Commit Graph

138 Commits

Author SHA1 Message Date
e6ca054590 Geometry Nodes: multi threaded field evaluation
This adds a new `ParallelMultiFunction` which wraps another multi-function
and evaluates it with multiple threads. The speeds up field evaluation
quite a bit (the effect is most noticeable when the number of evaluations
and the field is large).

There are still other single-threaded performance bottlenecks in field
evaluation that will need to be solved separately. Most notably here
is the process of copying the computed data into the position attribute
in the Set Position node.

Differential Revision: https://developer.blender.org/D12457
2021-09-15 11:02:39 +02:00
dee0b56b92 Cleanup: simplify resource scope methods
Previously, a debug name had to be passed to all methods
that added a resource to the `ResourceScope`. The idea was
that this would make it easier to find certain bugs. In reality
I never found this to be useful, and it was mostly annoying.
The thing is, something that is in a resource scope never leaks
(unless the resource scope is not destructed of course).

Removing the name parameter makes the structure easier to use.
2021-09-14 16:08:09 +02:00
fd60f6713a Functions: support optional outputs in multi-function
Sometimes not all outputs of a multi-function are required by the
caller. In those cases it would be a waste of compute resources
to calculate the unused values anyway. Now, the caller of a
multi-function can specify when a specific output is not used.
The called function can check if an output is unused and may
ignore it. Multi-functions can still computed unused outputs as
before if they don't want to check if a specific output is unused.

The multi-function procedure system has been updated to support
ignored outputs in call instructions. An ignored output just has no
variable assigned to it.

The field system has been updated to generate a multi-function
procedure where unused outputs are ignored.
2021-09-14 14:52:44 +02:00
b777df8080 Fix: fix equality operator for fields
Instead of comparing the referenced field node by pointer,
compare the nodes directly instead. This is important
because different field nodes might be the same semantically.
2021-09-13 13:09:18 +02:00
2aa7edbe6b Cleanup: spelling 2021-09-12 19:51:16 +10:00
4e78b89e48 Geometry Nodes: add field support for socket inspection
Since fields were committed to master, socket inspection did
not work correctly for all socket types anymore. Now the same
functionality as before is back. Furthermore, fields that depend
on some input will now show the inputs in the socket inspection.

I added support for evaluating constant fields more immediately.
This has the benefit that the same constant field is not evaluated
more than once. It also helps with making the field independent
of the multi-functions that it uses. We might still want to change
the ownership handling for the multi-functions of nodes a bit,
but that can be done separately.

Differential Revision: https://developer.blender.org/D12444
2021-09-11 13:05:20 +02:00
166c8be7ac Cleanup: use nullptr 2021-09-11 12:41:46 +02:00
aeeffb935e Functions: store cursors to previous instructions
Now an instruction knows the cursors where it is inserted instead
of just the instruction that references it. This has two benefits:
* An instruction knows when it is the entry instruction.
* The cursor can contain more information, e.g. if it is linked to the
  true or false branch of a branch instruction.

  This also simplifies updating the procedure in future optimization
  passes.
2021-09-11 11:43:59 +02:00
45c44a5b5b Fix compiler warnings about virtual functions but non-virtual destructor 2021-09-09 17:11:01 +02:00
bf47fb40fd Geometry Nodes: fields and anonymous attributes
This implements the initial core framework for fields and anonymous
attributes (also see T91274).

The new functionality is hidden behind the "Geometry Nodes Fields"
feature flag. When enabled in the user preferences, the following
new nodes become available: `Position`, `Index`, `Normal`,
`Set Position` and `Attribute Capture`.

Socket inspection has not been updated to work with fields yet.

Besides these changes at the user level, this patch contains the
ground work for:
* building and evaluating fields at run-time (`FN_fields.hh`) and
* creating and accessing anonymous attributes on geometry
  (`BKE_anonymous_attribute.h`).

For evaluating fields we use a new so called multi-function procedure
(`FN_multi_function_procedure.hh`). It allows composing multi-functions
in arbitrary ways and supports efficient evaluation as is required by
fields. See `FN_multi_function_procedure.hh` for more details on how
this evaluation mechanism can be used.

A new `AttributeIDRef` has been added which allows handling named
and anonymous attributes in the same way in many places.

Hans and I worked on this patch together.

Differential Revision: https://developer.blender.org/D12414
2021-09-09 12:54:20 +02:00
0081200812 Functions: remove multi-function network
The multi-function network system was able to compose multiple
multi-functions into a new one and to evaluate that efficiently.
This functionality was heavily used by the particle nodes prototype
a year ago. However, since then we only used multi-functions
without the need to compose them in geometry nodes.

