This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/editors/animation/keyframes_general.c
Julian Eisel 65166e145b Cleanup: Remove scene frame macros (CFRA et al.)
Removes the following macros for scene/render frame values:
- `CFRA`
- `SUBFRA`
- `SFRA`
- `EFRA`

These macros don't add much, other than saving a few characters when typing.
It's not immediately clear what they refer to, they just hide what they
actually access. Just be explicit and clear about that.
Plus these macros gave read and write access to the variables, so eyesores like
this would be done (eyesore because it looks like assigning to a constant):
```
CFRA = some_frame_nbr;
```

Reviewed By: sergey

Differential Revision: https://developer.blender.org/D15311
2022-06-30 18:38:44 +02:00

1340 lines
40 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2008 Blender Foundation. All rights reserved. */
/** \file
* \ingroup edanimation
*/
#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_string_utils.h"
#include "BLI_utildefines.h"
#include "DNA_anim_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "BKE_action.h"
#include "BKE_curve.h"
#include "BKE_fcurve.h"
#include "BKE_main.h"
#include "BKE_report.h"
#include "RNA_access.h"
#include "RNA_enum_types.h"
#include "ED_anim_api.h"
#include "ED_keyframes_edit.h"
#include "ED_keyframing.h"
/* This file contains code for various keyframe-editing tools which are 'destructive'
* (i.e. they will modify the order of the keyframes, and change the size of the array).
* While some of these tools may eventually be moved out into blenkernel, for now, it is
* fine to have these calls here.
*
* There are also a few tools here which cannot be easily coded for in the other system (yet).
* These may also be moved around at some point, but for now, they are best added here.
*
* - Joshua Leung, Dec 2008
*/
/* **************************************************** */
void delete_fcurve_key(FCurve *fcu, int index, bool do_recalc)
{
/* sanity check */
if (fcu == NULL) {
return;
}
/* verify the index:
* 1) cannot be greater than the number of available keyframes
* 2) negative indices are for specifying a value from the end of the array
*/
if (abs(index) >= fcu->totvert) {
return;
}
if (index < 0) {
index += fcu->totvert;
}
/* Delete this keyframe */
memmove(
&fcu->bezt[index], &fcu->bezt[index + 1], sizeof(BezTriple) * (fcu->totvert - index - 1));
fcu->totvert--;
if (fcu->totvert == 0) {
MEM_SAFE_FREE(fcu->bezt);
}
/* recalc handles - only if it won't cause problems */
if (do_recalc) {
calchandles_fcurve(fcu);
}
}
bool delete_fcurve_keys(FCurve *fcu)
{
bool changed = false;
if (fcu->bezt == NULL) { /* ignore baked curves */
return false;
}
/* Delete selected BezTriples */
for (int i = 0; i < fcu->totvert; i++) {
if (fcu->bezt[i].f2 & SELECT) {
if (i == fcu->active_keyframe_index) {
BKE_fcurve_active_keyframe_set(fcu, NULL);
}
memmove(&fcu->bezt[i], &fcu->bezt[i + 1], sizeof(BezTriple) * (fcu->totvert - i - 1));
fcu->totvert--;
i--;
changed = true;
}
}
/* Free the array of BezTriples if there are not keyframes */
if (fcu->totvert == 0) {
clear_fcurve_keys(fcu);
}
return changed;
}
void clear_fcurve_keys(FCurve *fcu)
{
MEM_SAFE_FREE(fcu->bezt);
fcu->totvert = 0;
}
/* ---------------- */
bool duplicate_fcurve_keys(FCurve *fcu)
{
bool changed = false;
/* this can only work when there is an F-Curve, and also when there are some BezTriples */
if (ELEM(NULL, fcu, fcu->bezt)) {
return changed;
}
for (int i = 0; i < fcu->totvert; i++) {
/* If a key is selected */
if (fcu->bezt[i].f2 & SELECT) {
/* Expand the list */
BezTriple *newbezt = MEM_callocN(sizeof(BezTriple) * (fcu->totvert + 1), "beztriple");
memcpy(newbezt, fcu->bezt, sizeof(BezTriple) * (i + 1));
memcpy(newbezt + i + 1, fcu->bezt + i, sizeof(BezTriple));
memcpy(newbezt + i + 2, fcu->bezt + i + 1, sizeof(BezTriple) * (fcu->totvert - (i + 1)));
fcu->totvert++;
changed = true;
/* reassign pointers... (free old, and add new) */
MEM_freeN(fcu->bezt);
fcu->bezt = newbezt;
/* Unselect the current key */
BEZT_DESEL_ALL(&fcu->bezt[i]);
i++;
/* Select the copied key */
BEZT_SEL_ALL(&fcu->bezt[i]);
}
}
return changed;
}
/* **************************************************** */
/* Various Tools */
void clean_fcurve(struct bAnimContext *ac, bAnimListElem *ale, float thresh, bool cleardefault)
{
FCurve *fcu = (FCurve *)ale->key_data;
BezTriple *old_bezts, *bezt, *beztn;
BezTriple *lastb;
int totCount, i;
/* Check if any points. */
if ((fcu == NULL) || (fcu->bezt == NULL) || (fcu->totvert == 0) ||
(!cleardefault && fcu->totvert == 1)) {
return;
}
/* make a copy of the old BezTriples, and clear F-Curve */
old_bezts = fcu->bezt;
totCount = fcu->totvert;
fcu->bezt = NULL;
fcu->totvert = 0;
/* now insert first keyframe, as it should be ok */
bezt = old_bezts;
insert_bezt_fcurve(fcu, bezt, 0);
if (!(bezt->f2 & SELECT)) {
lastb = fcu->bezt;
lastb->f1 = lastb->f2 = lastb->f3 = 0;
}
/* Loop through BezTriples, comparing them. Skip any that do
* not fit the criteria for "ok" points.
