utils----------------------------------------*/
|
||||
int _I(int x,int y,int z,int n)
|
||||
{
|
||||
return (z*(n)+y)*(n)+x;
|
||||
}
|
||||
|
||||
float Linear(float xx,float yy,float zz,float *x0,int n)
|
||||
{
|
||||
float sx1,sx0,sy1,sy0,sz1,sz0,v0,v1;
|
||||
int i0,i1,j0,j1,k0,k1;
|
||||
|
||||
if (xx<0.5) xx=0.5f; if (xx>n+0.5) xx=n+0.5f; i0=(int)xx; i1=i0+1;
|
||||
if (yy<0.5) yy=0.5f; if (yy>n+0.5) yy=n+0.5f; j0=(int)yy; j1=j0+1;
|
||||
if (zz<0.5) zz=0.5f; if (zz>n+0.5) zz=n+0.5f; k0=(int)zz; k1=k0+1;
|
||||
|
||||
sx1 = xx-i0; sx0 = 1-sx1;
|
||||
sy1 = yy-j0; sy0 = 1-sy1;
|
||||
sz1 = zz-k0; sz0 = 1-sz1;
|
||||
v0 = sx0*(sy0*x0[_I(i0,j0,k0,n)]+sy1*x0[_I(i0,j1,k0,n)])+sx1*(sy0*x0[_I(i1,j0,k0,n)]+sy1*x0[_I(i1,j1,k0,n)]);
|
||||
v1 = sx0*(sy0*x0[_I(i0,j0,k1,n)]+sy1*x0[_I(i0,j1,k1,n)])+sx1*(sy0*x0[_I(i1,j0,k1,n)]+sy1*x0[_I(i1,j1,k1,n)]);
|
||||
return sz0*v0 + sz1*v1;
|
||||
|
||||
}
|
||||
|
||||
int C[64][64] = {
|
||||
{ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 2,-2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 9,-9,-9, 9, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{-6, 6, 6,-6, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{-6, 6, 6,-6, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 4,-4,-4, 4, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3,-6,-3, 0, 0, 0, 0, 6,-6, 3,-3, 0, 0, 0, 0, 4, 2, 2, 1, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 3, 3, 0, 0, 0, 0,-4, 4,-2, 2, 0, 0, 0, 0,-2,-2,-1,-1, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 4, 2, 0, 0, 0, 0,-3, 3,-3, 3, 0, 0, 0, 0,-2,-1,-2,-1, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,-2,-2, 0, 0, 0, 0, 2,-2, 2,-2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0},
|
||||
{-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 9,-9, 0, 0,-9, 9, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{-6, 6, 0, 0, 6,-6, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0,-1, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9,-9, 0, 0,-9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 3, 0, 0,-6,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,-6, 0, 0, 3,-3, 0, 0, 4, 2, 0, 0, 2, 1, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3,-3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 4, 0, 0,-2, 2, 0, 0,-2,-2, 0, 0,-1,-1, 0, 0},
|
||||
{ 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 9, 0,-9, 0,-9, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0,-6, 0,-3, 0, 6, 0,-6, 0, 3, 0,-3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 2, 0, 1, 0},
|
||||