The upcoming "fields" in geometry nodes will need a way to
compose multi-functions again. Unfortunately, the code removed
in this commit was not ideal for this different kind of function
composition. I've been working on an alternative that will be added
separately when it becomes needed.

I've had to update all the function nodes, because their interface
depended on the multi-function network data structure a bit.
The actual multi-function implementations are still the same though.
2021-08-20 13:14:39 +02:00
d217b34214 Functions: add utility methods to parameter builder 2021-08-20 11:48:31 +02:00
fd51b05a02 Functions: add clear method to vector array 2021-08-20 11:48:31 +02:00
8edb2222ae Cleanup: simplify subclassing CPPType
`CPPType` can wrap any C++ type so that code can work
with the wrapped type in a generic way. The goal of subclassing
`CPPType` is to provide additional methods for some types.
For example, the `CPPType` for `Array<int>` could have a `.element_type()`
method that returns the `CPPType` for `int`.
2021-08-02 12:44:17 +02:00
93eb460dd0 Cleanup: clang-format (re-run after v12 version bump) 2021-07-30 16:19:19 +10:00
828c66f393 Cleanup: spelling in comments 2021-07-26 12:32:42 +10:00
24a77745a4 Functions: add utility to create string from value of generic type 2021-07-05 13:02:16 +02:00
aa112dc77c Cleanup: spelling 2021-07-01 11:16:25 +10:00
7d281a4f7d Functions: improve CPPType
* Reduce code duplication.
* Give methods more standardized names (e.g. `move_to_initialized` -> `move_assign`).
* Support wrapping arbitrary C++ types, even those that e.g. are not copyable.
2021-06-28 13:16:32 +02:00
4b9ff3cd42 Cleanup: comment blocks, trailing space in comments 2021-06-24 15:59:34 +10:00
9cd2e80d5d Fix: wrong size check
This fixes a bad mistake by myself. Thanks Lukas Tönne for telling me.
2021-06-15 10:26:31 +02:00
e4ef8cbf7e Cleanup: add comment 2021-06-10 13:05:57 +02:00
Jeroen Bakker
cb8a6814fd Blenlib: Explicit Colors.
Colors are often thought of as being 4 values that make up that can make any color.
But that is of course too limited. In C we didn’t spend time to annotate what we meant
when using colors.

Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to
enforce annotating structures during compilation and can adds conversions between them using
function overloading and explicit constructors.

The storage structs can hold 4 channels (r, g, b and a).

Usage:

Convert a theme byte color to a linearrgb premultiplied.
```
ColorTheme4b theme_color;
ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color =
    BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha();
```

The API is structured to make most use of inlining. Most notable are space
conversions done via `BLI_color_convert_to*` functions.

- Conversions between spaces (theme <=> scene linear) should always be done by
  invoking the `BLI_color_convert_to*` methods.
- Encoding colors (compressing to store colors inside a less precision storage)
  should be done by invoking the `encode` and `decode` methods.
- Changing alpha association should be done by invoking `premultiply_alpha` or
  `unpremultiply_alpha` methods.

# Encoding.

Color encoding is used to store colors with less precision as in using `uint8_t` in
stead of `float`. This encoding is supported for `eSpace::SceneLinear`.
To make this clear to the developer the `eSpace::SceneLinearByteEncoded`
space is added.

# Precision

Colors can be stored using `uint8_t` or `float` colors. The conversion
between the two precisions are available as methods. (`to_4b` and
`to_4f`).

# Alpha conversion

Alpha conversion is only supported in SceneLinear space.

Extending:
- This file can be extended with `ColorHex/Hsl/Hsv` for different representations
  of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>`
- Add non RGB spaces/storages ColorXyz.

Reviewed By: JacquesLucke, brecht

Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:16:54 +02:00
00955cd31e Revert "Blenlib: Explicit Colors."
This reverts commit fd94e03344.
does not compile against latest master.
2021-05-25 17:03:54 +02:00
Jeroen Bakker
fd94e03344 Blenlib: Explicit Colors.
Colors are often thought of as being 4 values that make up that can make any color.
But that is of course too limited. In C we didn’t spend time to annotate what we meant
when using colors.

Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to
enforce annotating structures during compilation and can adds conversions between them using
function overloading and explicit constructors.

The storage structs can hold 4 channels (r, g, b and a).

Usage:

Convert a theme byte color to a linearrgb premultiplied.
```
ColorTheme4b theme_color;
ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color =
    BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha();
```

The API is structured to make most use of inlining. Most notable are space
conversions done via `BLI_color_convert_to*` functions.

