Added module bf_render_raytrace (source/blender/render/intern/raytrace)

to be able to use C++ at raytrace code
	C++ used in here is basicly C with templates and function overloads,
	to make it easier to reuse code between structures.

For now BVH was converted in C++ and moved to this module
This commit is contained in:
2009-07-11 22:13:01 +00:00
parent e56795b4fa
commit d6aefa6abd
4 changed files with 760 additions and 474 deletions

View File

@@ -3,6 +3,7 @@ Import ('env')
cflags=''
sources = env.Glob('intern/source/*.c')
raysources = env.Glob('intern/raytrace/*.cpp')
incs = 'intern/include #/intern/guardedalloc ../blenlib ../makesdna'
incs += ' extern/include ../blenkernel ../radiosity/extern/include ../imbuf'
@@ -24,3 +25,4 @@ if env['OURPLATFORM']=='linux2':
cflags='-pthread'
env.BlenderLib ( libname = 'bf_render', sources = sources, includes = Split(incs), defines=defs, libtype='core', priority=145, compileflags=cflags )
env.BlenderLib ( libname = 'bf_render_raytrace', sources = raysources, includes = Split(incs), defines=defs, libtype='core', priority=145, compileflags=cflags )

View File

@@ -0,0 +1,288 @@
/* bvh tree generics */
template<class Tree> static int bvh_intersect(Tree *obj, Isect *isec);
template<class Tree> static void bvh_add(Tree *obj, RayObject *ob)
{
rtbuild_add( obj->builder, ob );
}
template<class Tree> static void bvh_done(Tree *obj);
template<class Tree>
static void bvh_free(Tree *obj)
{
if(obj->builder)
rtbuild_free(obj->builder);
if(obj->node_arena)
BLI_memarena_free(obj->node_arena);
MEM_freeN(obj);
}
template<class Tree>
static void bvh_bb(Tree *obj, float *min, float *max)
{
bvh_node_merge_bb(obj->root, min, max);
}
template<class Tree>
static float bvh_cost(Tree *obj)
{
assert(obj->cost >= 0.0);
return obj->cost;
}
/* bvh tree nodes generics */
template<class Node> static inline int bvh_node_hit_test(Node *node, Isect *isec)
{
return RE_rayobject_bb_intersect(isec, (const float*)node->bb) != FLT_MAX;
}
template<class Node>
static void bvh_node_merge_bb(Node *node, float *min, float *max)
{
if(RayObject_isAligned(node))
{
DO_MIN(node->bb , min);
DO_MAX(node->bb+3, max);
}
else
{
RE_rayobject_merge_bb( (RayObject*)node, min, max);
}
}
/*
* recursivly transverse a BVH looking for a rayhit using a local stack
*/
template<class Node> static inline void bvh_node_push_childs(Node *node, Isect *isec, Node **stack, int &stack_pos);
template<class Node,int MAX_STACK_SIZE>
static int bvh_node_stack_raycast(Node *root, Isect *isec)
{
Node *stack[MAX_STACK_SIZE];
int hit = 0, stack_pos = 0;
stack[stack_pos++] = root;
while(stack_pos)
{
Node *node = stack[--stack_pos];
if(RayObject_isAligned(node))
{
if(bvh_node_hit_test(node,isec))
{
bvh_node_push_childs(node, isec, stack, stack_pos);
assert(stack_pos <= MAX_STACK_SIZE);
}
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node, isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
return hit;
}
/*
* recursively transverse a BVH looking for a rayhit using system stack
*/
/*
template<class Node>
static int bvh_node_raycast(Node *node, Isect *isec)
{
int hit = 0;
if(bvh_test_node(node, isec))
{