{-27,27,27,-27,27,-27,-27,27,-18,-9,18, 9,18, 9,-18,-9,-18,18,-9, 9,18,-18, 9,-9,-18,18,18,-18,-9, 9, 9,-9,-12,-6,-6,-3,12, 6, 6, 3,-12,-6,12, 6,-6,-3, 6, 3,-12,12,-6, 6,-6, 6,-3, 3,-8,-4,-4,-2,-4,-2,-2,-1},
|
||||
{18,-18,-18,18,-18,18,18,-18, 9, 9,-9,-9,-9,-9, 9, 9,12,-12, 6,-6,-12,12,-6, 6,12,-12,-12,12, 6,-6,-6, 6, 6, 6, 3, 3,-6,-6,-3,-3, 6, 6,-6,-6, 3, 3,-3,-3, 8,-8, 4,-4, 4,-4, 2,-2, 4, 4, 2, 2, 2, 2, 1, 1},
|
||||
{-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 0,-3, 0, 3, 0, 3, 0,-4, 0, 4, 0,-2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-2, 0,-1, 0,-1, 0},
|
||||
{18,-18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6, 9,-9, 9,-9,-9, 9,-9, 9,12,-12,-12,12, 6,-6,-6, 6, 6, 3, 6, 3,-6,-3,-6,-3, 8, 4,-8,-4, 4, 2,-4,-2, 6,-6, 6,-6, 3,-3, 3,-3, 4, 2, 4, 2, 2, 1, 2, 1},
|
||||
{-12,12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-6, 6,-6, 6, 6,-6, 6,-6,-8, 8, 8,-8,-4, 4, 4,-4,-3,-3,-3,-3, 3, 3, 3, 3,-4,-4, 4, 4,-2,-2, 2, 2,-4, 4,-4, 4,-2, 2,-2, 2,-2,-2,-2,-2,-1,-1,-1,-1},
|
||||
{ 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{-6, 6, 0, 0, 6,-6, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 4,-4, 0, 0,-4, 4, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-6, 6, 0, 0, 6,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4,-2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-3, 3, 0, 0,-2,-1, 0, 0,-2,-1, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4,-4, 0, 0,-4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0,-2,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 2,-2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0},
|
||||
{-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0,-6, 0, 6, 0, 6, 0,-6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-4, 0,-2, 0, 4, 0, 2, 0,-3, 0, 3, 0,-3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 0,-1, 0,-2, 0,-1, 0},
|
||||
{18,-18,-18,18,-18,18,18,-18,12, 6,-12,-6,-12,-6,12, 6,12,-12, 6,-6,-12,12,-6, 6, 9,-9,-9, 9, 9,-9,-9, 9, 8, 4, 4, 2,-8,-4,-4,-2, 6, 3,-6,-3, 6, 3,-6,-3, 6,-6, 3,-3, 6,-6, 3,-3, 4, 2, 2, 1, 4, 2, 2, 1},
|
||||
{-12,12,12,-12,12,-12,-12,12,-6,-6, 6, 6, 6, 6,-6,-6,-8, 8,-4, 4, 8,-8, 4,-4,-6, 6, 6,-6,-6, 6, 6,-6,-4,-4,-2,-2, 4, 4, 2, 2,-3,-3, 3, 3,-3,-3, 3, 3,-4, 4,-2, 2,-4, 4,-2, 2,-2,-2,-1,-1,-2,-2,-1,-1},
|
||||
{ 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,-4, 0,-4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0,-2, 0,-2, 0, 2, 0,-2, 0, 2, 0,-2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0},
|
||||
{-12,12,12,-12,12,-12,-12,12,-8,-4, 8, 4, 8, 4,-8,-4,-6, 6,-6, 6, 6,-6, 6,-6,-6, 6, 6,-6,-6, 6, 6,-6,-4,-2,-4,-2, 4, 2, 4, 2,-4,-2, 4, 2,-4,-2, 4, 2,-3, 3,-3, 3,-3, 3,-3, 3,-2,-1,-2,-1,-2,-1,-2,-1},
