This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/draw/modes/object_mode.c

2132 lines
71 KiB
C
Raw Normal View History

/*
* Copyright 2016, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Blender Institute
*
*/
/** \file blender/draw/modes/object_mode.c
* \ingroup draw
*/
#include "DRW_engine.h"
#include "DRW_render.h"
#include "DNA_userdef_types.h"
#include "DNA_armature_types.h"
#include "DNA_camera_types.h"
#include "DNA_curve_types.h"
2017-06-01 02:26:24 +10:00
#include "DNA_mesh_types.h"
#include "DNA_meta_types.h"
2018-02-07 11:18:50 +11:00
#include "DNA_object_force_types.h"
#include "DNA_lightprobe_types.h"
#include "DNA_particle_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
2017-05-20 22:57:47 +10:00
#include "BIF_gl.h"
#include "BKE_anim.h"
#include "BKE_camera.h"
#include "BKE_curve.h"
#include "BKE_global.h"
#include "BKE_mball.h"
#include "BKE_object.h"
2017-05-19 18:32:40 +02:00
#include "BKE_particle.h"
2017-05-20 22:57:47 +10:00
#include "BKE_image.h"
#include "BKE_texture.h"
#include "ED_view3d.h"
#include "GPU_shader.h"
2017-05-20 22:57:47 +10:00
#include "GPU_texture.h"
#include "MEM_guardedalloc.h"
#include "UI_resources.h"
#include "draw_mode_engines.h"
#include "draw_manager_text.h"
#include "draw_common.h"
#include "DEG_depsgraph_query.h"
extern struct GPUUniformBuffer *globals_ubo; /* draw_common.c */
extern struct GPUTexture *globals_ramp; /* draw_common.c */
extern GlobalsUboStorage ts;
extern char datatoc_object_outline_resolve_frag_glsl[];
2017-03-21 19:29:58 +01:00
extern char datatoc_object_outline_detect_frag_glsl[];
extern char datatoc_object_outline_expand_frag_glsl[];
extern char datatoc_object_grid_frag_glsl[];
extern char datatoc_object_grid_vert_glsl[];
2017-05-20 22:57:47 +10:00
extern char datatoc_object_empty_image_frag_glsl[];
extern char datatoc_object_empty_image_vert_glsl[];
extern char datatoc_object_lightprobe_grid_vert_glsl[];
2017-05-23 14:13:25 +02:00
extern char datatoc_object_particle_prim_vert_glsl[];
2017-05-23 14:25:12 +02:00
extern char datatoc_object_particle_dot_vert_glsl[];
extern char datatoc_object_particle_dot_frag_glsl[];
extern char datatoc_common_globals_lib_glsl[];
extern char datatoc_common_fxaa_lib_glsl[];
extern char datatoc_gpu_shader_flat_color_frag_glsl[];
extern char datatoc_gpu_shader_fullscreen_vert_glsl[];
extern char datatoc_gpu_shader_uniform_color_frag_glsl[];
/* *********** LISTS *********** */
2017-02-22 18:52:07 +01:00
typedef struct OBJECT_PassList {
struct DRWPass *non_meshes;
struct DRWPass *ob_center;
struct DRWPass *outlines;
struct DRWPass *outlines_search;
struct DRWPass *outlines_expand;
struct DRWPass *outlines_bleed;
struct DRWPass *outlines_resolve;
struct DRWPass *grid;
struct DRWPass *bone_solid;
struct DRWPass *bone_wire;
struct DRWPass *bone_envelope;
2017-05-19 18:32:40 +02:00
struct DRWPass *particle;
struct DRWPass *lightprobes;
/* use for empty/background images */
struct DRWPass *reference_image;
} OBJECT_PassList;