if(isec->idot_axis[node->split_axis] > 0.0f)
{
int i;
for(i=0; i<BVH_NCHILDS; i++)
if(RayObject_isAligned(node->child[i]))
{
if(node->child[i] == 0) break;
hit |= bvh_node_raycast(node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
else
{
int i;
for(i=BVH_NCHILDS-1; i>=0; i--)
if(RayObject_isAligned(node->child[i]))
{
if(node->child[i])
{
hit |= dfs_raycast(node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
}
return hit;
}
*/
/* bvh tree generics */
template<class Tree> static int bvh_intersect(Tree *obj, Isect *isec);
template<class Tree> static void bvh_add(Tree *obj, RayObject *ob)
{
rtbuild_add( obj->builder, ob );
}
template<class Tree> static void bvh_done(Tree *obj);
template<class Tree>
static void bvh_free(Tree *obj)
{
if(obj->builder)
rtbuild_free(obj->builder);
if(obj->node_arena)
BLI_memarena_free(obj->node_arena);
MEM_freeN(obj);
}
template<class Tree>
static void bvh_bb(Tree *obj, float *min, float *max)
{
bvh_node_merge_bb(obj->root, min, max);
}
template<class Tree>
static float bvh_cost(Tree *obj)
{
assert(obj->cost >= 0.0);
return obj->cost;
}
/* bvh tree nodes generics */
template<class Node> static inline int bvh_node_hit_test(Node *node, Isect *isec)
{
return RE_rayobject_bb_intersect(isec, (const float*)node->bb) != FLT_MAX;
}
template<class Node>
static void bvh_node_merge_bb(Node *node, float *min, float *max)
{
if(RayObject_isAligned(node))
{
DO_MIN(node->bb , min);
DO_MAX(node->bb+3, max);
}
else
{
RE_rayobject_merge_bb( (RayObject*)node, min, max);
}
}
/*
* recursivly transverse a BVH looking for a rayhit using a local stack
*/
template<class Node> static inline void bvh_node_push_childs(Node *node, Isect *isec, Node **stack, int &stack_pos);
template<class Node,int MAX_STACK_SIZE>
static int bvh_node_stack_raycast(Node *root, Isect *isec)
{
Node *stack[MAX_STACK_SIZE];
int hit = 0, stack_pos = 0;
stack[stack_pos++] = root;
while(stack_pos)
{
Node *node = stack[--stack_pos];
if(RayObject_isAligned(node))
{
if(bvh_node_hit_test(node,isec))
{
bvh_node_push_childs(node, isec, stack, stack_pos);
assert(stack_pos <= MAX_STACK_SIZE);
}
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node, isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
return hit;
}
/*
* recursively transverse a BVH looking for a rayhit using system stack
*/
/*
template<class Node>
static int bvh_node_raycast(Node *node, Isect *isec)
{
int hit = 0;
if(bvh_test_node(node, isec))
{
if(isec->idot_axis[node->split_axis] > 0.0f)
{
int i;
for(i=0; i<BVH_NCHILDS; i++)
if(RayObject_isAligned(node->child[i]))
{
if(node->child[i] == 0) break;
hit |= bvh_node_raycast(node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
else
{
int i;
for(i=BVH_NCHILDS-1; i>=0; i--)
if(RayObject_isAligned(node->child[i]))
{
if(node->child[i])
{
hit |= dfs_raycast(node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
}
return hit;
}
*/

View File

@@ -0,0 +1,470 @@
/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
extern "C"
{
#include <assert.h>
#include "MEM_guardedalloc.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_memarena.h"
#include "RE_raytrace.h"
#include "rayobject_rtbuild.h"
