This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenkernel/intern/shrinkwrap.c
Campbell Barton e492fad130 shrink-wrap constraint, improve and remove some limitations.
- ability to change the space the axis is projected in (so you can choose worldspace or -space, was always local-space before).
- support projecting on a negative axis, without this some very simple clamping is not possible if the direction happened not to be positive.
- add distance limit (same as modifier), without this single meshes surrounding an object would make the constraint impossible to use in some cases (it would snap to the wrong side).

note: this removes the ability to project on multiple axes at once but this option only added up directions and didnt project on multiple axes as you might expect.
2013-09-07 12:59:16 +00:00

595 lines
18 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Andr Pinto
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/shrinkwrap.c
* \ingroup bke
*/
#include <string.h>
#include <float.h>
#include <math.h>
#include <memory.h>
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include "DNA_object_types.h"
#include "DNA_modifier_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BKE_shrinkwrap.h"
#include "BKE_DerivedMesh.h"
#include "BKE_lattice.h"
#include "BKE_deform.h"
#include "BKE_mesh.h"
#include "BKE_subsurf.h"
#include "BKE_mesh.h"
#include "BKE_editmesh.h"
/* for timing... */
#if 0
# include "PIL_time.h"
#else
# define TIMEIT_BENCH(expr, id) (expr)
#endif
/* Util macros */
#define OUT_OF_MEMORY() ((void)printf("Shrinkwrap: Out of memory\n"))
/* get derived mesh */
/* TODO is anyfunction that does this? returning the derivedFinal without we caring if its in edit mode or not? */
DerivedMesh *object_get_derived_final(Object *ob)
{
Mesh *me = ob->data;
BMEditMesh *em = me->edit_btmesh;
if (em) {
DerivedMesh *dm = em->derivedFinal;
return dm;
}
return ob->derivedFinal;
}
/* Space transform */
void space_transform_from_matrixs(SpaceTransform *data, float local[4][4], float target[4][4])
{
float itarget[4][4];
invert_m4_m4(itarget, target);
mul_m4_m4m4(data->local2target, itarget, local);
invert_m4_m4(data->target2local, data->local2target);
}
void space_transform_apply(const SpaceTransform *data, float co[3])
{
mul_v3_m4v3(co, ((SpaceTransform *)data)->local2target, co);
}
void space_transform_invert(const SpaceTransform *data, float co[3])
{
mul_v3_m4v3(co, ((SpaceTransform *)data)->target2local, co);
}
static void space_transform_apply_normal(const SpaceTransform *data, float no[3])
{
mul_mat3_m4_v3(((SpaceTransform *)data)->local2target, no);
normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
}
static void space_transform_invert_normal(const SpaceTransform *data, float no[3])
{
mul_mat3_m4_v3(((SpaceTransform *)data)->target2local, no);
normalize_v3(no); /* TODO: could we just determine de scale value from the matrix? */
}
/*
* Shrinkwrap to the nearest vertex
*
* it builds a kdtree of vertexs we can attach to and then
* for each vertex performs a nearest vertex search on the tree
*/
static void shrinkwrap_calc_nearest_vertex(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
TIMEIT_BENCH(bvhtree_from_mesh_verts(&treeData, calc->target, 0.0, 2, 6), bvhtree_verts);
if (treeData.tree == NULL) {
OUT_OF_MEMORY();
return;
}
/* Setup nearest */
nearest.index = -1;
nearest.dist = FLT_MAX;
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(treeData,calc) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) {
continue;
}
/* Convert the vertex to tree coordinates */
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
/* Use local proximity heuristics (to reduce the nearest search)
*
* If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
* so we can initiate the "nearest.dist" with the expected value to that last hit.
* This will lead in prunning of the search tree. */
if (nearest.index != -1)
nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
else
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
/* Found the nearest vertex */
if (nearest.index != -1) {
/* Adjusting the vertex weight,
* so that after interpolating it keeps a certain distance from the nearest position */
if (nearest.dist > FLT_EPSILON) {
const float dist = sqrtf(nearest.dist);
weight *= (dist - calc->keepDist) / dist;
}
/* Convert the coordinates back to mesh coordinates */
copy_v3_v3(tmp_co, nearest.co);
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); /* linear interpolation */
}
}
free_bvhtree_from_mesh(&treeData);
}
/*
* This function raycast a single vertex and updates the hit if the "hit" is considered valid.
* Returns TRUE if "hit" was updated.