typedef struct OBJECT_FramebufferList {
struct GPUFrameBuffer *outlines;
struct GPUFrameBuffer *blur;
} OBJECT_FramebufferList;
typedef struct OBJECT_StorageList {
struct OBJECT_PrivateData *g_data;
} OBJECT_StorageList;
typedef struct OBJECT_Data {
void *engine_type;
OBJECT_FramebufferList *fbl;
DRWViewportEmptyList *txl;
OBJECT_PassList *psl;
OBJECT_StorageList *stl;
} OBJECT_Data;
/* *********** STATIC *********** */
2017-10-07 15:57:14 +11:00
typedef struct OBJECT_PrivateData {
/* Empties */
DRWShadingGroup *plain_axes;
DRWShadingGroup *cube;
DRWShadingGroup *circle;
DRWShadingGroup *sphere;
DRWShadingGroup *cone;
DRWShadingGroup *single_arrow;
DRWShadingGroup *single_arrow_line;
DRWShadingGroup *arrows;
DRWShadingGroup *axis_names;
2017-05-20 22:57:47 +10:00
/* GPUTexture -> EmptyImageShadingGroupData */
GHash *image_plane_map;
/* Force Field */
DRWShadingGroup *field_wind;
DRWShadingGroup *field_force;
DRWShadingGroup *field_vortex;
DRWShadingGroup *field_curve_sta;
DRWShadingGroup *field_curve_end;
DRWShadingGroup *field_tube_limit;
DRWShadingGroup *field_cone_limit;
/* Speaker */
DRWShadingGroup *speaker;
/* Probe */
DRWShadingGroup *probe_cube;
DRWShadingGroup *probe_planar;
DRWShadingGroup *probe_grid;
2017-06-07 16:00:10 +02:00
/* MetaBalls */
DRWShadingGroup *mball_handle;
/* Lamps */
DRWShadingGroup *lamp_center;
DRWShadingGroup *lamp_center_group;
DRWShadingGroup *lamp_groundpoint;
DRWShadingGroup *lamp_groundline;
DRWShadingGroup *lamp_circle;
DRWShadingGroup *lamp_circle_shadow;
DRWShadingGroup *lamp_sunrays;
DRWShadingGroup *lamp_distance;
DRWShadingGroup *lamp_buflimit;
DRWShadingGroup *lamp_buflimit_points;
DRWShadingGroup *lamp_area;
DRWShadingGroup *lamp_hemi;
DRWShadingGroup *lamp_spot_cone;
DRWShadingGroup *lamp_spot_blend;
DRWShadingGroup *lamp_spot_pyramid;
DRWShadingGroup *lamp_spot_blend_rect;
/* Helpers */
DRWShadingGroup *relationship_lines;
/* Objects Centers */
DRWShadingGroup *center_active;
DRWShadingGroup *center_selected;
DRWShadingGroup *center_deselected;
DRWShadingGroup *center_selected_lib;
DRWShadingGroup *center_deselected_lib;
/* Camera */
DRWShadingGroup *camera;
DRWShadingGroup *camera_frame;
DRWShadingGroup *camera_tria;
DRWShadingGroup *camera_focus;
DRWShadingGroup *camera_clip;
DRWShadingGroup *camera_clip_points;
DRWShadingGroup *camera_mist;
DRWShadingGroup *camera_mist_points;
/* Outlines */
DRWShadingGroup *outlines_active;
DRWShadingGroup *outlines_active_group;
DRWShadingGroup *outlines_select;
DRWShadingGroup *outlines_select_group;
DRWShadingGroup *outlines_transform;
/* Lightprobes */
DRWShadingGroup *lightprobes_cube;
DRWShadingGroup *lightprobes_planar;
/* Wire */
DRWShadingGroup *wire;
DRWShadingGroup *wire_active;
DRWShadingGroup *wire_active_group;
DRWShadingGroup *wire_select;
DRWShadingGroup *wire_select_group;
DRWShadingGroup *wire_transform;
/* Points */
DRWShadingGroup *points;
DRWShadingGroup *points_active;
DRWShadingGroup *points_active_group;