#include "rayobject.h"
};
#include "bvh.h"
#define BVH_NCHILDS 2
#define RAY_BB_TEST_COST (0.2f)
#define DFS_STACK_SIZE 64
#define DYNAMIC_ALLOC
//#define rtbuild_split rtbuild_mean_split_largest_axis /* objects mean split on the longest axis, childs BB are allowed to overlap */
//#define rtbuild_split rtbuild_median_split_largest_axis /* space median split on the longest axis, childs BB are allowed to overlap */
#define rtbuild_split rtbuild_heuristic_object_split /* split objects using heuristic */
struct BVHNode
{
BVHNode *child[BVH_NCHILDS];
float bb[6];
int split_axis;
};
struct BVHTree
{
RayObject rayobj;
BVHNode *root;
MemArena *node_arena;
float cost;
RTBuilder *builder;
};
/*
* Push nodes (used on dfs)
*/
template<class Node>
inline static void bvh_node_push_childs(Node *node, Isect *isec, Node **stack, int &stack_pos)
{
//push nodes in reverse visit order
if(isec->idot_axis[node->split_axis] < 0.0f)
{
int i;
for(i=0; i<BVH_NCHILDS; i++)
if(node->child[i] == 0)
break;
else
stack[stack_pos++] = node->child[i];
}
else
{
int i;
for(i=BVH_NCHILDS-1; i>=0; i--)
if(node->child[i] != 0)
stack[stack_pos++] = node->child[i];
}
}
/*
* BVH done
*/
static BVHNode *bvh_new_node(BVHTree *tree, int nid)
{
BVHNode *node = (BVHNode*)BLI_memarena_alloc(tree->node_arena, sizeof(BVHNode));
return node;
}
static int child_id(int pid, int nchild)
{
//N child of node A = A * K + (2 - K) + N, (0 <= N < K)
return pid*BVH_NCHILDS+(2-BVH_NCHILDS)+nchild;
}
static BVHNode *bvh_rearrange(BVHTree *tree, RTBuilder *builder, int nid, float *cost)
{
*cost = 0;
if(rtbuild_size(builder) == 0)
return 0;
if(rtbuild_size(builder) == 1)
{
RayObject *child = builder->begin[0];
if(RayObject_isRayFace(child))
{
int i;
BVHNode *parent = bvh_new_node(tree, nid);
parent->split_axis = 0;
INIT_MINMAX(parent->bb, parent->bb+3);
for(i=0; i<1; i++)
{
parent->child[i] = (BVHNode*)builder->begin[i];
bvh_node_merge_bb(parent->child[i], parent->bb, parent->bb+3);
}
for(; i<BVH_NCHILDS; i++)
parent->child[i] = 0;
*cost = RE_rayobject_cost(child)+RAY_BB_TEST_COST;
return parent;
}
else
{
assert(!RayObject_isAligned(child));
//Its a sub-raytrace structure, assume it has it own raycast
//methods and adding a Bounding Box arround is unnecessary
*cost = RE_rayobject_cost(child);
return (BVHNode*)child;
}
}
else
{
int i;
RTBuilder tmp;
BVHNode *parent = bvh_new_node(tree, nid);
int nc = rtbuild_split(builder, BVH_NCHILDS);
INIT_MINMAX(parent->bb, parent->bb+3);
parent->split_axis = builder->split_axis;
for(i=0; i<nc; i++)
{
float cbb[6];
float tcost;
parent->child[i] = bvh_rearrange( tree, rtbuild_get_child(builder, i, &tmp), child_id(nid,i), &tcost );
INIT_MINMAX(cbb, cbb+3);
bvh_node_merge_bb(parent->child[i], cbb, cbb+3);
DO_MIN(cbb, parent->bb);
DO_MAX(cbb+3, parent->bb+3);
*cost += tcost*bb_area(cbb, cbb+3);
}
for(; i<BVH_NCHILDS; i++)
parent->child[i] = 0;
*cost /= bb_area(parent->bb, parent->bb+3);
*cost += nc*RAY_BB_TEST_COST;
return parent;
}
}
template<>
void bvh_done<BVHTree>(BVHTree *obj)
{
int needed_nodes = (rtbuild_size(obj->builder)+1)*2;
if(needed_nodes > BLI_MEMARENA_STD_BUFSIZE)
needed_nodes = BLI_MEMARENA_STD_BUFSIZE;
