Added WM Jobs manager
- WM can manage threaded jobs for you; just provide a couple
of components to get it work:
- customdata, free callback for it
- timer step, notifier code
- start callback, update callback
- Once started, each job runs an own timer, and will for
every time step check necessary updates, or close the
job when ready.
- No drawing happens in jobs, that's for notifiers!
- Every job stores an owner pointer, and based on this owner
it will prevent multiple jobs to enter the stack.
Instead it will re-use a running job, signal it to stop
and allow caller to re-initialize it even.
- Check new wm_jobs.c for more explanation. Jobs API is still
under construction.
Fun: BLI_addtail(&wm->jobs, steve); :)
Put Node shader previews back using wmJobs
- Preview calculating is now fully threaded (1 thread still)
- Thanks to new event system + notifiers, you can see
previews update even while dragging sliders!
- Currently it only starts when you change a node setting.
Warning: the thread render shares Node data, so don't delete
nodes while it renders! This topic is on the todo to make safe.
Also:
- bug in region initialize (do_versions) showed channel list in
node editor wrong.
- flagged the channel list 'hidden' now, it was really in the
way! This is for later to work on anyway.
- recoded Render API callbacks so it gets handlers passed on,
no globals to use anymore, remember?
- previewrender code gets now so much nicer! Will remove a lot
of stuff from code soon.
Finally, here is the basic (functional) prototype of the new animation system which will allow for the infamous "everything is animatable", and which also addresses several of the more serious shortcomings of the old system. Unfortunately, this will break old animation files (especially right now, as I haven't written the version patching code yet), however, this is for the future.
Highlights of the new system:
* Scrapped IPO-Curves/IPO/(Action+Constraint-Channels)/Action system, and replaced it with F-Curve/Action.
- F-Curves (animators from other packages will feel at home with this name) replace IPO-Curves.
- The 'new' Actions, act as the containers for F-Curves, so that they can be reused. They are therefore more akin to the old 'IPO' blocks, except they do not have the blocktype restriction, so you can store materials/texture/geometry F-Curves in the same Action as Object transforms, etc.
* F-Curves use RNA-paths for Data Access, hence allowing "every" (where sensible/editable that is) user-accessible setting from RNA to be animated.
* Drivers are no longer mixed with Animation Data, so rigs will not be that easily broken and several dependency problems can be eliminated. (NOTE: drivers haven't been hooked up yet, but the code is in place)
* F-Curve modifier system allows useful 'large-scale' manipulation of F-Curve values, including (I've only included implemented ones here): envelope deform (similar to lattices to allow broad-scale reshaping of curves), curve generator (polynomial or py-expression), cycles (replacing the old cyclic extrapolation modes, giving more control over this). (NOTE: currently this cannot be tested, as there's not access to them, but the code is all in place)
* NLA system with 'tracks' (i.e. layers), and multiple strips per track. (NOTE: NLA system is not yet functional, as it's only partially coded still)
There are more nice things that I will be preparing some nice docs for soon, but for now, check for more details:
http://lists.blender.org/pipermail/bf-taskforce25/2009-January/000260.html
So, what currently works:
* I've implemented two basic operators for the 3D-view only to Insert and Delete Keyframes. These are tempolary ones only that will be replaced in due course with 'proper' code.
* Object Loc/Rot/Scale can be keyframed. Also, the colour of the 'active' material (Note: this should really be for nth material instead, but that doesn't work yet in RNA) can also be keyframed into the same datablock.
* Standard animation refresh (i.e. animation resulting from NLA and Action evaluation) is now done completely separate from drivers before anything else is done after a frame change. Drivers are handled after this in a separate pass, as dictated by depsgraph flags, etc.
Notes:
* Drivers haven't been hooked up yet
* Only objects and data directly linked to objects can be animated.
* Depsgraph will need further tweaks. Currently, I've only made sure that it will update some things in the most basic cases (i.e. frame change).
* Animation Editors are currently broken (in terms of editing stuff). This will be my next target (priority to get Dopesheet working first, then F-Curve editor - i.e. old IPO Editor)
* I've had to put in large chunks of XXX sandboxing for old animation system code all around the place. This will be cleaned up in due course, as some places need special review.
