`ED_GIZMO_CAGE2D_STYLE_CIRCLE` now draw circles. The previous `ED_GIZMO_CAGE2D_STYLE_CIRCLE`, which drew rectangles, is renamed to `ED_GIZMO_CAGE2D_STYLE_RECTANGLE`. The meaning of `ED_GIZMO_CAGE2D_STYLE_BOX` is now unclear and probably needs to be renamed too.
Ref T104280
Maniphest Tasks: T104280
Differential Revision: https://developer.blender.org/D17174
This patch adds support for compilation and execution of GLSL compute shaders. This, along with a few systematic changes and fixes, enable realtime compositor functionality with the Metal backend on macOS. A number of GLSL source modifications have been made to add the required level of type explicitness, allowing all compilations to succeed.
GLSL Compute shader compilation follows a similar path to Vertex/Fragment translation, with added support for shader atomics, shared memory blocks and barriers.
Texture flags have also been updated to ensure correct read/write specification for textures used within the compositor pipeline. GPU command submission changes have also been made in the high level path, when Metal is used, to address command buffer time-outs caused by certain expensive compute shaders.
Authored by Apple: Michael Parkin-White
Ref T96261
Ref T99210
Reviewed By: fclem
Maniphest Tasks: T99210, T96261
Differential Revision: https://developer.blender.org/D16990
Rewrite of the Workbench engine using C++ and the new Draw Manager API.
The new engine can be enabled in Blender `Preferences > Experimental > Workbench Next`.
After that, the engine can be selected in `Properties > Scene > Render Engine`.
When `Workbench Next` is the active engine, it also handles the `Solid` viewport mode rendering.
The rewrite aims to be functionally equivalent to the current Workbench engine, but it also includes some small fixes/tweaks:
- `In Front` rendered objects now work correctly with DoF and Shadows.
- The `Sampling > Viewport` setting is actually used when the viewport is in `Render Mode`.
- In `Texture` mode, textured materials also use the material properties. (Previously, only non textured materials would)
To do:
- Sculpt PBVH.
- Volume rendering.
- Hair rendering.
- Use the "no_geom" shader versions for shadow rendering.
- Decide the final API for custom visibility culling (Needed for shadows).
- Profile/optimize.
Known Issues:
- Matcaps are not loaded until they’re shown elsewhere. (e.g. when opening the `Viewort Shading` UI)
- Outlines are drawn between different materials of the same object. (Each material submesh has its own object handle)
Reviewed By: fclem
Maniphest Tasks: T101619
Differential Revision: https://developer.blender.org/D16826
Currently you can retrieve a mutable array from a const CustomData.
That makes code unsafe since the compiler can't check for correctness
itself. Fix that by introducing a separate function to retrieve mutable
arrays from CustomData. The new functions have the `_for_write`
suffix that make the code's intention clearer.
Because it makes retrieving write access an explicit step, this change
also makes proper copy-on-write possible for attributes.
Notes:
- The previous "duplicate referenced layer" functions are redundant
with retrieving layers with write access
- The custom data functions that give a specific index only have
`for_write` to simplify the API
Differential Revision: https://developer.blender.org/D14140
Currently the `MLoopUV` struct stores UV coordinates and flags related
to editing UV maps in the UV editor. This patch changes the coordinates
to use the generic 2D vector type, and moves the flags into three
separate boolean attributes. This follows the design in T95965, with
the ultimate intention of simplifying code and improving performance.
Importantly, the change allows exporters and renderers to use UVs
"touched" by geometry nodes, which only creates generic attributes.
It also allows geometry nodes to create "proper" UV maps from scratch,
though only with the Store Named Attribute node for now.
The new design considers any 2D vector attribute on the corner domain
to be a UV map. In the future, they might be distinguished from regular
2D vectors with attribute metadata, which may be helpful because they
are often interpolated differently.
Most of the code changes deal with passing around UV BMesh custom data
offsets and tracking the boolean "sublayers". The boolean layers are
use the following prefixes for attribute names: vert selection: `.vs.`,
edge selection: `.es.`, pinning: `.pn.`. Currently these are short to
avoid using up the maximum length of attribute names. To accommodate
for these 4 extra characters, the name length limit is enlarged to 68
bytes, while the maximum user settable name length is still 64 bytes.
Unfortunately Python/RNA API access to the UV flag data becomes slower.
Accessing the boolean layers directly is be better for performance in
general.
Like the other mesh SoA refactors, backward and forward compatibility
aren't affected, and won't be changed until 4.0. We pay for that by
making mesh reading and writing more expensive with conversions.