obj->node_arena = BLI_memarena_new(needed_nodes);
BLI_memarena_use_malloc(obj->node_arena);
obj->root = bvh_rearrange( obj, obj->builder, 1, &obj->cost );
rtbuild_free( obj->builder );
obj->builder = NULL;
}
template<>
int bvh_intersect<BVHTree>(BVHTree *obj, Isect* isec)
{
if(RayObject_isAligned(obj->root))
return bvh_node_stack_raycast<BVHNode,64>(obj->root, isec);
else
return RE_rayobject_intersect( (RayObject*) obj->root, isec );
}
/* the cast to pointer function is needed to workarround gcc bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11407 */
static RayObjectAPI bvh_api =
{
(RE_rayobject_raycast_callback) ((int(*)(BVHTree*,Isect*)) &bvh_intersect<BVHTree>),
(RE_rayobject_add_callback) ((void(*)(BVHTree*,RayObject*)) &bvh_add<BVHTree>),
(RE_rayobject_done_callback) ((void(*)(BVHTree*)) &bvh_done<BVHTree>),
(RE_rayobject_free_callback) ((void(*)(BVHTree*)) &bvh_free<BVHTree>),
(RE_rayobject_merge_bb_callback)((void(*)(BVHTree*,float*,float*)) &bvh_bb<BVHTree>),
(RE_rayobject_cost_callback) ((float(*)(BVHTree*)) &bvh_cost<BVHTree>)
};
RayObject *RE_rayobject_bvh_create(int size)
{
BVHTree *obj= (BVHTree*)MEM_callocN(sizeof(BVHTree), "BVHTree");
assert( RayObject_isAligned(obj) ); /* RayObject API assumes real data to be 4-byte aligned */
obj->rayobj.api = &bvh_api;
obj->root = NULL;
obj->node_arena = NULL;
obj->builder = rtbuild_create( size );
return RayObject_unalignRayAPI((RayObject*) obj);
}
/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
extern "C"
{
#include <assert.h>
#include "MEM_guardedalloc.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_memarena.h"
#include "RE_raytrace.h"
#include "rayobject_rtbuild.h"
#include "rayobject.h"
};
#include "bvh.h"
#define BVH_NCHILDS 2
#define RAY_BB_TEST_COST (0.2f)
#define DFS_STACK_SIZE 64
#define DYNAMIC_ALLOC
//#define rtbuild_split rtbuild_mean_split_largest_axis /* objects mean split on the longest axis, childs BB are allowed to overlap */
//#define rtbuild_split rtbuild_median_split_largest_axis /* space median split on the longest axis, childs BB are allowed to overlap */
#define rtbuild_split rtbuild_heuristic_object_split /* split objects using heuristic */
struct BVHNode
{
BVHNode *child[BVH_NCHILDS];
float bb[6];
int split_axis;
};
struct BVHTree
{
RayObject rayobj;
BVHNode *root;
MemArena *node_arena;
float cost;
RTBuilder *builder;
};
/*
* Push nodes (used on dfs)
*/
template<class Node>
inline static void bvh_node_push_childs(Node *node, Isect *isec, Node **stack, int &stack_pos)
{
//push nodes in reverse visit order
if(isec->idot_axis[node->split_axis] < 0.0f)
{
int i;
for(i=0; i<BVH_NCHILDS; i++)
if(node->child[i] == 0)
break;
else
stack[stack_pos++] = node->child[i];
}
else
{
int i;
for(i=BVH_NCHILDS-1; i>=0; i--)
if(node->child[i] != 0)
stack[stack_pos++] = node->child[i];
}
}
/*
* BVH done
*/
static BVHNode *bvh_new_node(BVHTree *tree, int nid)
{
BVHNode *node = (BVHNode*)BLI_memarena_alloc(tree->node_arena, sizeof(BVHNode));
return node;
}
static int child_id(int pid, int nchild)
{
//N child of node A = A * K + (2 - K) + N, (0 <= N < K)
return pid*BVH_NCHILDS+(2-BVH_NCHILDS)+nchild;
}