In particular, the particles and sequencer code have far too many manual calls to calculate + flush animation info, which is really bad (this is a 'please explain yourselves' call to Physics coders!).
soc-2008-nicholasbishop branch.
Note: any old code with multires_test() or multires_level1_test() can
just be deleted, not needed by the multires modifier.
Think global, act local!
The old favorite G.scene gone! Man... that took almost 2 days.
Also removed G.curscreen and G.edbo.
Not everything could get solved; here's some notes.
- modifiers now store current scene in ModifierData. This is not
meant for permanent, but it can probably stick there until we
cleaned the anim system and depsgraph to cope better with
timing issues.
- Game engine G.scene should become an argument for staring it.
Didn't solve this yet.
- Texture nodes should get scene cfra, but the current implementation
is too tightly wrapped to do it easily.
From the anti-globalization department:
G.obedit terminated!
Wherever possible, use CTX_data_edit_object(C) to get this
now. It's stored in scene now, and the screen context has
it defined.
Cleanup
- for portablity we can keep the old ugly defines for retrieving
active object, cfra and so on. But, they will use 'scene' not
G.scene.
- fixed code that uses those defines.
- some unused variables/functions removed
This commit introduces a new texture ('Voxel Data'), used to load up saved voxel
data sets for rendering, contributed by Raúl 'farsthary' Fernández Hernández
with some additional tweaks. Thanks, Raúl!
The texture works similar to the existing point density texture, currently it
only provides intensity information, which can then be mapped (for example) to
density in a volume material. This is an early version, intended to read the
voxel format saved by Raúl's command line simulators, in future revisions
there's potential for making a more full-featured 'Blender voxel file format',
and also for supporting other formats too.
Note: Due to some subtleties in Raúl's existing released simulators, in order
to load them correctly the voxel data texture, you'll need to raise the
'resolution' value by 2. So if you baked out the simulation at resolution 50,
enter 52 for the resolution in the texture panel. This can possibly be fixed in
the simulator later on.
Right now, the way the texture is mapped is just in the space 0,0,0 <-> 1,1,1
and it can appear rotated 90 degrees incorrectly. This will be tackled, for now,
probably the easiest way to map it is with and empty, using Map Input -> Object.
Smoke test: http://www.vimeo.com/2449270
One more note, trilinear interpolation seems a bit slow at the moment, we'll
look into this.
For curiosity, while testing/debugging this, I made a script that exports a mesh
to voxel data. Here's a test of grogan (www.kajimba.com) converted to voxels,
rendered as a volume: http://www.vimeo.com/2512028
The script is available here: http://mke3.net/projects/bpython/export_object_voxeldata.py
* Another smaller thing, brought back early ray termination (was disabled
previously for debugging) and made it user configurable. It now appears as a new
value in the volume material: 'Depth Cutoff'. For some background info on what
this does, check:
http://farsthary.wordpress.com/2008/12/11/cutting-down-render-times/
* Also some disabled work-in-progess code for light cache
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r12987:17416
Issues:
* GHOST/X11 had conflicting changes. Some code was added in 2.5, which was
later added in trunk also, but reverted partially, specifically revision
16683. I have left out this reversion in the 2.5 branch since I think it is
needed there.
http://projects.blender.org/plugins/scmsvn/viewcvs.php?view=rev&root=bf-blender&revision=16683
* Scons had various conflicting changes, I decided to go with trunk version
for everything except priorities and some library renaming.
* In creator.c, there were various fixes and fixes for fixes related to the -w
-W and -p options. In 2.5 -w and -W is not coded yet, and -p is done
differently. Since this is changed so much, and I don't think those fixes
would be needed in 2.5, I've left them out.
* Also in creator.c: there was code for a python bugfix where the screen was not
initialized when running with -P. The code that initializes the screen there
I had to disable, that can't work in 2.5 anymore but left it commented as a
reminder.
Further I had to disable some new function calls. using src/ and python/, as
was done already in this branch, disabled function calls:
* bpath.c: error reporting
* BME_conversions.c: editmesh conversion functions.
* SHD_dynamic: disabled almost completely, there is no python/.
* KX_PythonInit.cpp and Ketsji/ build files: Mathutils is not there, disabled.