* Opts control whether an hit is valid or not
* Supported options are:
* MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE (front faces hits are ignored)
* MOD_SHRINKWRAP_CULL_TARGET_BACKFACE (back faces hits are ignored)
*/
int BKE_shrinkwrap_project_normal(char options, const float vert[3],
const float dir[3], const SpaceTransform *transf,
BVHTree *tree, BVHTreeRayHit *hit,
BVHTree_RayCastCallback callback, void *userdata)
{
/* don't use this because this dist value could be incompatible
* this value used by the callback for comparing prev/new dist values.
* also, at the moment there is no need to have a corrected 'dist' value */
// #define USE_DIST_CORRECT
float tmp_co[3], tmp_no[3];
const float *co, *no;
BVHTreeRayHit hit_tmp;
/* Copy from hit (we need to convert hit rays from one space coordinates to the other */
memcpy(&hit_tmp, hit, sizeof(hit_tmp));
/* Apply space transform (TODO readjust dist) */
if (transf) {
copy_v3_v3(tmp_co, vert);
space_transform_apply(transf, tmp_co);
co = tmp_co;
copy_v3_v3(tmp_no, dir);
space_transform_apply_normal(transf, tmp_no);
no = tmp_no;
#ifdef USE_DIST_CORRECT
hit_tmp.dist *= mat4_to_scale(((SpaceTransform *)transf)->local2target);
#endif
}
else {
co = vert;
no = dir;
}
hit_tmp.index = -1;
BLI_bvhtree_ray_cast(tree, co, no, 0.0f, &hit_tmp, callback, userdata);
if (hit_tmp.index != -1) {
/* invert the normal first so face culling works on rotated objects */
if (transf) {
space_transform_invert_normal(transf, hit_tmp.no);
}
if (options & (MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE | MOD_SHRINKWRAP_CULL_TARGET_BACKFACE)) {
/* apply backface */
const float dot = dot_v3v3(dir, hit_tmp.no);
if (((options & MOD_SHRINKWRAP_CULL_TARGET_FRONTFACE) && dot <= 0.0f) ||
((options & MOD_SHRINKWRAP_CULL_TARGET_BACKFACE) && dot >= 0.0f))
{
return FALSE; /* Ignore hit */
}
}
if (transf) {
/* Inverting space transform (TODO make coeherent with the initial dist readjust) */
space_transform_invert(transf, hit_tmp.co);
#ifdef USE_DIST_CORRECT
hit_tmp.dist = len_v3v3(vert, hit_tmp.co);
#endif
}
BLI_assert(hit_tmp.dist <= hit->dist);
memcpy(hit, &hit_tmp, sizeof(hit_tmp));
return TRUE;
}
return FALSE;
}
static void shrinkwrap_calc_normal_projection(ShrinkwrapCalcData *calc)
{
int i;
/* Options about projection direction */
const char use_normal = calc->smd->shrinkOpts;
const float proj_limit_squared = calc->smd->projLimit * calc->smd->projLimit;
float proj_axis[3] = {0.0f, 0.0f, 0.0f};
/* Raycast and tree stuff */
/** \note 'hit.dist' is kept in the targets space, this is only used
* for finding the best hit, to get the real dist,
* measure the len_v3v3() from the input coord to hit.co */
BVHTreeRayHit hit;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
/* auxiliary target */
DerivedMesh *auxMesh = NULL;
BVHTreeFromMesh auxData = NULL_BVHTreeFromMesh;
SpaceTransform local2aux;
/* If the user doesn't allows to project in any direction of projection axis
* then theres nothing todo. */
if ((use_normal & (MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR | MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR)) == 0)
return;
/* Prepare data to retrieve the direction in which we should project each vertex */
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
if (calc->vert == NULL) return;
}
else {
/* The code supports any axis that is a combination of X,Y,Z
* although currently UI only allows to set the 3 different axis */
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_X_AXIS) proj_axis[0] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Y_AXIS) proj_axis[1] = 1.0f;
if (calc->smd->projAxis & MOD_SHRINKWRAP_PROJECT_OVER_Z_AXIS) proj_axis[2] = 1.0f;
normalize_v3(proj_axis);
/* Invalid projection direction */
if (len_squared_v3(proj_axis) < FLT_EPSILON) {
return;
}
}
if (calc->smd->auxTarget) {
auxMesh = object_get_derived_final(calc->smd->auxTarget);