static BVHNode *bvh_rearrange(BVHTree *tree, RTBuilder *builder, int nid, float *cost)
{
*cost = 0;
if(rtbuild_size(builder) == 0)
return 0;
if(rtbuild_size(builder) == 1)
{
RayObject *child = builder->begin[0];
if(RayObject_isRayFace(child))
{
int i;
BVHNode *parent = bvh_new_node(tree, nid);
parent->split_axis = 0;
INIT_MINMAX(parent->bb, parent->bb+3);
for(i=0; i<1; i++)
{
parent->child[i] = (BVHNode*)builder->begin[i];
bvh_node_merge_bb(parent->child[i], parent->bb, parent->bb+3);
}
for(; i<BVH_NCHILDS; i++)
parent->child[i] = 0;
*cost = RE_rayobject_cost(child)+RAY_BB_TEST_COST;
return parent;
}
else
{
assert(!RayObject_isAligned(child));
//Its a sub-raytrace structure, assume it has it own raycast
//methods and adding a Bounding Box arround is unnecessary
*cost = RE_rayobject_cost(child);
return (BVHNode*)child;
}
}
else
{
int i;
RTBuilder tmp;
BVHNode *parent = bvh_new_node(tree, nid);
int nc = rtbuild_split(builder, BVH_NCHILDS);
INIT_MINMAX(parent->bb, parent->bb+3);
parent->split_axis = builder->split_axis;
for(i=0; i<nc; i++)
{
float cbb[6];
float tcost;
parent->child[i] = bvh_rearrange( tree, rtbuild_get_child(builder, i, &tmp), child_id(nid,i), &tcost );
INIT_MINMAX(cbb, cbb+3);
bvh_node_merge_bb(parent->child[i], cbb, cbb+3);
DO_MIN(cbb, parent->bb);
DO_MAX(cbb+3, parent->bb+3);
*cost += tcost*bb_area(cbb, cbb+3);
}
for(; i<BVH_NCHILDS; i++)
parent->child[i] = 0;
*cost /= bb_area(parent->bb, parent->bb+3);
*cost += nc*RAY_BB_TEST_COST;
return parent;
}
}
template<>
void bvh_done<BVHTree>(BVHTree *obj)
{
int needed_nodes = (rtbuild_size(obj->builder)+1)*2;
if(needed_nodes > BLI_MEMARENA_STD_BUFSIZE)
needed_nodes = BLI_MEMARENA_STD_BUFSIZE;
obj->node_arena = BLI_memarena_new(needed_nodes);
BLI_memarena_use_malloc(obj->node_arena);
obj->root = bvh_rearrange( obj, obj->builder, 1, &obj->cost );
rtbuild_free( obj->builder );
obj->builder = NULL;
}
template<>
int bvh_intersect<BVHTree>(BVHTree *obj, Isect* isec)
{
if(RayObject_isAligned(obj->root))
return bvh_node_stack_raycast<BVHNode,64>(obj->root, isec);
else
return RE_rayobject_intersect( (RayObject*) obj->root, isec );
}
/* the cast to pointer function is needed to workarround gcc bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11407 */
static RayObjectAPI bvh_api =
{
(RE_rayobject_raycast_callback) ((int(*)(BVHTree*,Isect*)) &bvh_intersect<BVHTree>),
(RE_rayobject_add_callback) ((void(*)(BVHTree*,RayObject*)) &bvh_add<BVHTree>),
(RE_rayobject_done_callback) ((void(*)(BVHTree*)) &bvh_done<BVHTree>),
(RE_rayobject_free_callback) ((void(*)(BVHTree*)) &bvh_free<BVHTree>),
(RE_rayobject_merge_bb_callback)((void(*)(BVHTree*,float*,float*)) &bvh_bb<BVHTree>),
(RE_rayobject_cost_callback) ((float(*)(BVHTree*)) &bvh_cost<BVHTree>)
};
RayObject *RE_rayobject_bvh_create(int size)
{
BVHTree *obj= (BVHTree*)MEM_callocN(sizeof(BVHTree), "BVHTree");
assert( RayObject_isAligned(obj) ); /* RayObject API assumes real data to be 4-byte aligned */
obj->rayobj.api = &bvh_api;
obj->root = NULL;
obj->node_arena = NULL;
obj->builder = rtbuild_create( size );
return RayObject_unalignRayAPI((RayObject*) obj);
}

View File

@@ -1,474 +0,0 @@