* text.c: clipboard copy call.
* object.c: OB_SUPPORT_MATERIAL.
* DerivedMesh.c and subsurf_ccg, stipple_quarttone.
Still to be done:
* Go over files and functions that were moved to a different location but could
still use changes that were done in trunk.
Robin (Frrr) Allen did a decent job on this, so we can also welcome him
as a member in the svn committers team to maintain it!
I do the first commit with some minor fixes:
- get Makefiles work
- fix rounding issue with tiles on unit faces
- removed UI includes from tex node
A nice doc in wiki is here:
http://wiki.blender.org/index.php/User:Frr/TexnodeManual
On the todo for Robin is:
- When using one or more Texture-input nodes, you cannot edit them by activating
(as works now for Material nodes).
- The new "output node" option fails on the default case, when only one
output node is active. It then shows often a blank menu. Will get fixed asap.
- When using a NodeTree-Texture as input node, the menu for 'active output'
should not show. NodeTree should ignore other nodetrees to keep things sane
for now.
- On a future todo is proper usage of "Dxt" and "Dyt" texture vectors for
superior antialising of checkers/bricks.
General note; I know people are dying to get a full integrated shader system
with nodes. In theory we could merge this with Material Nodetrees... but I
rather wait for a solid and very well thought out design proposal for this,
also including design ideas for unifying with a shader language (GPU, CPU).
For the time being this is a nice extension of current textures. :)
Particle system crashed in convertblender, missing NULL check.
This fixes crash, render survives, but I doubt it was meant so...
Will leave it Janne to evaluate later.
- the number of segments was always 1 too many on cyclic curves.
- [#17739] - normals were not being calculated when rendering curves.
Replaced macro DL_SURFINDEX with a function. it that assumes variable names and could break from the loop that called it.
* subsurf code had a lot of unused variables, removed these where they are obviously not needed. commented if they could be useful later.
* some variables declorations hide existing variables (many of these left), but fixed some that could cause confusion.
* removed unused vars
* obscure python memory leak with colorband.
* make_sample_tables had a loop running wasnt used.
* if 0'd functions in arithb.c that are not used yet.
* made many functions static
- removed ugly clamping function (it was dividing XYZ based on max of
one of the values)
- added option to use Exposure, this only works for brightness (Y).
results look very pleasant, foggy and hazy results are possible.
with exposre==0, no exposure happens for HDR extreme range skies,
this is how yafray rendered it.
- added menu for choosing color spaces (CIE = modern lcds)
Please review! (and yes i know it's still not in World :)
Removed all the old particle rendering code and options I had in there
before, in order to make way for...
A new procedural texture: 'Point Density'
Point Density is a 3d texture that find the density of a group of 'points'
in space and returns that in the texture as an intensity value. Right now,
its at an early stage and it's only enabled for particles, but it would be
cool to extend it later for things like object vertices, or point cache
files from disk - i.e. to import point cloud data into Blender for
rendering volumetrically.
Currently there are just options for an Object and its particle system
number, this is the particle system that will get cached before rendering,
and then used for the texture's density estimation.
It works totally consistent with as any other procedural texture, so
previously where I've mapped a clouds texture to volume density to make
some of those test renders, now I just map a point density texture to
volume density.
Here's a version of the same particle smoke test file from before, updated
to use the point density texture instead:
http://mke3.net/blender/devel/rendering/volumetrics/smoke_test02.blend
There are a few cool things about implementing this as a texture:
- The one texture (and cache) can be instanced across many different
materials:
http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_instanced.png
This means you can calculate and bake one particle system, but render it
multiple times across the scene, with different material settings, at no
extra memory cost.
Right now, the particles are cached in world space, so you have to map it
globally, and if you want it offset, you have to do it in the material (as
in the file above). I plan to add an option to bake in local space, so you
can just map the texture to local and it just works.
- It also works for solid surfaces too, it just gets the density at that
particular point on the surface, eg:
http://mke3.net/blender/devel/rendering/volumetrics/pointdensity_solid.mov
- You can map it to whatever you want, not only density but the various
emissions and colours as well. I'd like to investigate using the other
outputs in the texture too (like the RGB or normal outputs), perhaps with
options to colour by particle age, generating normals for making particle
'dents' in a surface, whatever!