if (!auxMesh)
return;
SPACE_TRANSFORM_SETUP(&local2aux, calc->ob, calc->smd->auxTarget);
}
/* After sucessufuly build the trees, start projection vertexs */
if (bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 4, 6) &&
(auxMesh == NULL || bvhtree_from_mesh_faces(&auxData, auxMesh, 0.0, 4, 6)))
{
#ifndef __APPLE__
#pragma omp parallel for private(i,hit) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3], tmp_no[3];
const float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) {
continue;
}
if (calc->vert) {
/* calc->vert contains verts from derivedMesh */
/* this coordinated are deformed by vertexCos only for normal projection (to get correct normals) */
/* for other cases calc->varts contains undeformed coordinates and vertexCos should be used */
if (calc->smd->projAxis == MOD_SHRINKWRAP_PROJECT_OVER_NORMAL) {
copy_v3_v3(tmp_co, calc->vert[i].co);
normal_short_to_float_v3(tmp_no, calc->vert[i].no);
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
}
else {
copy_v3_v3(tmp_co, co);
copy_v3_v3(tmp_no, proj_axis);
}
hit.index = -1;
hit.dist = 10000.0f; /* TODO: we should use FLT_MAX here, but sweepsphere code isn't prepared for that */
/* Project over positive direction of axis */
if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_POS_DIR) {
if (auxData.tree) {
BKE_shrinkwrap_project_normal(0, tmp_co, tmp_no,
&local2aux, auxData.tree, &hit,
auxData.raycast_callback, &auxData);
}
BKE_shrinkwrap_project_normal(calc->smd->shrinkOpts, tmp_co, tmp_no,
&calc->local2target, treeData.tree, &hit,
treeData.raycast_callback, &treeData);
}
/* Project over negative direction of axis */
if (use_normal & MOD_SHRINKWRAP_PROJECT_ALLOW_NEG_DIR) {
float inv_no[3];
negate_v3_v3(inv_no, tmp_no);
if (auxData.tree) {
BKE_shrinkwrap_project_normal(0, tmp_co, inv_no,
&local2aux, auxData.tree, &hit,
auxData.raycast_callback, &auxData);
}
BKE_shrinkwrap_project_normal(calc->smd->shrinkOpts, tmp_co, inv_no,
&calc->local2target, treeData.tree, &hit,
treeData.raycast_callback, &treeData);
}
/* don't set the initial dist (which is more efficient),
* because its calculated in the targets space, we want the dist in our own space */
if (proj_limit_squared != 0.0f) {
if (len_squared_v3v3(hit.co, co) > proj_limit_squared) {
hit.index = -1;
}
}
if (hit.index != -1) {
madd_v3_v3v3fl(hit.co, hit.co, tmp_no, calc->keepDist);
interp_v3_v3v3(co, co, hit.co, weight);
}
}
}
/* free data structures */
free_bvhtree_from_mesh(&treeData);
free_bvhtree_from_mesh(&auxData);
}
/*
* Shrinkwrap moving vertexs to the nearest surface point on the target
*
* it builds a BVHTree from the target mesh and then performs a
* NN matches for each vertex
*/
static void shrinkwrap_calc_nearest_surface_point(ShrinkwrapCalcData *calc)
{
int i;
BVHTreeFromMesh treeData = NULL_BVHTreeFromMesh;
BVHTreeNearest nearest = NULL_BVHTreeNearest;
/* Create a bvh-tree of the given target */
bvhtree_from_mesh_faces(&treeData, calc->target, 0.0, 2, 6);
if (treeData.tree == NULL) {
OUT_OF_MEMORY();
return;
}
/* Setup nearest */
nearest.index = -1;
nearest.dist = FLT_MAX;
/* Find the nearest vertex */
#ifndef __APPLE__
#pragma omp parallel for default(none) private(i) firstprivate(nearest) shared(calc,treeData) schedule(static)
#endif
for (i = 0; i < calc->numVerts; ++i) {
float *co = calc->vertexCos[i];
float tmp_co[3];
float weight = defvert_array_find_weight_safe(calc->dvert, i, calc->vgroup);
if (weight == 0.0f) continue;
/* Convert the vertex to tree coordinates */
if (calc->vert) {
copy_v3_v3(tmp_co, calc->vert[i].co);
}
else {
copy_v3_v3(tmp_co, co);
}
space_transform_apply(&calc->local2target, tmp_co);
/* Use local proximity heuristics (to reduce the nearest search)
*
* If we already had an hit before.. we assume this vertex is going to have a close hit to that other vertex
* so we can initiate the "nearest.dist" with the expected value to that last hit.