/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2009 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): André Pinto.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <assert.h>
#include <stdio.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "BKE_utildefines.h"
#include "BLI_arithb.h"
#include "BLI_memarena.h"
#include "RE_raytrace.h"
#include "rayobject_rtbuild.h"
#include "rayobject.h"
#define RAY_BB_TEST_COST (0.2f)
#define DFS_STACK_SIZE 64
#define DYNAMIC_ALLOC
//#define SPLIT_OVERLAP_MEAN_LONGEST_AXIS /* objects mean split on the longest axis, childs BB are allowed to overlap */
//#define SPLIT_OVERLAP_MEDIAN_LONGEST_AXIS /* space median split on the longest axis, childs BB are allowed to overlap */
#define SPLIT_OBJECTS_SAH /* split objects using heuristic */
#define BVH_NCHILDS 2
typedef struct BVHTree BVHTree;
static int bvh_intersect(BVHTree *obj, Isect *isec);
static int bvh_intersect_stack(BVHTree *obj, Isect *isec);
static void bvh_add(BVHTree *o, RayObject *ob);
static void bvh_done(BVHTree *o);
static void bvh_free(BVHTree *o);
static void bvh_bb(BVHTree *o, float *min, float *max);
static float bvh_cost(BVHTree *o);
static RayObjectAPI bvh_api =
{
#ifdef DFS_STACK_SIZE
(RE_rayobject_raycast_callback) bvh_intersect_stack,
#else
(RE_rayobject_raycast_callback) bvh_intersect,
#endif
(RE_rayobject_add_callback) bvh_add,
(RE_rayobject_done_callback) bvh_done,
(RE_rayobject_free_callback) bvh_free,
(RE_rayobject_merge_bb_callback)bvh_bb,
(RE_rayobject_cost_callback) bvh_cost
};
typedef struct BVHNode BVHNode;
struct BVHNode
{
BVHNode *child[BVH_NCHILDS];
#ifdef DYNAMIC_ALLOC
float bb[6];
#else
float *bb; //[6]; //[2][3];
#endif
int split_axis;
};
struct BVHTree
{
RayObject rayobj;
BVHNode *root;
#ifdef DYNAMIC_ALLOC
MemArena *node_arena;
#else
BVHNode *node_alloc, *node_next;
float *bb_alloc, *bb_next;
#endif
float cost;
RTBuilder *builder;
};
RayObject *RE_rayobject_bvh_create(int size)
{
BVHTree *obj= (BVHTree*)MEM_callocN(sizeof(BVHTree), "BVHTree");
assert( RayObject_isAligned(obj) ); /* RayObject API assumes real data to be 4-byte aligned */
obj->rayobj.api = &bvh_api;
obj->root = NULL;
#ifdef DYNAMIC_ALLOC
obj->node_arena = NULL;
#else
obj->node_alloc = obj->node_next = NULL;
obj->bb_alloc = obj->bb_next = NULL;
#endif
obj->builder = rtbuild_create( size );
return RayObject_unalignRayAPI((RayObject*) obj);
}
static void bvh_free(BVHTree *obj)
{
if(obj->builder)
rtbuild_free(obj->builder);
#ifdef DYNAMIC_ALLOC
if(obj->node_arena)
BLI_memarena_free(obj->node_arena);
#else
if(obj->node_alloc)
MEM_freeN(obj->node_alloc);
if(obj->bb_alloc)
MEM_freeN(obj->bb_alloc);
#endif
MEM_freeN(obj);
}
static void bvh_merge_bb(BVHNode *node, float *min, float *max)
{
if(RayObject_isAligned(node))
{
DO_MIN(node->bb , min);
DO_MAX(node->bb+3, max);
}
else
{
RE_rayobject_merge_bb( (RayObject*)node, min, max);
}
}
static void bvh_bb(BVHTree *obj, float *min, float *max)
{
bvh_merge_bb(obj->root, min, max);
}
static float bvh_cost(BVHTree *obj)
{
assert(obj->cost >= 0.0);
return obj->cost;
}
/*
* Tree transverse
*/
static int dfs_raycast_stack(BVHNode *root, Isect *isec)