Resolves T85962
Differential Revision: https://developer.blender.org/D14365
**Changes**
As described in T93602, this patch removes all use of the `MVert`
struct, replacing it with a generic named attribute with the name
`"position"`, consistent with other geometry types.
Variable names have been changed from `verts` to `positions`, to align
with the attribute name and the more generic design (positions are not
vertices, they are just an attribute stored on the point domain).
This change is made possible by previous commits that moved all other
data out of `MVert` to runtime data or other generic attributes. What
remains is mostly a simple type change. Though, the type still shows up
859 times, so the patch is quite large.
One compromise is that now `CD_MASK_BAREMESH` now contains
`CD_PROP_FLOAT3`. With the general move towards generic attributes
over custom data types, we are removing use of these type masks anyway.
**Benefits**
The most obvious benefit is reduced memory usage and the benefits
that brings in memory-bound situations. `float3` is only 3 bytes, in
comparison to `MVert` which was 4. When there are millions of vertices
this starts to matter more.
The other benefits come from using a more generic type. Instead of
writing algorithms specifically for `MVert`, code can just use arrays
of vectors. This will allow eliminating many temporary arrays or
wrappers used to extract positions.
Many possible improvements aren't implemented in this patch, though
I did switch simplify or remove the process of creating temporary
position arrays in a few places.
The design clarity that "positions are just another attribute" brings
allows removing explicit copying of vertices in some procedural
operations-- they are just processed like most other attributes.
**Performance**
This touches so many areas that it's hard to benchmark exhaustively,
but I observed some areas as examples.
* The mesh line node with 4 million count was 1.5x (8ms to 12ms) faster.
* The Spring splash screen went from ~4.3 to ~4.5 fps.
* The subdivision surface modifier/node was slightly faster
RNA access through Python may be slightly slower, since now we need
a name lookup instead of just a custom data type lookup for each index.
**Future Improvements**
* Remove uses of "vert_coords" functions:
* `BKE_mesh_vert_coords_alloc`
* `BKE_mesh_vert_coords_get`
* `BKE_mesh_vert_coords_apply{_with_mat4}`
* Remove more hidden copying of positions
* General simplification now possible in many areas
* Convert more code to C++ to use `float3` instead of `float[3]`
* Currently `reinterpret_cast` is used for those C-API functions
Differential Revision: https://developer.blender.org/D15982
Required texture bytesize calculation for compacted data types was incorrectly calculated, resulting in an erroneous format conversion taking place instead of direct data upload.
Metal dummy buffer size also temporarily increased to address problematic cases where the bound buffer was too small for missing UBOs.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Maniphest Tasks: T96261
Differential Revision: https://developer.blender.org/D16904
(MacOS) only: In the System tab of the user preferences the user has the
ability to select a GPU backend that Blender will use. After changing
the GPU backend setting, the user has to restart Blender before the
setting is used.
It was added to start collecting feedback on the Metal backend without
using the command lines.
By default Blender will select OpenGL as backend. When Metal is selected
(via `--gpu-backend metal` or via user preferences) OpenGL will be used as
fallback when the platform isn't capable of running Metal.
- Support for non-contiguous shader resource bindings for all cases required by create-info
- Implement missing geometry shader alternative path for edit curve handle.
- Add support for non-float dummy textures to address all cases where default bindings may be required.
Authored by Apple: Michael Parkin-White
Ref T96261
Depends on D16721
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D16777
Attributes are unifying around a name-based API, and we would like to
be able to move away from CustomData in the future. This patch moves
the identification of active and fallback (render) color attributes
to strings on the mesh from flags on CustomDataLayer. This also
removes some ugliness used to retrieve these attributes and maintain
the active status.
The design is described more here: T98366
The patch keeps forward compatibility working until 4.0 with
the same method as the mesh struct of array refactors (T95965).
The strings are allowed to not correspond to an attribute, to allow
setting the active/default attribute independently of actually filling
its data. When applying a modifier, if the strings don't match an
attribute, they will be removed.
The realize instances / join node and join operator take the names from
the first / active input mesh. While other heuristics may be helpful
(and could be a future improvement), just using the first is simple
and predictable.
Differential Revision: https://developer.blender.org/D15169
PBVH draw code now builds coarse triangle index buffers
for multires. Note that the coarse grids can be at any
multires depth but is currently hardcoded to 1.
Compile each static shader using shaderc to Spir-V binaries.
The main goal is to make sure that the GLSL created using ShaderCreateInfo and able to compile to Spir-V.
For the second stage a correct pipeline needs to be created and some shader would need more
adjustments (push constants size).