*/
for (i = 1; i < totCount; i++) {
float prev[2], cur[2], next[2];
/* get BezTriples and their values */
if (i < (totCount - 1)) {
beztn = (old_bezts + (i + 1));
next[0] = beztn->vec[1][0];
next[1] = beztn->vec[1][1];
}
else {
beztn = NULL;
next[0] = next[1] = 0.0f;
}
lastb = (fcu->bezt + (fcu->totvert - 1));
bezt = (old_bezts + i);
/* get references for quicker access */
prev[0] = lastb->vec[1][0];
prev[1] = lastb->vec[1][1];
cur[0] = bezt->vec[1][0];
cur[1] = bezt->vec[1][1];
if (!(bezt->f2 & SELECT)) {
insert_bezt_fcurve(fcu, bezt, 0);
lastb = (fcu->bezt + (fcu->totvert - 1));
lastb->f1 = lastb->f2 = lastb->f3 = 0;
continue;
}
/* check if current bezt occurs at same time as last ok */
if (IS_EQT(cur[0], prev[0], thresh)) {
/* If there is a next beztriple, and if occurs at the same time, only insert
* if there is a considerable distance between the points, and also if the
* current is further away than the next one is to the previous.
*/
if (beztn && (IS_EQT(cur[0], next[0], thresh)) && (IS_EQT(next[1], prev[1], thresh) == 0)) {
/* only add if current is further away from previous */
if (cur[1] > next[1]) {
if (IS_EQT(cur[1], prev[1], thresh) == 0) {
/* add new keyframe */
insert_bezt_fcurve(fcu, bezt, 0);
}
}
}
else {
/* only add if values are a considerable distance apart */
if (IS_EQT(cur[1], prev[1], thresh) == 0) {
/* add new keyframe */
insert_bezt_fcurve(fcu, bezt, 0);
}
}
}
else {
/* checks required are dependent on whether this is last keyframe or not */
if (beztn) {
/* does current have same value as previous and next? */
if (IS_EQT(cur[1], prev[1], thresh) == 0) {
/* add new keyframe */
insert_bezt_fcurve(fcu, bezt, 0);
}
else if (IS_EQT(cur[1], next[1], thresh) == 0) {
/* add new keyframe */
insert_bezt_fcurve(fcu, bezt, 0);
}
}
else {
/* add if value doesn't equal that of previous */
if (IS_EQT(cur[1], prev[1], thresh) == 0) {
/* add new keyframe */
insert_bezt_fcurve(fcu, bezt, 0);
}
}
}
}
/* now free the memory used by the old BezTriples */
if (old_bezts) {
MEM_freeN(old_bezts);
}
/* final step, if there is just one key in fcurve, check if it's
* the default value and if is, remove fcurve completely. */
if (cleardefault && fcu->totvert == 1) {
float default_value = 0.0f;
PointerRNA id_ptr, ptr;
PropertyRNA *prop;
RNA_id_pointer_create(ale->id, &id_ptr);
/* get property to read from, and get value as appropriate */
if (RNA_path_resolve_property(&id_ptr, fcu->rna_path, &ptr, &prop)) {
if (RNA_property_type(prop) == PROP_FLOAT) {
default_value = RNA_property_float_get_default_index(&ptr, prop, fcu->array_index);
}
}
if (fcu->bezt->vec[1][1] == default_value) {
clear_fcurve_keys(fcu);
/* check if curve is really unused and if it is, return signal for deletion */
if (BKE_fcurve_is_empty(fcu)) {
AnimData *adt = ale->adt;
ANIM_fcurve_delete_from_animdata(ac, adt, fcu);
ale->key_data = NULL;
}
}
}
}
/**
* Find the first segment of consecutive selected curve points, starting from \a start_index.
* Keys that have BEZT_FLAG_IGNORE_TAG set are treated as unselected.
* \param r_segment_start_idx: returns the start index of the segment.
* \param r_segment_len: returns the number of curve points in the segment.
* \return whether such a segment was found or not.
