Commit Graph

23 Commits

Author SHA1 Message Date
Martijn Versteegh
6c774feba2 Mesh: Move UV layers to generic attributes
Currently the `MLoopUV` struct stores UV coordinates and flags related
to editing UV maps in the UV editor. This patch changes the coordinates
to use the generic 2D vector type, and moves the flags into three
separate boolean attributes. This follows the design in T95965, with
the ultimate intention of simplifying code and improving performance.

Importantly, the change allows exporters and renderers to use UVs
"touched" by geometry nodes, which only creates generic attributes.
It also allows geometry nodes to create "proper" UV maps from scratch,
though only with the Store Named Attribute node for now.

The new design considers any 2D vector attribute on the corner domain
to be a UV map. In the future, they might be distinguished from regular
2D vectors with attribute metadata, which may be helpful because they
are often interpolated differently.

Most of the code changes deal with passing around UV BMesh custom data
offsets and tracking the boolean "sublayers". The boolean layers are
use the following prefixes for attribute names: vert selection: `.vs.`,
edge selection: `.es.`, pinning: `.pn.`. Currently these are short to
avoid using up the maximum length of attribute names. To accommodate
for these 4 extra characters, the name length limit is enlarged to 68
bytes, while the maximum user settable name length is still 64 bytes.

Unfortunately Python/RNA API access to the UV flag data becomes slower.
Accessing the boolean layers directly is be better for performance in
general.

Like the other mesh SoA refactors, backward and forward compatibility
aren't affected, and won't be changed until 4.0. We pay for that by
making mesh reading and writing more expensive with conversions.

Resolves T85962

Differential Revision: https://developer.blender.org/D14365
2023-01-10 01:01:43 -05:00
1af62cb3bf Mesh: Move positions to a generic attribute
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.

Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).

This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.

One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.

**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.

The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.

Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.

The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.

**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.

**Future Improvements**
* Remove uses of "vert_coords" functions:
  * `BKE_mesh_vert_coords_alloc`
  * `BKE_mesh_vert_coords_get`
  * `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
  * Currently `reinterpret_cast` is used for those C-API functions

Differential Revision: https://developer.blender.org/D15982
2023-01-10 00:10:43 -05:00
1ea169d90e Mesh: Move loose edge flag to a separate cache
As part of T95966, this patch moves loose edge information out of the
flag on each edge and into a new lazily calculated cache in mesh
runtime data. The number of loose edges is also cached, so further
processing can be skipped completely when there are no loose edges.

Previously the `ME_LOOSEEDGE` flag was updated on a "best effort"
basis. In order to be sure that it was correct, you had to be sure
to call `BKE_mesh_calc_edges_loose` first. Now the loose edge tag
is always correct. It also doesn't have to be calculated eagerly
in various places like the screw modifier where the complexity
wasn't worth the theoretical performance benefit.

The patch also adds a function to eagerly set the number of loose
edges to zero to avoid building the cache. This is used by various
primitive nodes, with the goal of improving drawing performance.
This results in a few ms shaved off extracting draw data for some
large meshes in my tests.

In the Python API, `MeshEdge.is_loose` is no longer editable.
No built-in addons set the value anyway. The upside is that
addons can be sure the data is correct based on the mesh.

**Tests**
There is one test failure in the Python OBJ exporter: `export_obj_cube`
that happens because of existing incorrect versioning. Opening the
file in master, all the edges were set to "loose", which is fixed
by this patch.

Differential Revision: https://developer.blender.org/D16504
2022-11-18 16:05:06 -06:00
0d945fe20e Fix deprecation warnings about printf() on macOS
The new Xcode 14.1 brings the new Apple Clang compiler which
considers sprintf unsafe and geenrates deprecation warnings
suggesting to sue snprintf instead. This only happens for C++
code by default, and C code can still use sprintf without any
warning.

This changes does the following:

- Whenever is trivial replace sprintf() with BLI_snprintf.
- For all other cases use the newly introduced BLI_sprintf
  which is a wrapper around sprintf() but without warning.

There is a discouragement note in the BLI_sprintf comment to
suggest use of BLI_snprintf when the size is known.

Differential Revision: https://developer.blender.org/D16410
2022-11-08 12:01:01 +01:00
f68cfd6bb0 Cleanup: replace C-style casts with functional casts for numeric types 2022-09-25 20:17:08 +10:00
891949cbb4 Cleanup: use 'u' prefixed integer types for brevity & cast style
To use function style cast '(unsigned char)x' can't be replaced by
'unsigned char(x)'.
2022-09-25 18:26:27 +10:00
d593497421 Cleanup: Use C++ methods to retrieve attribute accessors
Replace `mesh_attributes`, `mesh_attributes_for_write` and the point
cloud versions with methods on the `Mesh` and `PointCloud` types.
This makes them friendlier to use and improves readability.