Initial commit for supporting rendering particles directly as
volume density. It works by looking up how many particles are
within a specified radius of the currently shaded point and using
that to calculate density (which is used just as any other
measure of density would be).
http://mke3.net/blender/devel/rendering/volumetrics/smoke_test01.mov
http://mke3.net/blender/devel/rendering/volumetrics/smoke_test01.blend
Right now it's an early implementation, just to see that it can
work - it may end up changing quite a bit. Currently, it's just a
single switch on the volume material - it looks up all particles
in the scene for density at the current shaded point in world
space (so the volume region must enclose the particles in order
to render them.
This will probably change - one idea I have is to make the
particle density estimation a procedural texture with options for:
* the object and particle system to use
* the origin of the co-ordinate system, i.e. object center, world
space, etc.
This would allow you in a sense, to instance particle systems for
render - you only need to bake one particle system, but you can
render it anywhere.
Anyway, plenty of work to do here, firstly on getting a nice
density evaluation with falloff etc...
- Fixed a shading bug, due to issues in the raytrace engine where it would ignore
intersections from the starting face (as it should). Disabled this for single
scattering intersections, thanks to Brecht for a hint there. It still shows a
little bit of noise, I think due to raytrace inaccuracy, which will have to be
fixed up later.
before: http://mke3.net/blender/devel/rendering/volumetrics/vol_shaded_old.png
after: http://mke3.net/blender/devel/rendering/volumetrics/vol_shaded_correct.png
Now single scatttering shading works very nicely and is capable of things like this:
http://mke3.net/blender/devel/rendering/volumetrics/vol_shaded_clouds.mov
- Added colour emission. Now as well as the overall 'Emit:' slider to control
overall emission strength, there's also a colour swatch for the volume to emit
that colour. This can also be textured, using 'Emit Col' in the map to panel.
This animation was made using a clouds texture, with colour band, mapped to both
emit colour and emit (strength):
http://mke3.net/blender/devel/rendering/volumetrics/vol_col_emit.mov
- Added 'Local' mapping to 'map input' - it's similar to Orco
- Fixed texture 'map input', wasn't using the offsets or scale values.
This is an initial commit to get it in SVN and make it easier to work on.
Don't expect it to work perfectly, it's still in development and there's
plenty of work still needing to be done. And so no I'm not very interested
in hearing bug reports or feature requests at this stage :)
There's some info on this, and a todo list at:
http://mke3.net/weblog/volume-rendering/
Right now I'm trying to focus on getting shading working correctly (there's
currently a problem in which 'surfaces' of the volume facing towards or away
from light sources are getting shaded differently to how they should be),
then I'll work on integration issues, like taking materials behind the volume
into account, blending with alpha, etc. You can do simple testing though,
mapping textures to density or emission on a cube with volume material.
- Added blending mode and factor option, so it's more clear and
controllable what happens with it. Also nice for crazy effects
of course!
- Preview render now shows preview for it too
On the todos:
- have this in World buttons (as well) for quicker sky setups
- review math of color clamping and scaling, this is definitely
not good... but a fix will make old files look very different.
Finally, after a long time new render candy for the non-game peoples! :)
Good doc is here: (url splits in two)
http://www.harkyman.com/2008/08/06/controllable-shadow-intensity-
and-color/
Note the colorpicker for shadow is in "Shadow and Spot" panel. A bit
hidden, could get more attention. For later. :)
halo material attach to the object instead of the mesh.
Also for bug #13489: avoid a crash rendering with invalid
active vcol layer, most likely caused by a bug that was
already fixed.
General
=======
- Removal of Damp option in motion actuator (replaced by
Servo control motion).
- No PyDoc at present, will be added soon.
Generalization of the Lvl option
================================
A sensor with the Lvl option selected will always produce an
event at the start of the game or when entering a state or at
object creation. The event will be positive or negative
depending of the sensor condition. A negative pulse makes
sense when used with a NAND controller: it will be converted
into an actuator activation.
Servo control motion
====================
A new variant of the motion actuator allows to control speed
with force. The control if of type "PID" (Propotional, Integral,
Derivate): the force is automatically adapted to achieve the
target speed. All the parameters of the servo controller are
configurable. The result is a great variety of motion style:
anysotropic friction, flying, sliding, pseudo Dloc...