*/
static bool find_fcurve_segment(FCurve *fcu,
const int start_index,
int *r_segment_start_idx,
int *r_segment_len)
{
*r_segment_start_idx = 0;
*r_segment_len = 0;
bool in_segment = false;
for (int i = start_index; i < fcu->totvert; i++) {
const bool point_is_selected = fcu->bezt[i].f2 & SELECT;
const bool point_is_ignored = fcu->bezt[i].f2 & BEZT_FLAG_IGNORE_TAG;
if (point_is_selected && !point_is_ignored) {
if (!in_segment) {
*r_segment_start_idx = i;
in_segment = true;
}
(*r_segment_len)++;
}
else if (in_segment) {
/* If the curve point is not selected then we have reached the end of the selected curve
* segment. */
return true; /* Segment found. */
}
}
/* If the last curve point was in the segment, `r_segment_len` and `r_segment_start_idx`
* are already updated and true is returned. */
return in_segment;
}
ListBase find_fcurve_segments(FCurve *fcu)
{
ListBase segments = {NULL, NULL};
int segment_start_idx = 0;
int segment_len = 0;
int current_index = 0;
while (find_fcurve_segment(fcu, current_index, &segment_start_idx, &segment_len)) {
FCurveSegment *segment;
segment = MEM_callocN(sizeof(*segment), "FCurveSegment");
segment->start_index = segment_start_idx;
segment->length = segment_len;
BLI_addtail(&segments, segment);
current_index = segment_start_idx + segment_len;
}
return segments;
}
static BezTriple fcurve_segment_start_get(FCurve *fcu, int index)
{
BezTriple start_bezt = index - 1 >= 0 ? fcu->bezt[index - 1] : fcu->bezt[index];
return start_bezt;
}
static BezTriple fcurve_segment_end_get(FCurve *fcu, int index)
{
BezTriple end_bezt = index < fcu->totvert ? fcu->bezt[index] : fcu->bezt[index - 1];
return end_bezt;
}
/* ---------------- */
void blend_to_neighbor_fcurve_segment(FCurve *fcu, FCurveSegment *segment, const float factor)
{
const float blend_factor = fabs(factor * 2 - 1);
BezTriple target_bezt;
/* Find which key to blend towards. */
if (factor < 0.5f) {
target_bezt = fcurve_segment_start_get(fcu, segment->start_index);
}
else {
target_bezt = fcurve_segment_end_get(fcu, segment->start_index + segment->length);
}
/* Blend each key individually. */
for (int i = segment->start_index; i < segment->start_index + segment->length; i++) {
fcu->bezt[i].vec[1][1] = interpf(target_bezt.vec[1][1], fcu->bezt[i].vec[1][1], blend_factor);
}
}
/* ---------------- */
float get_default_rna_value(FCurve *fcu, PropertyRNA *prop, PointerRNA *ptr)
{
const int len = RNA_property_array_length(ptr, prop);
float default_value = 0;
/* Find the default value of that property. */
switch (RNA_property_type(prop)) {
case PROP_BOOLEAN:
if (len) {
default_value = RNA_property_boolean_get_default_index(ptr, prop, fcu->array_index);
}
else {
default_value = RNA_property_boolean_get_default(ptr, prop);
}
break;
case PROP_INT:
if (len) {
default_value = RNA_property_int_get_default_index(ptr, prop, fcu->array_index);
}
else {
default_value = RNA_property_int_get_default(ptr, prop);
}
break;
case PROP_FLOAT:
if (len) {
default_value = RNA_property_float_get_default_index(ptr, prop, fcu->array_index);
}
else {
default_value = RNA_property_float_get_default(ptr, prop);
}
break;
default:
break;
}
return default_value;
}
/* This function blends the selected keyframes to the default value of the property the fcurve
* drives. */
void blend_to_default_fcurve(PointerRNA *id_ptr, FCurve *fcu, const float factor)
{
PointerRNA ptr;
PropertyRNA *prop;
/* Check if path is valid. */
if (!RNA_path_resolve_property(id_ptr, fcu->rna_path, &ptr, &prop)) {
return;
}
const float default_value = get_default_rna_value(fcu, prop, &ptr);
/* Blend selected keys to default */
for (int i = 0; i < fcu->totvert; i++) {
if (fcu->bezt[i].f2 & SELECT) {
fcu->bezt[i].vec[1][1] = interpf(default_value, fcu->bezt[i].vec[1][1], factor);
}
}
}
/* ---------------- */
void breakdown_fcurve_segment(FCurve *fcu, FCurveSegment *segment, const float factor)
{
BezTriple left_bezt = fcurve_segment_start_get(fcu, segment->start_index);
BezTriple right_bezt = fcurve_segment_end_get(fcu, segment->start_index + segment->length);
for (int i = segment->start_index; i < segment->start_index + segment->length; i++) {
fcu->bezt[i].vec[1][1] = interpf(right_bezt.vec[1][1], left_bezt.vec[1][1], factor);
}
}
/* ---------------- */
/* Check if the keyframe interpolation type is supported */
static bool prepare_for_decimate(FCurve *fcu, int i)
{
switch (fcu->bezt[i].ipo) {
case BEZT_IPO_BEZ:
/* We do not need to do anything here as the keyframe already has the required setting.