|
||||
{ 8,-8,-8, 8,-8, 8, 8,-8, 4, 4,-4,-4,-4,-4, 4, 4, 4,-4, 4,-4,-4, 4,-4, 4, 4,-4,-4, 4, 4,-4,-4, 4, 2, 2, 2, 2,-2,-2,-2,-2, 2, 2,-2,-2, 2, 2,-2,-2, 2,-2, 2,-2, 2,-2, 2,-2, 1, 1, 1, 1, 1, 1, 1, 1}};
|
||||
|
||||
int ijk2n(int i, int j, int k) {
|
||||
return(i+4*j+16*k);
|
||||
}
|
||||
|
||||
void tricubic_get_coeff_stacked(float a[64], float x[64]) {
|
||||
int i,j;
|
||||
for (i=0;i<64;i++) {
|
||||
a[i]=(float)(0.0);
|
||||
for (j=0;j<64;j++) {
|
||||
a[i]+=C[i][j]*x[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void point2xyz(int p, int *x, int *y, int *z) {
|
||||
switch (p) {
|
||||
case 0: *x=0; *y=0; *z=0; break;
|
||||
case 1: *x=1; *y=0; *z=0; break;
|
||||
case 2: *x=0; *y=1; *z=0; break;
|
||||
case 3: *x=1; *y=1; *z=0; break;
|
||||
case 4: *x=0; *y=0; *z=1; break;
|
||||
case 5: *x=1; *y=0; *z=1; break;
|
||||
case 6: *x=0; *y=1; *z=1; break;
|
||||
case 7: *x=1; *y=1; *z=1; break;
|
||||
default:*x=0; *y=0; *z=0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void tricubic_get_coeff(float a[64], float f[8], float dfdx[8], float dfdy[8], float dfdz[8], float d2fdxdy[8], float d2fdxdz[8], float d2fdydz[8], float d3fdxdydz[8]) {
|
||||
int i;
|
||||
float x[64];
|
||||
for (i=0;i<8;i++) {
|
||||
x[0+i]=f[i];
|
||||
x[8+i]=dfdx[i];
|
||||
x[16+i]=dfdy[i];
|
||||
x[24+i]=dfdz[i];
|
||||
x[32+i]=d2fdxdy[i];
|
||||
x[40+i]=d2fdxdz[i];
|
||||
x[48+i]=d2fdydz[i];
|
||||
x[56+i]=d3fdxdydz[i];
|
||||
}
|
||||
tricubic_get_coeff_stacked(a,x);
|
||||
}
|
||||
|
||||
float tricubic_eval(float a[64], float x, float y, float z) {
|
||||
int i,j,k;
|
||||
float ret=(float)(0.0);
|
||||
|
||||
for (i=0;i<4;i++) {
|
||||
for (j=0;j<4;j++) {
|
||||
for (k=0;k<4;k++) {
|
||||
ret+=a[ijk2n(i,j,k)]*pow(x,i)*pow(y,j)*pow(z,k);
|
||||
}
|
||||
}
|
||||
}
|
||||
return(ret);
|
||||
}
|
||||
|
||||
|
||||
float tricubic(float xx,float yy,float zz,float *heap,int n)
|
||||
{
|
||||
|
||||
int xi,yi,zi;
|
||||
|
||||
if (xx<0.5) xx=0.5f; if (xx>n+0.5) xx=n+0.5f; xi=(int)xx;
|
||||
if (yy<0.5) yy=0.5f; if (yy>n+0.5) yy=n+0.5f; yi=(int)yy;
|
||||
if (zz<0.5) zz=0.5f; if (zz>n+0.5) zz=n+0.5f; zi=(int)zz;
|
||||
|
||||
float a[64];
|
||||
|
||||
float fval[8]={heap[_I(xi,yi,zi,n)],heap[_I(xi+1,yi,zi,n)],heap[_I(xi,yi+1,zi,n)],heap[_I(xi+1,yi+1,zi,n)],heap[_I(xi,yi,zi+1,n)],heap[_I(xi+1,yi,zi+1,n)],heap[_I(xi,yi+1,zi+1,n)],heap[_I(xi+1,yi+1,zi+1,n)]};
|
||||
|
||||
float dfdxval[8]={0.5f*(heap[_I(xi+1,yi,zi,n)]-heap[_I(xi-1,yi,zi,n)]),0.5f*(heap[_I(xi+2,yi,zi,n)]-heap[_I(xi,yi,zi,n)]),
|
||||