DRWShadingGroup *points_select;
DRWShadingGroup *points_select_group;
DRWShadingGroup *points_transform;
} OBJECT_PrivateData; /* Transient data */
static struct {
/* Instance Data format */
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
struct Gwn_VertFormat *particle_format;
struct Gwn_VertFormat *empty_image_format;
struct Gwn_VertFormat *empty_image_wire_format;
2017-05-20 22:57:47 +10:00
/* fullscreen shaders */
GPUShader *outline_resolve_sh;
GPUShader *outline_resolve_aa_sh;
GPUShader *outline_detect_sh;
GPUShader *outline_fade_sh;
2017-05-20 22:57:47 +10:00
/* regular shaders */
GPUShader *object_empty_image_sh;
GPUShader *object_empty_image_wire_sh;
GPUShader *grid_sh;
2017-05-19 18:32:40 +02:00
GPUShader *part_dot_sh;
GPUShader *part_prim_sh;
2017-05-23 18:13:41 +02:00
GPUShader *part_axis_sh;
GPUShader *lightprobe_grid_sh;
float camera_pos[3];
float screenvecs[3][4];
float grid_settings[5];
int grid_flag;
float grid_normal[3];
float grid_axes[3];
int zpos_flag;
int zneg_flag;
float zplane_normal[3];
float zplane_axes[3];
float inv_viewport_size[2];
2017-05-27 21:28:29 +02:00
bool draw_grid;
/* Temp buffer textures */
struct GPUTexture *outlines_depth_tx;
struct GPUTexture *outlines_color_tx;
struct GPUTexture *outlines_blur_tx;
} e_data = {NULL}; /* Engine data */
enum {
SHOW_AXIS_X = (1 << 0),
SHOW_AXIS_Y = (1 << 1),
SHOW_AXIS_Z = (1 << 2),
SHOW_GRID = (1 << 3),
PLANE_XY = (1 << 4),
PLANE_XZ = (1 << 5),
PLANE_YZ = (1 << 6),
CLIP_ZPOS = (1 << 7),
CLIP_ZNEG = (1 << 8),
};
/* *********** FUNCTIONS *********** */
static void OBJECT_engine_init(void *vedata)
{
OBJECT_FramebufferList *fbl = ((OBJECT_Data *)vedata)->fbl;
const float *viewport_size = DRW_viewport_size_get();
if (DRW_state_is_fbo()) {
DRWFboTexture tex[2] = {
{&e_data.outlines_depth_tx, DRW_TEX_DEPTH_24, DRW_TEX_TEMP},
{&e_data.outlines_color_tx, DRW_TEX_RGBA_8, DRW_TEX_FILTER | DRW_TEX_TEMP},
};
DRW_framebuffer_init(
&fbl->outlines, &draw_engine_object_type,
(int)viewport_size[0], (int)viewport_size[1],
tex, 2);
DRWFboTexture blur_tex = {&e_data.outlines_blur_tx, DRW_TEX_RGBA_8, DRW_TEX_FILTER | DRW_TEX_TEMP};
DRW_framebuffer_init(
&fbl->blur, &draw_engine_object_type,
(int)viewport_size[0], (int)viewport_size[1],
&blur_tex, 1);
}
if (!e_data.outline_resolve_sh) {
e_data.outline_resolve_sh = DRW_shader_create_fullscreen(datatoc_object_outline_resolve_frag_glsl, NULL);
}
if (!e_data.outline_resolve_aa_sh) {
e_data.outline_resolve_aa_sh = DRW_shader_create_with_lib(
datatoc_gpu_shader_fullscreen_vert_glsl, NULL,
datatoc_object_outline_resolve_frag_glsl,
datatoc_common_fxaa_lib_glsl,
"#define FXAA_ALPHA\n"
"#define USE_FXAA\n");
}
if (!e_data.outline_detect_sh) {
e_data.outline_detect_sh = DRW_shader_create_fullscreen(datatoc_object_outline_detect_frag_glsl, NULL);
}
if (!e_data.outline_fade_sh) {
e_data.outline_fade_sh = DRW_shader_create_fullscreen(datatoc_object_outline_expand_frag_glsl, NULL);
}
2017-05-20 22:57:47 +10:00
if (!e_data.object_empty_image_sh) {