*/
return true;
case BEZT_IPO_LIN:
/* Convert to a linear bezt curve to be able to use the decimation algorithm. */
fcu->bezt[i].ipo = BEZT_IPO_BEZ;
fcu->bezt[i].h1 = HD_FREE;
fcu->bezt[i].h2 = HD_FREE;
if (i != 0) {
float h1[3];
sub_v3_v3v3(h1, fcu->bezt[i - 1].vec[1], fcu->bezt[i].vec[1]);
mul_v3_fl(h1, 1.0f / 3.0f);
add_v3_v3(h1, fcu->bezt[i].vec[1]);
copy_v3_v3(fcu->bezt[i].vec[0], h1);
}
if (i + 1 != fcu->totvert) {
float h2[3];
sub_v3_v3v3(h2, fcu->bezt[i + 1].vec[1], fcu->bezt[i].vec[1]);
mul_v3_fl(h2, 1.0f / 3.0f);
add_v3_v3(h2, fcu->bezt[i].vec[1]);
copy_v3_v3(fcu->bezt[i].vec[2], h2);
}
return true;
default:
/* These are unsupported. */
return false;
}
}
/* Decimate the given curve segment. */
static void decimate_fcurve_segment(FCurve *fcu,
int bezt_segment_start_idx,
int bezt_segment_len,
float remove_ratio,
float error_sq_max)
{
int selected_len = bezt_segment_len;
/* Make sure that we can remove the start/end point of the segment if they
* are not the start/end point of the curve. BKE_curve_decimate_bezt_array
* has a check that prevents removal of the first and last index in the
* passed array. */
if (bezt_segment_len + bezt_segment_start_idx != fcu->totvert &&
prepare_for_decimate(fcu, bezt_segment_len + bezt_segment_start_idx)) {
bezt_segment_len++;
}
if (bezt_segment_start_idx != 0 && prepare_for_decimate(fcu, bezt_segment_start_idx - 1)) {
bezt_segment_start_idx--;
bezt_segment_len++;
}
const int target_fcurve_verts = ceil(bezt_segment_len - selected_len * remove_ratio);
BKE_curve_decimate_bezt_array(&fcu->bezt[bezt_segment_start_idx],
bezt_segment_len,
12, /* The actual resolution displayed in the viewport is dynamic
* so we just pick a value that preserves the curve shape. */
false,
SELECT,
BEZT_FLAG_TEMP_TAG,
error_sq_max,
target_fcurve_verts);
}
bool decimate_fcurve(bAnimListElem *ale, float remove_ratio, float error_sq_max)
{
FCurve *fcu = (FCurve *)ale->key_data;
/* Check if the curve actually has any points. */
if (fcu == NULL || fcu->bezt == NULL || fcu->totvert == 0) {
return true;
}
BezTriple *old_bezts = fcu->bezt;
bool can_decimate_all_selected = true;
for (int i = 0; i < fcu->totvert; i++) {
/* Ignore keyframes that are not supported. */
if (!prepare_for_decimate(fcu, i)) {
can_decimate_all_selected = false;
fcu->bezt[i].f2 |= BEZT_FLAG_IGNORE_TAG;
}
/* Make sure that the temp flag is unset as we use it to determine what to remove. */
fcu->bezt[i].f2 &= ~BEZT_FLAG_TEMP_TAG;
}
ListBase segments = find_fcurve_segments(fcu);
LISTBASE_FOREACH (FCurveSegment *, segment, &segments) {
decimate_fcurve_segment(
fcu, segment->start_index, segment->length, remove_ratio, error_sq_max);
}
BLI_freelistN(&segments);
uint old_totvert = fcu->totvert;
fcu->bezt = NULL;
fcu->totvert = 0;
for (int i = 0; i < old_totvert; i++) {
BezTriple *bezt = (old_bezts + i);
bezt->f2 &= ~BEZT_FLAG_IGNORE_TAG;
if ((bezt->f2 & BEZT_FLAG_TEMP_TAG) == 0) {
insert_bezt_fcurve(fcu, bezt, 0);
}
}
/* now free the memory used by the old BezTriples */
if (old_bezts) {
MEM_freeN(old_bezts);
}
return can_decimate_all_selected;
}
/* ---------------- */
/* temp struct used for smooth_fcurve */
typedef struct tSmooth_Bezt {
float *h1, *h2, *h3; /* bezt->vec[0,1,2][1] */
float y1, y2, y3; /* averaged before/new/after y-values */
} tSmooth_Bezt;
void smooth_fcurve(FCurve *fcu)
{
int totSel = 0;
if (fcu->bezt == NULL) {
return;
}
/* first loop through - count how many verts are selected */
BezTriple *bezt = fcu->bezt;
for (int i = 0; i < fcu->totvert; i++, bezt++) {
if (BEZT_ISSEL_ANY(bezt)) {
totSel++;
}
}
/* if any points were selected, allocate tSmooth_Bezt points to work on */
if (totSel >= 3) {
tSmooth_Bezt *tarray, *tsb;
/* allocate memory in one go */
tsb = tarray = MEM_callocN(totSel * sizeof(tSmooth_Bezt), "tSmooth_Bezt Array");
/* populate tarray with data of selected points */
bezt = fcu->bezt;
for (int i = 0, x = 0; (i < fcu->totvert) && (x < totSel); i++, bezt++) {
if (BEZT_ISSEL_ANY(bezt)) {
/* tsb simply needs pointer to vec, and index */
tsb->h1 = &bezt->vec[0][1];
tsb->h2 = &bezt->vec[1][1];
tsb->h3 = &bezt->vec[2][1];
/* advance to the next tsb to populate */
if (x < totSel - 1) {
tsb++;
}
else {
break;
}
}
}
/* calculate the new smoothed F-Curve's with weighted averages:
* - this is done with two passes to avoid progressive corruption errors
* - uses 5 points for each operation (which stores in the relevant handles)
* - previous: w/a ratio = 3:5:2:1:1
* - next: w/a ratio = 1:1:2:5:3
*/
/* round 1: calculate smoothing deltas and new values */
tsb = tarray;
for (int i = 0; i < totSel; i++, tsb++) {
/* Don't touch end points (otherwise, curves slowly explode,
* as we don't have enough data there). */
if (ELEM(i, 0, (totSel - 1)) == 0) {
const tSmooth_Bezt *tP1 = tsb - 1;
const tSmooth_Bezt *tP2 = (i - 2 > 0) ? (tsb - 2) : (NULL);
const tSmooth_Bezt *tN1 = tsb + 1;
const tSmooth_Bezt *tN2 = (i + 2 < totSel) ? (tsb + 2) : (NULL);
const float p1 = *tP1->h2;
const float p2 = (tP2) ? (*tP2->h2) : (*tP1->h2);
const float c1 = *tsb->h2;
const float n1 = *tN1->h2;
const float n2 = (tN2) ? (*tN2->h2) : (*tN1->h2);
/* calculate previous and next, then new position by averaging these */
tsb->y1 = (3 * p2 + 5 * p1 + 2 * c1 + n1 + n2) / 12;
tsb->y3 = (p2 + p1 + 2 * c1 + 5 * n1 + 3 * n2) / 12;
tsb->y2 = (tsb->y1 + tsb->y3) / 2;
}
}
/* round 2: apply new values */
tsb = tarray;