{
BVHNode *stack[DFS_STACK_SIZE];
int hit = 0, stack_pos = 0;
#ifdef RT_USE_HINT
BVHNode *last_processed_node = 0;
#endif
stack[stack_pos++] = root;
while(stack_pos)
{
BVHNode *node = stack[--stack_pos];
if(RayObject_isAligned(node))
{
if(RE_rayobject_bb_intersect(isec, (const float*)node->bb) != FLT_MAX)
{
#ifdef RT_USE_HINT
last_processed_node = node;
#endif
//push nodes in reverse visit order
if(isec->idot_axis[node->split_axis] < 0.0f)
{
int i;
for(i=0; i<BVH_NCHILDS; i++)
if(node->child[i] == 0) break;
else
#ifdef RT_USE_HINT
if(node->child[i] != (BVHNode*)isec->hint)
#endif
stack[stack_pos++] = node->child[i];
}
else
{
int i;
for(i=BVH_NCHILDS-1; i>=0; i--)
if(node->child[i] != 0
#ifdef RT_USE_HINT
&& node->child[i] != (BVHNode*)isec->hint
#endif
)
stack[stack_pos++] = node->child[i];
}
assert(stack_pos <= DFS_STACK_SIZE);
}
}
else
{
int ghit;
#ifdef RT_USE_HINT
RayTraceHint *b_hint = isec->hint;
isec->hint = 0;
#endif
ghit = RE_rayobject_intersect( (RayObject*)node, isec);
#ifdef RT_USE_HINT
isec->hint = b_hint;
if(ghit)
isec->hit_hint = (RayTraceHint*)last_processed_node;
#endif
hit |= ghit;
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
return hit;
}
static int bvh_intersect_stack(BVHTree *obj, Isect *isec)
{
if(RayObject_isAligned(obj->root))
{
#ifdef RT_USE_HINT
if(isec->hint)
{
int hit;
RE_RC_COUNT(isec->raycounter->raytrace_hint.test);
hit = dfs_raycast_stack((BVHNode*) isec->hint, isec);
if(hit)
{
RE_RC_COUNT(isec->raycounter->raytrace_hint.hit);
if(isec->mode == RE_RAY_SHADOW) return hit;
}
else isec->hint = 0; //Clear HINT on non-hit?, that sounds good, but no tests where made
return hit | dfs_raycast_stack(obj->root, isec);
}
#endif
return dfs_raycast_stack(obj->root, isec);
}
else
return RE_rayobject_intersect( (RayObject*)obj->root, isec);
}
static int dfs_raycast(BVHNode *node, Isect *isec)
{
int hit = 0;
if(RE_rayobject_bb_intersect(isec, (const float*)node->bb) != FLT_MAX)
{
if(isec->idot_axis[node->split_axis] > 0.0f)
{
int i;
for(i=0; i<BVH_NCHILDS; i++)
if(RayObject_isAligned(node->child[i]))
{
if(node->child[i] == 0) break;
hit |= dfs_raycast(node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
else
{
int i;
for(i=BVH_NCHILDS-1; i>=0; i--)
if(RayObject_isAligned(node->child[i]))
{
if(node->child[i])
{
hit |= dfs_raycast(node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
else
{
hit |= RE_rayobject_intersect( (RayObject*)node->child[i], isec);
if(hit && isec->mode == RE_RAY_SHADOW) return hit;
}
}
}
return hit;
}
static int bvh_intersect(BVHTree *obj, Isect *isec)
{
if(RayObject_isAligned(obj->root))
return dfs_raycast(obj->root, isec);
else
return RE_rayobject_intersect( (RayObject*)obj->root, isec);
}
/*
* Builds a BVH tree from builder object
*/
static void bvh_add(BVHTree *obj, RayObject *ob)
{
rtbuild_add( obj->builder, ob );
}
static BVHNode *bvh_new_node(BVHTree *tree, int nid)
{
#ifdef DYNAMIC_ALLOC
BVHNode *node = BLI_memarena_alloc(tree->node_arena, sizeof(BVHNode));
return node;
#else
BVHNode *node = tree->node_alloc + nid - 1;
assert(RayObject_isAligned(node));
if(node+1 > tree->node_next)
tree->node_next = node+1;