Differential Revision: https://developer.blender.org/D15907
2022-09-07 21:41:39 -05:00
be038b844c Cleanup: Tweak naming for recently added mesh accessors
Use `verts` instead of `vertices` and `polys` instead of `polygons`
in the API added in 05952aa94d. This aligns better with
existing naming where the shorter names are much more common.
2022-09-07 00:06:31 -05:00
05952aa94d Mesh: Remove redundant custom data pointers
For copy-on-write, we want to share attribute arrays between meshes
where possible. Mutable pointers like `Mesh.mvert` make that difficult
by making ownership vague. They also make code more complex by adding
redundancy.

The simplest solution is just removing them and retrieving layers from
`CustomData` as needed. Similar changes have already been applied to
curves and point clouds (e9f82d3dc7, 410a6efb74). Removing use of
the pointers generally makes code more obvious and more reusable.

Mesh data is now accessed with a C++ API (`Mesh::edges()` or
`Mesh::edges_for_write()`), and a C API (`BKE_mesh_edges(mesh)`).

The CoW changes this commit makes possible are described in T95845
and T95842, and started in D14139 and D14140. The change also simplifies
the ongoing mesh struct-of-array refactors from T95965.

**RNA/Python Access Performance**
Theoretically, accessing mesh elements with the RNA API may become
slower, since the layer needs to be found on every random access.
However, overhead is already high enough that this doesn't make a
noticible differenc, and performance is actually improved in some
cases. Random access can be up to 10% faster, but other situations
might be a bit slower. Generally using `foreach_get/set` are the best
way to improve performance. See the differential revision for more
discussion about Python performance.

Cycles has been updated to use raw pointers and the internal Blender
mesh types, mostly because there is no sense in having this overhead
when it's already compiled with Blender. In my tests this roughly
halves the Cycles mesh creation time (0.19s to 0.10s for a 1 million
face grid).

Differential Revision: https://developer.blender.org/D15488
2022-09-05 11:56:34 -05:00
f1c0249f34 Mesh: Move material indices to a generic attribute
This patch moves material indices from the mesh `MPoly` struct to a
generic integer attribute. The builtin material index was already
exposed in geometry nodes, but this makes it a "proper" attribute
accessible with Python and visible in the "Attributes" panel.

The goals of the refactor are code simplification and memory and
performance improvements, mainly because the attribute doesn't have
to be stored and processed if there are no materials. However, until
4.0, material indices will still be read and written in the old
format, meaning there may be a temporary increase in memory usage.

Further notes:
* Completely removing the `MPoly.mat_nr` after 4.0 may require
  changes to DNA or introducing a new `MPoly` type.
* Geometry nodes regression tests didn't look at material indices,
  so the change reveals a bug in the realize instances node that I fixed.
* Access to material indices from the RNA `MeshPolygon` type is slower
  with this patch. The `material_index` attribute can be used instead.
* Cycles is changed to read from the attribute instead.
* BMesh isn't changed in this patch. Theoretically it could be though,
  to save 2 bytes per face when less than two materials are used.
* Eventually we could use a 16 bit integer attribute type instead.

Ref T95967

Differential Revision: https://developer.blender.org/D15675
2022-08-31 09:09:01 -05:00
ea5bfedb49 Cleanup: Further use of const for retrieved custom data layers
Similar to cf69652618.
2022-05-14 18:57:52 +02:00
cf69652618 Cleanup: Use const when retrieving custom data layers
Knowing when layers are retrieved for write access will be essential
when adding proper copy-on-write support. This commit makes that
clearer by adding `const` where the retrieved data is not modified.

Ref T95842
2022-05-13 18:35:22 +02:00
03ec505fa5 Cleanup: Rename CD_MLOOPCOL to CD_PROP_BYTE_COLOR
The "PROP" in the name reflects its generic status, and removing
"LOOP" makes sense because it is no longer associated with just
mesh face corners. In general the goal is to remove extra semantic
meaning from the custom data types.
2022-04-20 09:10:10 -05:00
b0aaf6ff4a Fix T96294: Crash and error with shape key normal calculation
A mistake in the mesh normal refactor caused the wrong mesh to
be used when calculating normals with a shape key's deformation.

This commit fixes the normal calculation by using the correct mesh,
with just adjusted vertex positions, and calculating the results
directly into the result arrays when possible. This completely avoids
the need to make a local copy of the mesh, which makes sense,
since the only thing that changes is the vertex positions.

Differential Revision: https://developer.blender.org/D14317
2022-03-22 09:43:02 -05:00
c434782e3a File headers: SPDX License migration
Use a shorter/simpler license convention, stops the header taking so
much space.

Follow the SPDX license specification: https://spdx.org/licenses

- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile

While most of the source tree has been included

- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
  use different header conventions.

doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.

See P2788 for the script that automated these edits.

Reviewed By: brecht, mont29, sergey

Ref D14069
2022-02-11 09:14:36 +11:00
cfa53e0fbe Refactor: Move normals out of MVert, lazy calculation
As described in T91186, this commit moves mesh vertex normals into a
contiguous array of float vectors in a custom data layer, how face
normals are currently stored.