for (int i = 0; i < totSel; i++, tsb++) {
/* don't touch end points, as their values weren't touched above */
if (ELEM(i, 0, (totSel - 1)) == 0) {
/* y2 takes the average of the 2 points */
*tsb->h2 = tsb->y2;
/* handles are weighted between their original values and the averaged values */
*tsb->h1 = ((*tsb->h1) * 0.7f) + (tsb->y1 * 0.3f);
*tsb->h3 = ((*tsb->h3) * 0.7f) + (tsb->y3 * 0.3f);
}
}
/* free memory required for tarray */
MEM_freeN(tarray);
}
/* recalculate handles */
calchandles_fcurve(fcu);
}
/* ---------------- */
/* little cache for values... */
typedef struct TempFrameValCache {
float frame, val;
} TempFrameValCache;
void sample_fcurve(FCurve *fcu)
{
BezTriple *bezt, *start = NULL, *end = NULL;
TempFrameValCache *value_cache, *fp;
int sfra, range;
int i, n;
if (fcu->bezt == NULL) { /* ignore baked */
return;
}
/* Find selected keyframes... once pair has been found, add keyframes. */
for (i = 0, bezt = fcu->bezt; i < fcu->totvert; i++, bezt++) {
/* check if selected, and which end this is */
if (BEZT_ISSEL_ANY(bezt)) {
if (start) {
/* If next bezt is also selected, don't start sampling yet,
* but instead wait for that one to reconsider, to avoid
* changing the curve when sampling consecutive segments
* (T53229)
*/
if (i < fcu->totvert - 1) {
BezTriple *next = &fcu->bezt[i + 1];
if (BEZT_ISSEL_ANY(next)) {
continue;
}
}
/* set end */
end = bezt;
/* cache values then add keyframes using these values, as adding
* keyframes while sampling will affect the outcome...
* - only start sampling+adding from index=1, so that we don't overwrite original keyframe
*/
range = (int)(ceil(end->vec[1][0] - start->vec[1][0]));
sfra = (int)(floor(start->vec[1][0]));
if (range) {
value_cache = MEM_callocN(sizeof(TempFrameValCache) * range, "IcuFrameValCache");
/* sample values */
for (n = 1, fp = value_cache; n < range && fp; n++, fp++) {
fp->frame = (float)(sfra + n);
fp->val = evaluate_fcurve(fcu, fp->frame);
}
/* add keyframes with these, tagging as 'breakdowns' */
for (n = 1, fp = value_cache; n < range && fp; n++, fp++) {
insert_vert_fcurve(fcu, fp->frame, fp->val, BEZT_KEYTYPE_BREAKDOWN, 1);
}
/* free temp cache */
MEM_freeN(value_cache);
/* as we added keyframes, we need to compensate so that bezt is at the right place */
bezt = fcu->bezt + i + range - 1;
i += (range - 1);
}
/* the current selection island has ended, so start again from scratch */
start = NULL;
end = NULL;
}
else {
/* just set start keyframe */
start = bezt;
end = NULL;
}
}
}
/* recalculate channel's handles? */
calchandles_fcurve(fcu);
}
/* **************************************************** */
/* Copy/Paste Tools:
* - The copy/paste buffer currently stores a set of temporary F-Curves containing only the
* keyframes that were selected in each of the original F-Curves.
* - All pasted frames are offset by the same amount.
* This is calculated as the difference in the times of the current frame and the
* 'first keyframe' (i.e. the earliest one in all channels).
* - The earliest frame is calculated per copy operation.
*/
/* globals for copy/paste data (like for other copy/paste buffers) */
static ListBase animcopybuf = {NULL, NULL};
static float animcopy_firstframe = 999999999.0f;
static float animcopy_lastframe = -999999999.0f;
static float animcopy_cfra = 0.0;
/* datatype for use in copy/paste buffer */
typedef struct tAnimCopybufItem {
struct tAnimCopybufItem *next, *prev;
ID *id; /* ID which owns the curve */
bActionGroup *grp; /* Action Group */
char *rna_path; /* RNA-Path */
int array_index; /* array index */
int totvert; /* number of keyframes stored for this channel */
BezTriple *bezt; /* keyframes in buffer */
short id_type; /* Result of `GS(id->name)`. */
bool is_bone; /* special flag for armature bones */
} tAnimCopybufItem;
void ANIM_fcurves_copybuf_free(void)
{
tAnimCopybufItem *aci, *acn;
/* free each buffer element */
for (aci = animcopybuf.first; aci; aci = acn) {
acn = aci->next;
/* free keyframes */
if (aci->bezt) {
MEM_freeN(aci->bezt);
}
/* free RNA-path */
if (aci->rna_path) {
MEM_freeN(aci->rna_path);
}
/* free ourself */
BLI_freelinkN(&animcopybuf, aci);
}
/* restore initial state */
BLI_listbase_clear(&animcopybuf);
animcopy_firstframe = 999999999.0f;
animcopy_lastframe = -999999999.0f;
}
/* ------------------- */
short copy_animedit_keys(bAnimContext *ac, ListBase *anim_data)
{
bAnimListElem *ale;
Scene *scene = ac->scene;
/* clear buffer first */
ANIM_fcurves_copybuf_free();
/* assume that each of these is an F-Curve */
for (ale = anim_data->first; ale; ale = ale->next) {
FCurve *fcu = (FCurve *)ale->key_data;
tAnimCopybufItem *aci;
BezTriple *bezt, *nbezt, *newbuf;
int i;
/* firstly, check if F-Curve has any selected keyframes
* - skip if no selected keyframes found (so no need to create unnecessary copy-buffer data)
* - this check should also eliminate any problems associated with using sample-data
*/
if (ANIM_fcurve_keyframes_loop(
NULL, fcu, NULL, ANIM_editkeyframes_ok(BEZT_OK_SELECTED), NULL) == 0) {
continue;
}
/* init copybuf item info */
aci = MEM_callocN(sizeof(tAnimCopybufItem), "AnimCopybufItem");
aci->id = ale->id;
aci->id_type = GS(ale->id->name);
aci->grp = fcu->grp;
aci->rna_path = MEM_dupallocN(fcu->rna_path);
aci->array_index = fcu->array_index;
/* Detect if this is a bone. We do that here rather than during pasting because ID pointers
* will get invalidated if we undo.