node->bb = tree->bb_alloc + (nid - 1)*6;
tree->bb_next += 6;
return node;
#endif
}
static int child_id(int pid, int nchild)
{
//N child of node A = A * K + (2 - K) + N, (0 <= N < K)
return pid*BVH_NCHILDS+(2-BVH_NCHILDS)+nchild;
}
static BVHNode *bvh_rearrange(BVHTree *tree, RTBuilder *builder, int nid, float *cost)
{
*cost = 0;
if(rtbuild_size(builder) == 0)
return 0;
if(rtbuild_size(builder) == 1)
{
RayObject *child = builder->begin[0];
if(RayObject_isRayFace(child))
{
int i;
BVHNode *parent = bvh_new_node(tree, nid);
parent->split_axis = 0;
INIT_MINMAX(parent->bb, parent->bb+3);
for(i=0; i<1; i++)
{
parent->child[i] = (BVHNode*)builder->begin[i];
bvh_merge_bb(parent->child[i], parent->bb, parent->bb+3);
}
for(; i<BVH_NCHILDS; i++)
parent->child[i] = 0;
*cost = RE_rayobject_cost(child)+RAY_BB_TEST_COST;
return parent;
}
else
{
assert(!RayObject_isAligned(child));
//Its a sub-raytrace structure, assume it has it own raycast
//methods and adding a Bounding Box arround is unnecessary
*cost = RE_rayobject_cost(child);
return (BVHNode*)child;
}
}
else
{
int i;
RTBuilder tmp;
BVHNode *parent = bvh_new_node(tree, nid);
int nc;
#ifdef SPLIT_OVERLAP_MEAN_LONGEST_AXIS
nc = rtbuild_mean_split_largest_axis(builder, BVH_NCHILDS);
#elif defined(SPLIT_OVERLAP_MEDIAN_LONGEST_AXIS)
nc = rtbuild_median_split_largest_axis(builder, BVH_NCHILDS);
#elif defined(SPLIT_OBJECTS_SAH)
nc = rtbuild_heuristic_object_split(builder, BVH_NCHILDS);
#else
assert(0);
#endif
INIT_MINMAX(parent->bb, parent->bb+3);
parent->split_axis = builder->split_axis;
for(i=0; i<nc; i++)
{
float cbb[6];
float tcost;
parent->child[i] = bvh_rearrange( tree, rtbuild_get_child(builder, i, &tmp), child_id(nid,i), &tcost );
INIT_MINMAX(cbb, cbb+3);
bvh_merge_bb(parent->child[i], cbb, cbb+3);
DO_MIN(cbb, parent->bb);
DO_MAX(cbb+3, parent->bb+3);
*cost += tcost*bb_area(cbb, cbb+3);
}
for(; i<BVH_NCHILDS; i++)
parent->child[i] = 0;
*cost /= bb_area(parent->bb, parent->bb+3);
*cost += nc*RAY_BB_TEST_COST;
return parent;
}
}
/*
static void bvh_info(BVHTree *obj)
{
printf("BVH: Used %d nodes\n", obj->node_next - obj->node_alloc);
}
*/
static void bvh_done(BVHTree *obj)
{
#ifdef DYNAMIC_ALLOC
int needed_nodes = (rtbuild_size(obj->builder)+1)*2;
if(needed_nodes > BLI_MEMARENA_STD_BUFSIZE)
needed_nodes = BLI_MEMARENA_STD_BUFSIZE;
obj->node_arena = BLI_memarena_new(needed_nodes);
BLI_memarena_use_malloc(obj->node_arena);
#else
int needed_nodes;
//TODO exact calculate needed nodes
needed_nodes = (rtbuild_size(obj->builder)+1)*2;
assert(needed_nodes > 0);
BVHNode *node = BLI_memarena_alloc(tree->node_arena, sizeof(BVHNode));
return node;
obj->node_alloc = (BVHNode*)MEM_mallocN( sizeof(BVHNode)*needed_nodes, "BVHTree.Nodes");
obj->node_next = obj->node_alloc;
obj->bb_alloc = (float*)MEM_mallocN( sizeof(float)*6*needed_nodes, "BVHTree.NodesBB");
obj->bb_next = obj->bb_alloc;
#endif
obj->root = bvh_rearrange( obj, obj->builder, 1, &obj->cost );
// obj->cost = 1.0;
// obj->cost = logf( rtbuild_size( obj->builder ) );
#ifndef DYNAMIC_ALLOC
assert(obj->node_alloc+needed_nodes >= obj->node_next);
#endif
rtbuild_free( obj->builder );
obj->builder = NULL;
}