e_data.object_empty_image_sh = DRW_shader_create_with_lib(
datatoc_object_empty_image_vert_glsl, NULL,
datatoc_object_empty_image_frag_glsl,
datatoc_common_globals_lib_glsl, NULL);
2017-05-20 22:57:47 +10:00
}
if (!e_data.object_empty_image_wire_sh) {
e_data.object_empty_image_wire_sh = DRW_shader_create_with_lib(
datatoc_object_empty_image_vert_glsl, NULL,
datatoc_object_empty_image_frag_glsl,
datatoc_common_globals_lib_glsl,
"#define USE_WIRE\n");
2017-05-20 22:57:47 +10:00
}
if (!e_data.grid_sh) {
e_data.grid_sh = DRW_shader_create_with_lib(
datatoc_object_grid_vert_glsl, NULL,
datatoc_object_grid_frag_glsl,
datatoc_common_globals_lib_glsl, NULL);
}
2017-05-19 18:32:40 +02:00
if (!e_data.part_prim_sh) {
2017-07-14 16:56:02 +10:00
e_data.part_prim_sh = DRW_shader_create(
datatoc_object_particle_prim_vert_glsl, NULL, datatoc_gpu_shader_flat_color_frag_glsl, NULL);
2017-05-19 18:32:40 +02:00
}
2017-05-23 18:13:41 +02:00
if (!e_data.part_axis_sh) {
2017-07-14 16:56:02 +10:00
e_data.part_axis_sh = DRW_shader_create(
datatoc_object_particle_prim_vert_glsl, NULL, datatoc_gpu_shader_flat_color_frag_glsl,
2017-07-14 16:56:02 +10:00
"#define USE_AXIS\n");
2017-05-23 18:13:41 +02:00
}
2017-05-19 18:32:40 +02:00
if (!e_data.part_dot_sh) {
2017-07-14 16:56:02 +10:00
e_data.part_dot_sh = DRW_shader_create(
datatoc_object_particle_dot_vert_glsl, NULL, datatoc_object_particle_dot_frag_glsl, NULL);
2017-05-19 18:32:40 +02:00
}
if (!e_data.lightprobe_grid_sh) {
e_data.lightprobe_grid_sh = DRW_shader_create(
datatoc_object_lightprobe_grid_vert_glsl, NULL, datatoc_gpu_shader_uniform_color_frag_glsl, NULL);
}
{
/* Grid precompute */
float invviewmat[4][4], invwinmat[4][4];
float viewmat[4][4], winmat[4][4];
const DRWContextState *draw_ctx = DRW_context_state_get();
View3D *v3d = draw_ctx->v3d;
Scene *scene = draw_ctx->scene;
RegionView3D *rv3d = draw_ctx->rv3d;
float grid_scale = ED_view3d_grid_scale(scene, v3d, NULL);
float grid_res;
const bool show_axis_x = (v3d->gridflag & V3D_SHOW_X) != 0;
const bool show_axis_y = (v3d->gridflag & V3D_SHOW_Y) != 0;
const bool show_axis_z = (v3d->gridflag & V3D_SHOW_Z) != 0;
const bool show_floor = (v3d->gridflag & V3D_SHOW_FLOOR) != 0;
2017-05-27 21:28:29 +02:00
e_data.draw_grid = show_axis_x || show_axis_y || show_axis_z || show_floor;
DRW_viewport_matrix_get(winmat, DRW_MAT_WIN);
DRW_viewport_matrix_get(viewmat, DRW_MAT_VIEW);
DRW_viewport_matrix_get(invwinmat, DRW_MAT_WININV);
DRW_viewport_matrix_get(invviewmat, DRW_MAT_VIEWINV);
/* Setup camera pos */
copy_v3_v3(e_data.camera_pos, invviewmat[3]);
/* if perps */
if (winmat[3][3] == 0.0f) {
float fov;
float viewvecs[2][4] = {
{1.0f, -1.0f, -1.0f, 1.0f},
{-1.0f, 1.0f, -1.0f, 1.0f}
};
/* convert the view vectors to view space */
for (int i = 0; i < 2; i++) {
mul_m4_v4(invwinmat, viewvecs[i]);
mul_v3_fl(viewvecs[i], 1.0f / viewvecs[i][2]); /* perspective divide */
}
fov = angle_v3v3(viewvecs[0], viewvecs[1]) / 2.0f;
grid_res = fabsf(tanf(fov)) / grid_scale;