* Storing the relevant information here helps avoiding crashes if we undo-repaste. */
if ((aci->id_type == ID_OB) && (((Object *)aci->id)->type == OB_ARMATURE) && aci->rna_path) {
Object *ob = (Object *)aci->id;
bPoseChannel *pchan;
char bone_name[sizeof(pchan->name)];
if (BLI_str_quoted_substr(aci->rna_path, "pose.bones[", bone_name, sizeof(bone_name))) {
pchan = BKE_pose_channel_find_name(ob->pose, bone_name);
if (pchan) {
aci->is_bone = true;
}
}
}
BLI_addtail(&animcopybuf, aci);
/* add selected keyframes to buffer */
/* TODO: currently, we resize array every time we add a new vert -
* this works ok as long as it is assumed only a few keys are copied */
for (i = 0, bezt = fcu->bezt; i < fcu->totvert; i++, bezt++) {
if (BEZT_ISSEL_ANY(bezt)) {
/* add to buffer */
newbuf = MEM_callocN(sizeof(BezTriple) * (aci->totvert + 1), "copybuf beztriple");
/* assume that since we are just re-sizing the array, just copy all existing data across */
if (aci->bezt) {
memcpy(newbuf, aci->bezt, sizeof(BezTriple) * (aci->totvert));
}
/* copy current beztriple across too */
nbezt = &newbuf[aci->totvert];
*nbezt = *bezt;
/* ensure copy buffer is selected so pasted keys are selected */
BEZT_SEL_ALL(nbezt);
/* free old array and set the new */
if (aci->bezt) {
MEM_freeN(aci->bezt);
}
aci->bezt = newbuf;
aci->totvert++;
/* check if this is the earliest frame encountered so far */
if (bezt->vec[1][0] < animcopy_firstframe) {
animcopy_firstframe = bezt->vec[1][0];
}
if (bezt->vec[1][0] > animcopy_lastframe) {
animcopy_lastframe = bezt->vec[1][0];
}
}
}
}
/* check if anything ended up in the buffer */
if (ELEM(NULL, animcopybuf.first, animcopybuf.last)) {
return -1;
}
/* in case 'relative' paste method is used */
animcopy_cfra = scene->r.cfra;
/* everything went fine */
return 0;
}
static void flip_names(tAnimCopybufItem *aci, char **r_name)
{
if (aci->is_bone) {
int ofs_start;
int ofs_end;
if (BLI_str_quoted_substr_range(aci->rna_path, "pose.bones[", &ofs_start, &ofs_end)) {
char *str_start = aci->rna_path + ofs_start;
const char *str_end = aci->rna_path + ofs_end;
/* Swap out the name.
* Note that there is no need to un-escape the string to flip it. */
char bname_new[MAX_VGROUP_NAME];
char *str_iter;
int length, prefix_l, postfix_l;
prefix_l = str_start - aci->rna_path;
length = str_end - str_start;
postfix_l = strlen(str_end);
/* Temporary substitute with NULL terminator. */
BLI_assert(str_start[length] == '\"');
str_start[length] = 0;
BLI_string_flip_side_name(bname_new, str_start, false, sizeof(bname_new));
str_start[length] = '\"';
str_iter = *r_name = MEM_mallocN(sizeof(char) * (prefix_l + postfix_l + length + 1),
"flipped_path");
BLI_strncpy(str_iter, aci->rna_path, prefix_l + 1);
str_iter += prefix_l;
BLI_strncpy(str_iter, bname_new, length + 1);
str_iter += length;
BLI_strncpy(str_iter, str_end, postfix_l + 1);
str_iter[postfix_l] = '\0';
}
}
}
/* ------------------- */
/* most strict method: exact matches only */
static tAnimCopybufItem *pastebuf_match_path_full(FCurve *fcu,
const short from_single,
const short to_simple,
bool flip)
{
tAnimCopybufItem *aci;
for (aci = animcopybuf.first; aci; aci = aci->next) {
if (to_simple || (aci->rna_path && fcu->rna_path)) {
if (!to_simple && flip && aci->is_bone && fcu->rna_path) {
if ((from_single) || (aci->array_index == fcu->array_index)) {
char *name = NULL;
flip_names(aci, &name);
if (STREQ(name, fcu->rna_path)) {
MEM_freeN(name);
break;
}
MEM_freeN(name);
}
}
else if (to_simple || STREQ(aci->rna_path, fcu->rna_path)) {
if ((from_single) || (aci->array_index == fcu->array_index)) {
break;
}
}
}
}
return aci;
}
/* medium match strictness: path match only (i.e. ignore ID) */
static tAnimCopybufItem *pastebuf_match_path_property(Main *bmain,
FCurve *fcu,
const short from_single,
const short UNUSED(to_simple))
{
tAnimCopybufItem *aci;
for (aci = animcopybuf.first; aci; aci = aci->next) {
/* check that paths exist */
if (aci->rna_path && fcu->rna_path) {
/* find the property of the fcurve and compare against the end of the tAnimCopybufItem
* more involved since it needs to do path lookups.