- Conversions between spaces (theme <=> scene linear) should always be done by
  invoking the `BLI_color_convert_to*` methods.
- Encoding colors (compressing to store colors inside a less precision storage)
  should be done by invoking the `encode` and `decode` methods.
- Changing alpha association should be done by invoking `premultiply_alpha` or
  `unpremultiply_alpha` methods.

# Encoding.

Color encoding is used to store colors with less precision as in using `uint8_t` in
stead of `float`. This encoding is supported for `eSpace::SceneLinear`.
To make this clear to the developer the `eSpace::SceneLinearByteEncoded`
space is added.

# Precision

Colors can be stored using `uint8_t` or `float` colors. The conversion
between the two precisions are available as methods. (`to_4b` and
`to_4f`).

# Alpha conversion

Alpha conversion is only supported in SceneLinear space.

Extending:
- This file can be extended with `ColorHex/Hsl/Hsv` for different representations
  of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>`
- Add non RGB spaces/storages ColorXyz.

Reviewed By: JacquesLucke, brecht

Differential Revision: https://developer.blender.org/D10978
2021-05-25 17:01:26 +02:00
49cb30bb0c Cleanup: Fix inconsistent-missing-override warning
macOS Clang
2021-05-16 11:19:04 +05:30
c1c0b661c0 Cleanup: clang-format 2021-05-14 17:35:08 +10:00
01a614c699 Fix build after last commit
Part of a rename change in rBc5d38a2be8 was lost when committing.
2021-05-13 17:52:30 -05:00
c5d38a2be8 Functions: Expose set_all method for generic virtual arrays
This is very similar to rB5613c61275fe6 and rB0061150e4c90d, basically
just exposing a `VMutableArray` method to its generic counterpart. This
is quite important for curve point attributes to avoid a lookup for
every point when there are multiple splines.
2021-05-13 17:47:46 -05:00
522868001c Functions: simplify adding a single input to a multi-function
This is used by the upcoming new geometry nodes evaluator.
2021-05-13 13:23:53 +02:00
5613c61275 Functions: Add materialize methods for generic mutable virtual array
Similar to how `GVArray_For_VArray` implements `materialize_impl` to
forward the work to its non-generic virtual array, we can do the same
thing for the mutable version, `GVMutableArray_For_VMutableArray`.

This commit should have no visible changes, since as far as I can tell
the only user of this class does not implement special materialize
methods anyway.
2021-05-10 19:12:04 -05:00
0061150e4c Functions: support materialize virtual array to initialized span 2021-05-10 10:28:24 +02:00
3182844914 Fix: missing return 2021-04-30 13:11:49 +02:00
4225a18b35 Function: add method to create shallow copy of virtual array
Creating a shallow copy is sometimes useful to get a unique ptr
for a virtual array when one only has a reference. It shouldn't
be used usually, but sometimes its the fastest way to do correct
ownership handling.
2021-04-29 15:42:32 +02:00
4e10b196ac Functions: make copying virtual arrays to span more efficient
Sometimes functions expect a span instead of a virtual array.
If the virtual array is a span internally already, great. But if it is
not (e.g. the position attribute on a mesh), the elements have
to be copied over to a span.

This patch makes the copying process more efficient by giving
the compiler more opportunity for optimization.
2021-04-29 12:59:44 +02:00
908bb03630 Geometry Nodes: improve geometry nodes evaluator internal api
This is a first step towards T87620.
It should not have any functional changes.

Goals of this refactor:
* Move the evaluator out of `MOD_nodes.cc`. That makes it easier to
  improve it in isolation.
* Extract core input/out parameter management out of `GeoNodeExecParams`.
  Managing this is the responsibility of the evaluator. This separation of
  concerns will be useful once we have lazy evaluation of certain inputs/outputs.

Differential Revision: https://developer.blender.org/D11085
2021-04-27 13:03:40 +02:00
d5309bf4cf Functions: add slice method for generic spans 2021-04-21 16:59:22 +02:00
5cf6f570c6 Geometry Nodes: use virtual arrays in internal attribute api
A virtual array is a data structure that is similar to a normal array
in that its elements can be accessed by an index. However, a virtual
array does not have to be a contiguous array internally. Instead, its
elements can be layed out arbitrarily while element access happens
through a virtual function call. However, the virtual array data
structures are designed so that the virtual function call can be avoided
in cases where it could become a bottleneck.

Most commonly, a virtual array is backed by an actual array/span or
is a single value internally, that is the same for every index.
Besides those, there are many more specialized virtual arrays like the
ones that provides vertex positions based on the `MVert` struct or
vertex group weights.

Not all attributes used by geometry nodes are stored in simple contiguous
arrays. To provide uniform access to all kinds of attributes, the attribute
API has to provide virtual array functionality that hides the implementation
details of attributes.