The main interface is documented in `BKE_mesh.h`. Vertex and face
normals are now calculated on-demand and cached, retrieved with an
"ensure" function. Since the logical state of a mesh is now "has
normals when necessary", they can be retrieved from a `const` mesh.

The goal is to use on-demand calculation for all derived data, but
leave room for eager calculation for performance purposes (modifier
evaluation is threaded, but viewport data generation is not).

**Benefits**
This moves us closer to a SoA approach rather than the current AoS
paradigm. Accessing a contiguous `float3` is much more efficient than
retrieving data from a larger struct. The memory requirements for
accessing only normals or vertex locations are smaller, and at the
cost of more memory usage for just normals, they now don't have to
be converted between float and short, which also simplifies code

In the future, the remaining items can be removed from `MVert`,
leaving only `float3`, which has similar benefits (see T93602).

Removing the combination of derived and original data makes it
conceptually simpler to only calculate normals when necessary.
This is especially important now that we have more opportunities
for temporary meshes in geometry nodes.

**Performance**
In addition to the theoretical future performance improvements by
making `MVert == float3`, I've done some basic performance testing
on this patch directly. The data is fairly rough, but it gives an idea
about where things stand generally.
 - Mesh line primitive 4m Verts: 1.16x faster (36 -> 31 ms),
   showing that accessing just `MVert` is now more efficient.
 - Spring Splash Screen: 1.03-1.06 -> 1.06-1.11 FPS, a very slight
   change that at least shows there is no regression.
 - Sprite Fright Snail Smoosh: 3.30-3.40 -> 3.42-3.50 FPS, a small
   but observable speedup.
 - Set Position Node with Scaled Normal: 1.36x faster (53 -> 39 ms),
   shows that using normals in geometry nodes is faster.
 - Normal Calculation 1.6m Vert Cube: 1.19x faster (25 -> 21 ms),
   shows that calculating normals is slightly faster now.
 - File Size of 1.6m Vert Cube: 1.03x smaller (214.7 -> 208.4 MB),
   Normals are not saved in files, which can help with large meshes.

As for memory usage, it may be slightly more in some cases, but
I didn't observe any difference in the production files I tested.

**Tests**
Some modifiers and cycles test results need to be updated with this
commit, for two reasons:
 - The subdivision surface modifier is not responsible for calculating
   normals anymore. In master, the modifier creates different normals
   than the result of the `Mesh` normal calculation, so this is a bug
   fix.
 - There are small differences in the results of some modifiers that
   use normals because they are not converted to and from `short`
   anymore.

**Future improvements**
 - Remove `ModifierTypeInfo::dependsOnNormals`. Code in each modifier
   already retrieves normals if they are needed anyway.
 - Copy normals as part of a better CoW system for attributes.
 - Make more areas use lazy instead of eager normal calculation.
 - Remove `BKE_mesh_normals_tag_dirty` in more places since that is
   now the default state of a new mesh.
 - Possibly apply a similar change to derived face corner normals.

Differential Revision: https://developer.blender.org/D12770
2022-01-13 14:38:25 -06:00
50f378e5c8 Cleanup: move public doc-strings into headers for 'io/collada'
Ref T92709
2021-12-09 22:25:45 +11:00
f1e4903854 Cleanup: full sentences in comments, improve comment formatting 2021-06-26 21:50:48 +10:00
16732def37 Cleanup: Clang-Tidy modernize-use-nullptr
Replace `NULL` with `nullptr` in C++ code.

No functional changes.
2020-11-06 18:08:25 +01:00
2abfcebb0e Cleanup: use C comments for descriptive text
Follow our code style guide by using C-comments for text descriptions.
2020-10-10 22:04:51 +11:00
6f985574b7 Cleanup: take includes out of 'extern "C"' blocks
Surrounding includes with an 'extern "C"' block is not necessary anymore.
Also that made it harder to add any C++ code to some headers, or include headers
that have "optional" C++ code like `MEM_guardedalloc.h`.

I tested compilation on linux and windows (and got help from @LazyDodo).
If this still breaks compilation due to some linker error, the header containing
the symbol in question is probably missing an 'extern "C"' block.

Differential Revision: https://developer.blender.org/D7653
2020-05-08 18:22:41 +02:00
2d1cce8331 Cleanup: make format after SortedIncludes change 2020-03-19 09:33:58 +01:00
eb522af4fe Cleanup: move Alembic, AVI, Collada, and USD to source/blender/io
This moves the `alembic`, `avi`, `collada`, and `usd` modules into a common
`io` directory.

This also cleans up some `#include "../../{somedir}/{somefile}.h"` by
adding `../../io/{somedir}` to `CMakeLists.txt` and then just using
`#include "{somefile}.h"`.

No functional changes.
2020-03-06 16:19:45 +01:00