* This is not 100% reliable since the user could be editing the curves on a path that won't
* resolve, or a bone could be renamed after copying for eg. but in normal copy & paste
* this should work out ok.
*/
if (BLI_findindex(which_libbase(bmain, aci->id_type), aci->id) == -1) {
/* pedantic but the ID could have been removed, and beats crashing! */
printf("paste_animedit_keys: error ID has been removed!\n");
}
else {
PointerRNA id_ptr, rptr;
PropertyRNA *prop;
RNA_id_pointer_create(aci->id, &id_ptr);
if (RNA_path_resolve_property(&id_ptr, aci->rna_path, &rptr, &prop)) {
const char *identifier = RNA_property_identifier(prop);
int len_id = strlen(identifier);
int len_path = strlen(fcu->rna_path);
if (len_id <= len_path) {
/* NOTE: paths which end with "] will fail with this test - Animated ID Props. */
if (STREQ(identifier, fcu->rna_path + (len_path - len_id))) {
if ((from_single) || (aci->array_index == fcu->array_index)) {
break;
}
}
}
}
else {
printf("paste_animedit_keys: failed to resolve path id:%s, '%s'!\n",
aci->id->name,
aci->rna_path);
}
}
}
}
return aci;
}
/* least strict matching heuristic: indices only */
static tAnimCopybufItem *pastebuf_match_index_only(FCurve *fcu,
const short from_single,
const short UNUSED(to_simple))
{
tAnimCopybufItem *aci;
for (aci = animcopybuf.first; aci; aci = aci->next) {
/* check that paths exist */
if ((from_single) || (aci->array_index == fcu->array_index)) {
break;
}
}
return aci;
}
/* ................ */
static void do_curve_mirror_flippping(tAnimCopybufItem *aci, BezTriple *bezt)
{
if (aci->is_bone) {
const size_t slength = strlen(aci->rna_path);
bool flip = false;
if (BLI_strn_endswith(aci->rna_path, "location", slength) && aci->array_index == 0) {
flip = true;
}
else if (BLI_strn_endswith(aci->rna_path, "rotation_quaternion", slength) &&
ELEM(aci->array_index, 2, 3)) {
flip = true;
}
else if (BLI_strn_endswith(aci->rna_path, "rotation_euler", slength) &&
ELEM(aci->array_index, 1, 2)) {
flip = true;
}
else if (BLI_strn_endswith(aci->rna_path, "rotation_axis_angle", slength) &&
ELEM(aci->array_index, 2, 3)) {
flip = true;
}
if (flip) {
bezt->vec[0][1] = -bezt->vec[0][1];
bezt->vec[1][1] = -bezt->vec[1][1];
bezt->vec[2][1] = -bezt->vec[2][1];
}
}
}
/* helper for paste_animedit_keys() - performs the actual pasting */
static void paste_animedit_keys_fcurve(
FCurve *fcu, tAnimCopybufItem *aci, float offset, const eKeyMergeMode merge_mode, bool flip)
{
BezTriple *bezt;
int i;
/* First de-select existing FCurve's keyframes */
for (i = 0, bezt = fcu->bezt; i < fcu->totvert; i++, bezt++) {
BEZT_DESEL_ALL(bezt);
}
/* mix mode with existing data */
switch (merge_mode) {
case KEYFRAME_PASTE_MERGE_MIX:
/* do-nothing */
break;
case KEYFRAME_PASTE_MERGE_OVER:
/* remove all keys */
clear_fcurve_keys(fcu);
break;
case KEYFRAME_PASTE_MERGE_OVER_RANGE:
case KEYFRAME_PASTE_MERGE_OVER_RANGE_ALL: {
float f_min;
float f_max;
if (merge_mode == KEYFRAME_PASTE_MERGE_OVER_RANGE) {
f_min = aci->bezt[0].vec[1][0] + offset;
f_max = aci->bezt[aci->totvert - 1].vec[1][0] + offset;
}
else { /* Entire Range */
f_min = animcopy_firstframe + offset;
f_max = animcopy_lastframe + offset;
}
/* remove keys in range */
if (f_min < f_max) {
/* select verts in range for removal */
for (i = 0, bezt = fcu->bezt; i < fcu->totvert; i++, bezt++) {
if ((f_min < bezt[0].vec[1][0]) && (bezt[0].vec[1][0] < f_max)) {
bezt->f2 |= SELECT;
}
}
/* remove frames in the range */
delete_fcurve_keys(fcu);
}
break;
}
}
/* just start pasting, with the first keyframe on the current frame, and so on */
for (i = 0, bezt = aci->bezt; i < aci->totvert; i++, bezt++) {
/* temporarily apply offset to src beztriple while copying */
if (flip) {
do_curve_mirror_flippping(aci, bezt);
}
bezt->vec[0][0] += offset;
bezt->vec[1][0] += offset;
bezt->vec[2][0] += offset;
/* insert the keyframe
* NOTE: we do not want to inherit handles from existing keyframes in this case!