0.5f*(heap[_I(xi+1,yi+1,zi,n)]-heap[_I(xi-1,yi+1,zi,n)]),0.5f*(heap[_I(xi+2,yi+1,zi,n)]-heap[_I(xi,yi+1,zi,n)]),
|
||||
0.5f*(heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi-1,yi,zi+1,n)]),0.5f*(heap[_I(xi+2,yi,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]),
|
||||
0.5f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]),
|
||||
0.5f*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)])};
|
||||
|
||||
float dfdyval[8]={0.5f*(heap[_I(xi,yi+1,zi,n)]-heap[_I(xi,yi-1,zi,n)]),0.5f*(heap[_I(xi+1,yi+1,zi,n)]-heap[_I(xi+1,yi-1,zi,n)]),
|
||||
0.5f*(heap[_I(xi,yi+2,zi,n)]-heap[_I(xi,yi,zi,n)]),0.5f*(heap[_I(xi+1,yi+2,zi,n)]-heap[_I(xi+1,yi,zi,n)]),
|
||||
0.5f*(heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi,yi-1,zi+1,n)]),0.5f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]),
|
||||
0.5f*(heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]),
|
||||
0.5f*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)])};
|
||||
|
||||
float dfdzval[8]={0.5f*(heap[_I(xi,yi,zi+1,n)]-heap[_I(xi,yi,zi-1,n)]),0.5f*(heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi+1,yi,zi-1,n)]),
|
||||
0.5f*(heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi-1,n)]),0.5f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]),
|
||||
0.5f*(heap[_I(xi,yi,zi+2,n)]-heap[_I(xi,yi,zi,n)]),0.5f*(heap[_I(xi+1,yi,zi+2,n)]-heap[_I(xi+1,yi,zi,n)]),
|
||||
0.5f*(heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi,yi+1,zi,n)]),
|
||||
0.5f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)])};
|
||||
|
||||
float d2fdxdyval[8]={0.25*(heap[_I(xi+1,yi+1,zi,n)]-heap[_I(xi-1,yi+1,zi,n)]-heap[_I(xi+1,yi-1,zi,n)]+heap[_I(xi-1,yi-1,zi,n)]),
|
||||
0.25*(heap[_I(xi+2,yi+1,zi,n)]-heap[_I(xi,yi+1,zi,n)]-heap[_I(xi+2,yi-1,zi,n)]+heap[_I(xi,yi-1,zi,n)]),
|
||||
0.25*(heap[_I(xi+1,yi+2,zi,n)]-heap[_I(xi-1,yi+2,zi,n)]-heap[_I(xi+1,yi,zi,n)]+heap[_I(xi-1,yi,zi,n)]),
|
||||
0.25*(heap[_I(xi+2,yi+2,zi,n)]-heap[_I(xi,yi+2,zi,n)]-heap[_I(xi+2,yi,zi,n)]+heap[_I(xi,yi,zi,n)]),
|
||||
0.25*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]+heap[_I(xi-1,yi-1,zi+1,n)]),
|
||||
0.25*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi+2,yi-1,zi+1,n)]+heap[_I(xi,yi-1,zi+1,n)]),
|
||||
0.25*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi-1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)]+heap[_I(xi-1,yi,zi+1,n)]),
|
||||
0.25*(heap[_I(xi+2,yi+2,zi+1,n)]-heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi+2,yi,zi+1,n)]+heap[_I(xi,yi,zi+1,n)])};
|
||||
|
||||