* This will lead in prunning of the search tree. */
if (nearest.index != -1)
nearest.dist = len_squared_v3v3(tmp_co, nearest.co);
else
nearest.dist = FLT_MAX;
BLI_bvhtree_find_nearest(treeData.tree, tmp_co, &nearest, treeData.nearest_callback, &treeData);
/* Found the nearest vertex */
if (nearest.index != -1) {
if (calc->smd->shrinkOpts & MOD_SHRINKWRAP_KEEP_ABOVE_SURFACE) {
/* Make the vertex stay on the front side of the face */
madd_v3_v3v3fl(tmp_co, nearest.co, nearest.no, calc->keepDist);
}
else {
/* Adjusting the vertex weight,
* so that after interpolating it keeps a certain distance from the nearest position */
float dist = sasqrt(nearest.dist);
if (dist > FLT_EPSILON) {
/* linear interpolation */
interp_v3_v3v3(tmp_co, tmp_co, nearest.co, (dist - calc->keepDist) / dist);
}
else {
copy_v3_v3(tmp_co, nearest.co);
}
}
/* Convert the coordinates back to mesh coordinates */
space_transform_invert(&calc->local2target, tmp_co);
interp_v3_v3v3(co, co, tmp_co, weight); /* linear interpolation */
}
}
free_bvhtree_from_mesh(&treeData);
}
/* Main shrinkwrap function */
void shrinkwrapModifier_deform(ShrinkwrapModifierData *smd, Object *ob, DerivedMesh *dm,
float (*vertexCos)[3], int numVerts)
{
DerivedMesh *ss_mesh = NULL;
ShrinkwrapCalcData calc = NULL_ShrinkwrapCalcData;
/* remove loop dependencies on derived meshs (TODO should this be done elsewhere?) */
if (smd->target == ob) smd->target = NULL;
if (smd->auxTarget == ob) smd->auxTarget = NULL;
/* Configure Shrinkwrap calc data */
calc.smd = smd;
calc.ob = ob;
calc.numVerts = numVerts;
calc.vertexCos = vertexCos;
/* DeformVertex */
calc.vgroup = defgroup_name_index(calc.ob, calc.smd->vgroup_name);
if (dm) {
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
}
else if (calc.ob->type == OB_LATTICE) {
calc.dvert = BKE_lattice_deform_verts_get(calc.ob);
}
if (smd->target) {
calc.target = object_get_derived_final(smd->target);
/* TODO there might be several "bugs" on non-uniform scales matrixs
* because it will no longer be nearest surface, not sphere projection
* because space has been deformed */
SPACE_TRANSFORM_SETUP(&calc.local2target, ob, smd->target);
/* TODO: smd->keepDist is in global units.. must change to local */
calc.keepDist = smd->keepDist;
}
calc.vgroup = defgroup_name_index(calc.ob, smd->vgroup_name);
if (dm != NULL && smd->shrinkType == MOD_SHRINKWRAP_PROJECT) {
/* Setup arrays to get vertexs positions, normals and deform weights */
calc.vert = dm->getVertDataArray(dm, CD_MVERT);
calc.dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
/* Using vertexs positions/normals as if a subsurface was applied */
if (smd->subsurfLevels) {
SubsurfModifierData ssmd = {{NULL}};
ssmd.subdivType = ME_CC_SUBSURF; /* catmull clark */
ssmd.levels = smd->subsurfLevels; /* levels */
ss_mesh = subsurf_make_derived_from_derived(dm, &ssmd, NULL, (ob->mode & OB_MODE_EDIT) ? SUBSURF_IN_EDIT_MODE : 0);
if (ss_mesh) {
calc.vert = ss_mesh->getVertDataArray(ss_mesh, CD_MVERT);
if (calc.vert) {
/* TRICKY: this code assumes subsurface will have the transformed original vertices
* in their original order at the end of the vert array. */
calc.vert = calc.vert + ss_mesh->getNumVerts(ss_mesh) - dm->getNumVerts(dm);
}
}
/* Just to make sure we are not leaving any memory behind */
assert(ssmd.emCache == NULL);
assert(ssmd.mCache == NULL);
}
}
/* Projecting target defined - lets work! */
if (calc.target) {
switch (smd->shrinkType) {
case MOD_SHRINKWRAP_NEAREST_SURFACE:
TIMEIT_BENCH(shrinkwrap_calc_nearest_surface_point(&calc), deform_surface);
break;
case MOD_SHRINKWRAP_PROJECT:
TIMEIT_BENCH(shrinkwrap_calc_normal_projection(&calc), deform_project);
break;
case MOD_SHRINKWRAP_NEAREST_VERTEX:
TIMEIT_BENCH(shrinkwrap_calc_nearest_vertex(&calc), deform_vertex);
break;
}
}
/* free memory */
if (ss_mesh)
ss_mesh->release(ss_mesh);
}