*/
insert_bezt_fcurve(fcu, bezt, INSERTKEY_OVERWRITE_FULL);
/* un-apply offset from src beztriple after copying */
bezt->vec[0][0] -= offset;
bezt->vec[1][0] -= offset;
bezt->vec[2][0] -= offset;
if (flip) {
do_curve_mirror_flippping(aci, bezt);
}
}
/* recalculate F-Curve's handles? */
calchandles_fcurve(fcu);
}
const EnumPropertyItem rna_enum_keyframe_paste_offset_items[] = {
{KEYFRAME_PASTE_OFFSET_CFRA_START,
"START",
0,
"Frame Start",
"Paste keys starting at current frame"},
{KEYFRAME_PASTE_OFFSET_CFRA_END, "END", 0, "Frame End", "Paste keys ending at current frame"},
{KEYFRAME_PASTE_OFFSET_CFRA_RELATIVE,
"RELATIVE",
0,
"Frame Relative",
"Paste keys relative to the current frame when copying"},
{KEYFRAME_PASTE_OFFSET_NONE, "NONE", 0, "No Offset", "Paste keys from original time"},
{0, NULL, 0, NULL, NULL},
};
const EnumPropertyItem rna_enum_keyframe_paste_merge_items[] = {
{KEYFRAME_PASTE_MERGE_MIX, "MIX", 0, "Mix", "Overlay existing with new keys"},
{KEYFRAME_PASTE_MERGE_OVER, "OVER_ALL", 0, "Overwrite All", "Replace all keys"},
{KEYFRAME_PASTE_MERGE_OVER_RANGE,
"OVER_RANGE",
0,
"Overwrite Range",
"Overwrite keys in pasted range"},
{KEYFRAME_PASTE_MERGE_OVER_RANGE_ALL,
"OVER_RANGE_ALL",
0,
"Overwrite Entire Range",
"Overwrite keys in pasted range, using the range of all copied keys"},
{0, NULL, 0, NULL, NULL},
};
eKeyPasteError paste_animedit_keys(bAnimContext *ac,
ListBase *anim_data,
const eKeyPasteOffset offset_mode,
const eKeyMergeMode merge_mode,
bool flip)
{
bAnimListElem *ale;
const Scene *scene = (ac->scene);
const bool from_single = BLI_listbase_is_single(&animcopybuf);
const bool to_simple = BLI_listbase_is_single(anim_data);
float offset = 0.0f;
int pass;
/* check if buffer is empty */
if (BLI_listbase_is_empty(&animcopybuf)) {
return KEYFRAME_PASTE_NOTHING_TO_PASTE;
}
if (BLI_listbase_is_empty(anim_data)) {
return KEYFRAME_PASTE_NOWHERE_TO_PASTE;
}
/* methods of offset */
switch (offset_mode) {
case KEYFRAME_PASTE_OFFSET_CFRA_START:
offset = (float)(scene->r.cfra - animcopy_firstframe);
break;
case KEYFRAME_PASTE_OFFSET_CFRA_END:
offset = (float)(scene->r.cfra - animcopy_lastframe);
break;
case KEYFRAME_PASTE_OFFSET_CFRA_RELATIVE:
offset = (float)(scene->r.cfra - animcopy_cfra);
break;
case KEYFRAME_PASTE_OFFSET_NONE:
offset = 0.0f;
break;
}
if (from_single && to_simple) {
/* 1:1 match, no tricky checking, just paste */
FCurve *fcu;
tAnimCopybufItem *aci;
ale = anim_data->first;
fcu = (FCurve *)ale->data; /* destination F-Curve */
aci = animcopybuf.first;
paste_animedit_keys_fcurve(fcu, aci, offset, merge_mode, false);
ale->update |= ANIM_UPDATE_DEFAULT;
}
else {
/* from selected channels
* This "passes" system aims to try to find "matching" channels to paste keyframes
* into with increasingly loose matching heuristics. The process finishes when at least
* one F-Curve has been pasted into.
*/
for (pass = 0; pass < 3; pass++) {
uint totmatch = 0;
for (ale = anim_data->first; ale; ale = ale->next) {
/* Find buffer item to paste from:
* - If names don't matter (i.e. only 1 channel in buffer), don't check id/group
* - If names do matter, only check if id-type is ok for now
* (group check is not that important).
* - Most importantly, rna-paths should match (array indices are unimportant for now)
*/
AnimData *adt = ANIM_nla_mapping_get(ac, ale);
FCurve *fcu = (FCurve *)ale->data; /* destination F-Curve */
tAnimCopybufItem *aci = NULL;
switch (pass) {
case 0:
/* most strict, must be exact path match data_path & index */
aci = pastebuf_match_path_full(fcu, from_single, to_simple, flip);
break;
case 1:
/* less strict, just compare property names */
aci = pastebuf_match_path_property(ac->bmain, fcu, from_single, to_simple);
break;
case 2:
/* Comparing properties gave no results, so just do index comparisons */
aci = pastebuf_match_index_only(fcu, from_single, to_simple);
break;
}
/* copy the relevant data from the matching buffer curve */
if (aci) {
totmatch++;
if (adt) {
ANIM_nla_mapping_apply_fcurve(adt, ale->key_data, 0, 0);
paste_animedit_keys_fcurve(fcu, aci, offset, merge_mode, flip);
ANIM_nla_mapping_apply_fcurve(adt, ale->key_data, 1, 0);
}
else {
paste_animedit_keys_fcurve(fcu, aci, offset, merge_mode, flip);
}
}
ale->update |= ANIM_UPDATE_DEFAULT;
}
/* don't continue if some fcurves were pasted */
if (totmatch) {
break;
}
}
}
ANIM_animdata_update(ac, anim_data);
return KEYFRAME_PASTE_OK;
}
/* **************************************************** */