float d2fdxdzval[8]={0.25f*(heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi-1,yi,zi+1,n)]-heap[_I(xi+1,yi,zi-1,n)]+heap[_I(xi-1,yi,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi+2,yi,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]-heap[_I(xi+2,yi,zi-1,n)]+heap[_I(xi,yi,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]+heap[_I(xi-1,yi+1,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi+2,yi+1,zi-1,n)]+heap[_I(xi,yi+1,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi+1,yi,zi+2,n)]-heap[_I(xi-1,yi,zi+2,n)]-heap[_I(xi+1,yi,zi,n)]+heap[_I(xi-1,yi,zi,n)]),
|
||||
0.25f*(heap[_I(xi+2,yi,zi+2,n)]-heap[_I(xi,yi,zi+2,n)]-heap[_I(xi+2,yi,zi,n)]+heap[_I(xi,yi,zi,n)]),
|
||||
0.25f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi-1,yi+1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)]+heap[_I(xi-1,yi+1,zi,n)]),
|
||||
0.25f*(heap[_I(xi+2,yi+1,zi+2,n)]-heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi+2,yi+1,zi,n)]+heap[_I(xi,yi+1,zi,n)])};
|
||||
|
||||
|
||||
float d2fdydzval[8]={0.25f*(heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi,yi-1,zi+1,n)]-heap[_I(xi,yi+1,zi-1,n)]+heap[_I(xi,yi-1,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]+heap[_I(xi+1,yi-1,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi,yi,zi+1,n)]-heap[_I(xi,yi+2,zi-1,n)]+heap[_I(xi,yi,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)]-heap[_I(xi+1,yi+2,zi-1,n)]+heap[_I(xi+1,yi,zi-1,n)]),
|
||||
0.25f*(heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi,yi-1,zi+2,n)]-heap[_I(xi,yi+1,zi,n)]+heap[_I(xi,yi-1,zi,n)]),
|
||||
0.25f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi+1,yi-1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)]+heap[_I(xi+1,yi-1,zi,n)]),
|
||||
0.25f*(heap[_I(xi,yi+2,zi+2,n)]-heap[_I(xi,yi,zi+2,n)]-heap[_I(xi,yi+2,zi,n)]+heap[_I(xi,yi,zi,n)]),
|
||||
0.25f*(heap[_I(xi+1,yi+2,zi+2,n)]-heap[_I(xi+1,yi,zi+2,n)]-heap[_I(xi+1,yi+2,zi,n)]+heap[_I(xi+1,yi,zi,n)])};
|
||||
|
||||
|
||||
float d3fdxdydzval[8]={0.125f*(heap[_I(xi+1,yi+1,zi+1,n)]-heap[_I(xi-1,yi+1,zi+1,n)]-heap[_I(xi+1,yi-1,zi+1,n)]+heap[_I(xi-1,yi-1,zi+1,n)]-heap[_I(xi+1,yi+1,zi-1,n)]+heap[_I(xi-1,yi+1,zi-1,n)]+heap[_I(xi+1,yi-1,zi-1,n)]-heap[_I(xi-1,yi-1,zi-1,n)]),
|
||||
0.125f*(heap[_I(xi+2,yi+1,zi+1,n)]-heap[_I(xi,yi+1,zi+1,n)]-heap[_I(xi+2,yi-1,zi+1,n)]+heap[_I(xi,yi-1,zi+1,n)]-heap[_I(xi+2,yi+1,zi-1,n)]+heap[_I(xi,yi+1,zi-1,n)]+heap[_I(xi+2,yi-1,zi-1,n)]-heap[_I(xi,yi-1,zi-1,n)]),
|
||||
0.125f*(heap[_I(xi+1,yi+2,zi+1,n)]-heap[_I(xi-1,yi+2,zi+1,n)]-heap[_I(xi+1,yi,zi+1,n)]+heap[_I(xi-1,yi,zi+1,n)]-heap[_I(xi+1,yi+2,zi-1,n)]+heap[_I(xi-1,yi+2,zi-1,n)]+heap[_I(xi+1,yi,zi-1,n)]-heap[_I(xi-1,yi,zi-1,n)]),
|
||||