Before this refactor, the attribute API provided its own virtual array
implementation as part of the `ReadAttribute` and `WriteAttribute` types.
That resulted in unnecessary code duplication with the virtual array system.
Even worse, it bound many algorithms used by geometry nodes to the specifics
of the attribute API, even though they could also use different data sources
(such as data from sockets, default values, later results of expressions, ...).

This refactor removes the `ReadAttribute` and `WriteAttribute` types and
replaces them with `GVArray` and `GVMutableArray` respectively. The `GV`
stands for "generic virtual". The "generic" means that the data type contained
in those virtual arrays is only known at run-time. There are the corresponding
statically typed types `VArray<T>` and `VMutableArray<T>` as well.

No regressions are expected from this refactor. It does come with one
improvement for users. The attribute API can convert the data type
on write now. This is especially useful when writing to builtin attributes
like `material_index` with e.g. the Attribute Math node (which usually
just writes to float attributes, while `material_index` is an integer attribute).

Differential Revision: https://developer.blender.org/D10994
2021-04-17 16:41:39 +02:00
3608891282 Functions: extend virtual array functionality
This adds support for mutable virtual arrays and provides many utilities
for creating virtual arrays for various kinds of data. This commit is
preparation for D10994.
2021-04-17 15:13:20 +02:00
b5c2c3aba8 BLI: rename resource collector to resource scope
Differential Revision: https://developer.blender.org/D10857
2021-04-01 15:55:23 +02:00
9289c358fb Cleanup: use parentheses in macro 2021-03-28 12:50:14 +02:00
1d7adb6d8a BLI: simplify using DefaultHash 2021-03-25 16:01:41 +01:00
21268ad20a Functions: devirtualize virtual arrays in simple functions
In some multi-functions (such as a simple add function), the virtual method
call overhead to access array elements adds significant overhead. For these
simple functions it makes sense to generate optimized versions for different
types of virtual arrays. This is done by giving the compiler all the information
it needs to devirtualize virtual arrays.

In my benchmark this speeds up processing a lot of data with small function 2-3x.

This devirtualization should not be done for larger functions, because it increases
compile time and binary size, while providing a negilible performance benefit.
2021-03-22 17:06:27 +01:00
3e44221b57 Fix build error on macOS/clang 2021-03-22 16:05:10 +01:00
01b6c4b32b Functions: make multi functions smaller and cheaper to construct in many cases
Previously, the signature of a `MultiFunction` was always embedded into the function.
There are two issues with that. First, `MFSignature` is relatively large, because it contains
multiple strings and vectors. Secondly, constructing it can add overhead that should not
be necessary, because often the same signature can be reused.

The solution is to only keep a pointer to a signature in `MultiFunction` that is set during
construction. Child classes are responsible for making sure that the signature lives
long enough. In most cases, the signature is either embedded into the child class or
it is allocated statically (and is only created once).
2021-03-22 12:01:07 +01:00
54bbaa26de Cleanup: compile errors on macos 2021-03-21 19:49:29 +01:00
4fe8d0419c Functions: refactor virtual array data structures
When a function is executed for many elements (e.g. per point) it is often the case
that some parameters are different for every element and other parameters are
the same (there are some more less common cases). To simplify writing such
functions one can use a "virtual array". This is a data structure that has a value
for every index, but might not be stored as an actual array internally. Instead, it
might be just a single value or is computed on the fly. There are various tradeoffs
involved when using this data structure which are mentioned in `BLI_virtual_array.hh`.
It is called "virtual", because it uses inheritance and virtual methods.

Furthermore, there is a new virtual vector array data structure, which is an array
of vectors. Both these types have corresponding generic variants, which can be used
when the data type is not known at compile time. This is typically the case when
building a somewhat generic execution system. The function system used these virtual
data structures before, but now they are more versatile.

I've done this refactor in preparation for the attribute processor and other features of
geometry nodes. I moved the typed virtual arrays to blenlib, so that they can be used
independent of the function system.

One open question for me is whether all the generic data structures (and `CPPType`)
should be moved to blenlib as well. They are well isolated and don't really contain
any business logic. That can be done later if necessary.
2021-03-21 19:33:13 +01:00
2ddbb2c64f Functions: move CPPType creation related code to separate header
This does not need to be included everywhere, because it is only
needed in very few translation units that actually define CPPType's.
2021-03-21 15:33:30 +01:00
6d97f9a5c1 Cleanup: use static local variables 2021-03-21 14:00:40 +11:00
Leon Leno
e12ad2bce0 Geometry Nodes: support Vector Rotate node
Differential Revision: https://developer.blender.org/D10410
2021-03-08 11:37:37 +01:00