This actuator should be used in preference to Dloc and LinV
as it produces more fluid movements and avoids the collision
problem with Dloc.
LinV : target speed as (X,Y,Z) vector in local or world
coordinates (mostly useful in local coordinates).
Limit: the force can be limited along each axis (in the same
coordinates of LinV). No limitation means that the force
will grow as large as necessary to achieve the target
speed along that axis. Set a max value to limit the
accelaration along an axis (slow start) and set a min
value (negative) to limit the brake force.
P: Proportional coefficient of servo controller, don't set
directly unless you know what you're doing.
I: Integral coefficient of servo controller. Use low value
(<0.1) for slow reaction (sliding), high values (>0.5)
for hard control. The P coefficient will be automatically
set to 60 times the I coefficient (a reasonable value).
D: Derivate coefficient. Leave to 0 unless you know what
you're doing. High values create instability.
Notes: - This actuator works perfectly in zero friction
environment: the PID controller will simulate friction
by applying force as needed.
- This actuator is compatible with simple Drot motion
actuator but not with LinV and Dloc motion.
- (0,0,0) is a valid target speed.
- All parameters are accessible through Python.
Distance constraint actuator
============================
A new variant of the constraint actuator allows to set the
distance and orientation relative to a surface. The controller
uses a ray to detect the surface (or any object) and adapt the
distance and orientation parallel to the surface.
Damp: Time constant (in nb of frames) of distance and
orientation control.
Dist: Select to enable distance control and set target
distance. The object will be position at the given
distance of surface along the ray direction.
Direction: chose a local axis as the ray direction.
Range: length of ray. Objecgt within this distance will be
detected.
N : Select to enable orientation control. The actuator will
change the orientation and the location of the object
so that it is parallel to the surface at the vertical
of the point of contact of the ray.
M/P : Select to enable material detection. Default is property
detection.
Property/Material: name of property/material that the target of
ray must have to be detected. If not set, property/
material filter is disabled and any collisioning object
within range will be detected.
PER : Select to enable persistent operation. Normally the
actuator disables itself automatically if the ray does
not reach a valid target.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
rotDamp: Time constant (in nb of frame) of orientation control.
0 : use Damp parameter.
>0: use a different time constant for orientation.
Notes: - If neither N nor Dist options are set, the actuator
does not change the position and orientation of the
object; it works as a ray sensor.
- The ray has no "X-ray" capability: if the first object
hit does not have the required property/material, it
returns no hit and the actuator disables itself unless
PER option is enabled.
- This actuator changes the position and orientation but
not the speed of the object. This has an important
implication in a gravity environment: the gravity will
cause the speed to increase although the object seems
to stay still (it is repositioned at each frame).
The gravity must be compensated in one way or another.
the new servo control motion actuator is the simplest
way: set the target speed along the ray axis to 0
and the servo control will automatically compensate
the gravity.
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is
placed BEFORE the Drot motion actuator (the order of
actuator is important)
- All parameters are accessible through Python.
Orientation constraint
======================
A new variant of the constraint actuator allows to align an
object axis along a global direction.
Damp : Time constant (in nb of frames) of orientation control.
X,Y,Z: Global coordinates of reference direction.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
Notes: - (X,Y,Z) = (0,0,0) is not a valid direction
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is placed
BEFORE the Drot motion actuator (the order of
actuator is important).
- This actuator doesn't change the location and speed.
It is compatible with gravity.
- All parameters are accessible through Python.
Actuator sensor
===============
This sensor detects the activation and deactivation of actuators
of the same object. The sensor generates a positive pulse when
the corresponding sensor is activated and a negative pulse when
it is deactivated (the contrary if the Inv option is selected).
This is mostly useful to chain actions and to detect the loss of
contact of the distance motion actuator.
Notes: - Actuators are disabled at the start of the game; if you
want to detect the On-Off transition of an actuator
after it has been activated at least once, unselect the
Lvl and Inv options and use a NAND controller.
- Some actuators deactivates themselves immediately after
being activated. The sensor detects this situation as
an On-Off transition.
- The actuator name can be set through Python.