0.125f*(heap[_I(xi+2,yi+2,zi+1,n)]-heap[_I(xi,yi+2,zi+1,n)]-heap[_I(xi+2,yi,zi+1,n)]+heap[_I(xi,yi,zi+1,n)]-heap[_I(xi+2,yi+2,zi-1,n)]+heap[_I(xi,yi+2,zi-1,n)]+heap[_I(xi+2,yi,zi-1,n)]-heap[_I(xi,yi,zi-1,n)]),
|
||||
0.125f*(heap[_I(xi+1,yi+1,zi+2,n)]-heap[_I(xi-1,yi+1,zi+2,n)]-heap[_I(xi+1,yi-1,zi+2,n)]+heap[_I(xi-1,yi-1,zi+2,n)]-heap[_I(xi+1,yi+1,zi,n)]+heap[_I(xi-1,yi+1,zi,n)]+heap[_I(xi+1,yi-1,zi,n)]-heap[_I(xi-1,yi-1,zi,n)]),
|
||||
0.125f*(heap[_I(xi+2,yi+1,zi+2,n)]-heap[_I(xi,yi+1,zi+2,n)]-heap[_I(xi+2,yi-1,zi+2,n)]+heap[_I(xi,yi-1,zi+2,n)]-heap[_I(xi+2,yi+1,zi,n)]+heap[_I(xi,yi+1,zi,n)]+heap[_I(xi+2,yi-1,zi,n)]-heap[_I(xi,yi-1,zi,n)]),
|
||||
0.125f*(heap[_I(xi+1,yi+2,zi+2,n)]-heap[_I(xi-1,yi+2,zi+2,n)]-heap[_I(xi+1,yi,zi+2,n)]+heap[_I(xi-1,yi,zi+2,n)]-heap[_I(xi+1,yi+2,zi,n)]+heap[_I(xi-1,yi+2,zi,n)]+heap[_I(xi+1,yi,zi,n)]-heap[_I(xi-1,yi,zi,n)]),
|
||||
0.125f*(heap[_I(xi+2,yi+2,zi+2,n)]-heap[_I(xi,yi+2,zi+2,n)]-heap[_I(xi+2,yi,zi+2,n)]+heap[_I(xi,yi,zi+2,n)]-heap[_I(xi+2,yi+2,zi,n)]+heap[_I(xi,yi+2,zi,n)]+heap[_I(xi+2,yi,zi,n)]-heap[_I(xi,yi,zi,n)])};
|
||||
|
||||
tricubic_get_coeff(a,fval,dfdxval,dfdyval,dfdzval,d2fdxdyval,d2fdxdzval,d2fdydzval,d3fdxdydzval);
|
||||
|
||||
float dx=xx-xi;
|
||||
float dy=yy-yi;
|
||||
float dz=zz-zi;
|
||||
|
||||
return tricubic_eval(a,dx,dy,dz);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*--------------------------------------------------------------------*/
|
||||
|
||||
void load_frame (FILE *fp,float *F, int size,int frame)
|
||||
{
|
||||
|
||||
fseek(fp,frame*size*sizeof(float),0);
|
||||
fread(F,sizeof(float),size,fp);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void cache_voxeldata(struct Render *re,Tex *tex)
|
||||
{
|
||||
VoxelData *vd = tex->vd;
|
||||
FILE *fp;
|
||||
int size;
|
||||
|
||||
if (!vd) return;
|
||||
|
||||
vd->resolY=vd->resolX; //for now only support cubic datasets (rectangular datasets could be added latter)
|
||||
vd->resolZ=vd->resolX;
|
||||
size = (vd->resolX)*(vd->resolY)*(vd->resolZ);
|
||||
|
||||
vd->dataset=MEM_mallocN(sizeof(float)*size, "voxel dataset");
|
||||
|
||||
if (!BLI_exists(vd->source_path)) return;
|
||||
fp = fopen(vd->source_path,"rb");
|
||||
if (!fp) return;
|
||||
|
||||
load_frame(fp, vd->dataset, size, re->r.cfra); //here improve the dataset loading function for more dataset types
|
||||
|
||||
fclose(fp);
|
||||
|
||||
}
|
||||
|
||||
void make_voxeldata(struct Render *re)
|
||||
{
|
||||
Tex *tex;
|
||||
|
||||
if(re->scene->r.scemode & R_PREVIEWBUTS)
|
||||
return;
|
||||
|
||||
re->i.infostr= "Loading voxel datasets";
|
||||
re->stats_draw(&re->i);
|
||||