With this patch future changes to GLSL sources can already be checked against vulkan, without the
backend finished.
Mechanism has been tested using MacOS and MoltenVK. For other OS, we should finetune CMake
files to find the right location to shaderc.
```
************************************************************
*** Build Mon 12 Dec 2022 11:08:07 CET
************************************************************
Shader Test compilation result: 463 / 463 passed (skipped 118 for compatibility reasons)
OpenGL backend shader compilation succeeded.
Shader Test compilation result: 529 / 529 passed (skipped 52 for compatibility reasons)
Vulkan backend shader compilation succeeded.
```
Reviewed By: fclem
Maniphest Tasks: T102760
Differential Revision: https://developer.blender.org/D16610
Texture usage flags can now be provided during texture creation specifying
the ways in which a texture can be used. This allows the GPU backends to
perform contextual optimizations which were not previously possible. This
includes enablement of hardware lossless compression which can result in
a 15%+ performance uplift for bandwidth-limited scenes on hardware such
as Apple-Silicon using Metal.
GPU_TEXTURE_USAGE_GENERAL can be used by default if usage is not known
ahead of time. Patch will also be relevant for the Vulkan backend.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D15967
Implementing non-geometry-shader path for rendering stencil shadows,
used by the workbench engine.
Patch also contains a few small modifications to Create-info to ensure
usage of gl_FragDepth is explicitly specified.
This is required for testing of the patch.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D16436
Implemented geometry shader alternative for rendering of UV edges in Metal, as geometry shaders are unsupported.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D16452
Porting conservative depth rendering to use non-geometry shader path for
Metal.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D16424
Additional mat3 constructors added, global variable namespace collisions
for uniform and object color avoided via re-name.
Metal vertex format compatibility added for shaders wherein vertex data
goes through a double-conversion and cannot be implicitly converted during
Metal vertex assembly e.g. bitmasks passed directly as unsigned type in
shader interface for certain shader interfaces.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D16433
Required by Metal backend for efficient shader compilation. EEVEE material
resource binding permutations now controlled via CreateInfo and selected
based on material options. Other existing CreateInfo's also modified to
ensure explicitness for depth-writing mode. Other missing bindings also
addressed to ensure full compliance with the Metal backend.
Authored by Apple: Michael Parkin-White
Ref T96261
Reviewed By: fclem
Differential Revision: https://developer.blender.org/D16243
To make GPU backends other than OpenGL work. Adds required pixel buffer and
fence objects to GPU module.
Authored by Apple: Michael Parkin-White
Ref T96261
Ref T92212
Reviewed By: fclem, brecht
Differential Revision: https://developer.blender.org/D16042
A utility function retrieved mesh arrays for every element after
05952aa94d which can be easily avoided. This was used when
building the GPU indices for sculpt mode drawing. In my tests this
saves 0.1ms per PBVH node. There may be very slight improvements
in line art and shrinkwrap as well.
This new inheritance behavior is more beneficial for the metal Backend.
Also change the default depth write behavior of shaders to be unchanged.
This makes fragment shader depth amendment more explicit.
This also add the missing depth_write for metal kernels.
Include the node name and parameter index in the variable name for easier debugging.
(Enabled for debug builds only)
Reviewed By: fclem, jbakker
Differential Revision: https://developer.blender.org/D16496
Ensure each graph material_function only evaluates the input links that are connected to it.
Differential Revision: https://developer.blender.org/D16425
This implements the base needed for supporting multiple view concurently
inside the same drawcall.
The view used by common macros and view related functions is indexed using
a global variable `drw_view_id` which can be set arbitrarly or read
from the `drw_ResourceID`.
This is needed for EEVEE-Next shadow but can be used for other purpose
in the future.
Note that a shader specialization is needed for it to work. `DRW_VIEW_LEN`
needs to be defined to the amount of view the shader will access.
The number of views contained in a `draw::View` is set at construction
time.
Note that the maximum number of object correctly drawn by the shaders
using multiple views will be lower than thoses who don't.
libdecor (for window decorations) was crashing on exit with the shader
builder, avoid the crash by calling the "background" system creation
function which doesn't initialize window management under Wayland.
libdecor (for window decorations) was crashing on exit with the shader
builder, avoid the crash by calling the "background" system creation
function which doesn't initialize window management under Wayland.
This patch moves the GLSL shaders and their infos to the compositor
module as decided by the EEVEE & Viewport module. This is a non
functional change.
Differential Revision: https://developer.blender.org/D16360
Reviewed By: Clement Foucault