|
||||
for (tex= G.main->tex.first; tex; tex= tex->id.next) {
|
||||
if(tex->id.us && tex->type==TEX_VOXELDATA) {
|
||||
cache_voxeldata(re, tex);
|
||||
}
|
||||
}
|
||||
|
||||
re->i.infostr= NULL;
|
||||
re->stats_draw(&re->i);
|
||||
|
||||
}
|
||||
|
||||
static void free_voxeldata_one(Render *re, Tex *tex)
|
||||
{
|
||||
VoxelData *vd = tex->vd;
|
||||
|
||||
if (vd->dataset) {
|
||||
MEM_freeN(vd->dataset);
|
||||
vd->dataset = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void free_voxeldata(Render *re)
|
||||
{
|
||||
Tex *tex;
|
||||
|
||||
if(re->scene->r.scemode & R_PREVIEWBUTS)
|
||||
return;
|
||||
|
||||
for (tex= G.main->tex.first; tex; tex= tex->id.next) {
|
||||
if(tex->id.us && tex->type==TEX_VOXELDATA) {
|
||||
free_voxeldata_one(re, tex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int voxeldatatex(struct Tex *tex, float *texvec, struct TexResult *texres)
|
||||
{
|
||||
int retval = TEX_INT;
|
||||
VoxelData *vd = tex->vd;
|
||||
float vec[3] = {0.0, 0.0, 0.0};
|
||||
float co[3];
|
||||
float dx, dy, dz;
|
||||
int xi, yi, zi;
|
||||
float xf, yf, zf;
|
||||
int i=0, fail=0;
|
||||
int resolX, resolY, resolZ;
|
||||
|
||||
if ((!vd) || (vd->dataset==NULL)) {
|
||||
texres->tin = 0.0f;
|
||||
return 0;
|
||||
}
|
||||
|
||||
//here do the calculation of the interpolation types
|
||||
|
||||
resolX=vd->resolX;
|
||||
resolY=vd->resolY;
|
||||
resolZ=vd->resolZ;
|
||||
|
||||
VECCOPY(co, texvec);
|
||||
|
||||
dx=1.0f/(resolX);
|
||||
dy=1.0f/(resolY);
|
||||
dz=1.0f/(resolZ);
|
||||
|
||||
xi=co[0]/dx;
|
||||
yi=co[1]/dy;
|
||||
zi=co[2]/dz;
|
||||
|
||||
xf=co[0]/dx;
|
||||
yf=co[1]/dy;
|
||||
zf=co[2]/dz;
|
||||
|
||||
if (xi>1 && xi<resolX)
|
||||
{
|
||||
if (yi>1 && yi<resolY)
|
||||
{
|
||||
if (zi>1 && zi<resolZ)
|
||||
{
|
||||
|
||||
switch (vd->interp_type)
|
||||
{
|
||||
|
||||
case TEX_VD_NEARESTNEIGHBOR:
|
||||
{
|
||||
texres->tin = vd->dataset[_I(xi,yi,zi,resolX)];
|
||||
BRICONT;
|
||||
break;
|
||||
}
|
||||
case TEX_VD_LINEAR:
|
||||
{
|
||||
texres->tin = Linear(xf,yf,zf,vd->dataset,resolX);
|
||||
}
|
||||
case TEX_VD_TRICUBIC:
|
||||
{
|
||||
texres->tin = tricubic(xf,yf,zf,vd->dataset,resolX);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
} else fail++;
|
||||
} else fail++;
|
||||
} else fail++;
|
||||
|
||||
if (fail) texres->tin=0.0f;
|
||||
|
||||
texres->tin *= vd->int_multiplier;
|
||||
|
||||
texres->tr = texres->tin;
|
||||
texres->tg = texres->tin;
|
||||
texres->tb = texres->tin;
|
||||
texres->ta = texres->tin;
|
||||
BRICONTRGB;
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user