e_data.grid_flag = (1 << 4); /* XY plane */
if (show_axis_x)
e_data.grid_flag |= SHOW_AXIS_X;
if (show_axis_y)
e_data.grid_flag |= SHOW_AXIS_Y;
if (show_floor)
e_data.grid_flag |= SHOW_GRID;
}
else {
float viewdist = 1.0f / max_ff(fabsf(winmat[0][0]), fabsf(winmat[1][1]));
grid_res = viewdist / grid_scale;
if (ELEM(rv3d->view, RV3D_VIEW_RIGHT, RV3D_VIEW_LEFT)) {
e_data.grid_flag = PLANE_YZ;
e_data.grid_flag |= SHOW_AXIS_Y;
e_data.grid_flag |= SHOW_AXIS_Z;
e_data.grid_flag |= SHOW_GRID;
}
else if (ELEM(rv3d->view, RV3D_VIEW_TOP, RV3D_VIEW_BOTTOM)) {
e_data.grid_flag = PLANE_XY;
e_data.grid_flag |= SHOW_AXIS_X;
e_data.grid_flag |= SHOW_AXIS_Y;
e_data.grid_flag |= SHOW_GRID;
}
else if (ELEM(rv3d->view, RV3D_VIEW_FRONT, RV3D_VIEW_BACK)) {
e_data.grid_flag = PLANE_XZ;
e_data.grid_flag |= SHOW_AXIS_X;
e_data.grid_flag |= SHOW_AXIS_Z;
e_data.grid_flag |= SHOW_GRID;
}
else { /* RV3D_VIEW_USER */
e_data.grid_flag = PLANE_XY;
if (show_axis_x)
e_data.grid_flag |= SHOW_AXIS_X;
if (show_axis_y)
e_data.grid_flag |= SHOW_AXIS_Y;
if (show_floor)
e_data.grid_flag |= SHOW_GRID;
}
}
e_data.grid_normal[0] = (float)((e_data.grid_flag & PLANE_YZ) != 0);
e_data.grid_normal[1] = (float)((e_data.grid_flag & PLANE_XZ) != 0);
e_data.grid_normal[2] = (float)((e_data.grid_flag & PLANE_XY) != 0);
e_data.grid_axes[0] = (float)((e_data.grid_flag & (PLANE_XZ | PLANE_XY)) != 0);
e_data.grid_axes[1] = (float)((e_data.grid_flag & (PLANE_YZ | PLANE_XY)) != 0);
e_data.grid_axes[2] = (float)((e_data.grid_flag & (PLANE_YZ | PLANE_XZ)) != 0);
/* Vectors to recover pixel world position. Fix grid precision issue. */
/* Using pixel at z = 0.0f in ndc space : gives average precision between
* near and far plane. Note that it might not be the best choice. */
copy_v4_fl4(e_data.screenvecs[0], 1.0f, -1.0f, 0.0f, 1.0f);
copy_v4_fl4(e_data.screenvecs[1], -1.0f, 1.0f, 0.0f, 1.0f);
copy_v4_fl4(e_data.screenvecs[2], -1.0f, -1.0f, 0.0f, 1.0f);
for (int i = 0; i < 3; i++) {
/* Doing 2 steps to recover world position of the corners of the frustum.
* Using the inverse perspective matrix is giving very low precision output. */
mul_m4_v4(invwinmat, e_data.screenvecs[i]);
e_data.screenvecs[i][0] /= e_data.screenvecs[i][3]; /* perspective divide */
e_data.screenvecs[i][1] /= e_data.screenvecs[i][3]; /* perspective divide */
e_data.screenvecs[i][2] /= e_data.screenvecs[i][3]; /* perspective divide */
e_data.screenvecs[i][3] = 1.0f;
/* main instability come from this one */
/* TODO : to make things even more stable, don't use
* invviewmat and derive vectors from camera properties */
mul_m4_v4(invviewmat, e_data.screenvecs[i]);
}
sub_v3_v3(e_data.screenvecs[0], e_data.screenvecs[2]);
sub_v3_v3(e_data.screenvecs[1], e_data.screenvecs[2]);
/* Z axis if needed */
if (((rv3d->view == RV3D_VIEW_USER) || (rv3d->persp != RV3D_ORTHO)) && show_axis_z) {
e_data.zpos_flag = SHOW_AXIS_Z;
float zvec[4] = {0.0f, 0.0f, -1.0f, 0.0f};
mul_m4_v4(invviewmat, zvec);
/* z axis : chose the most facing plane */
if (fabsf(zvec[0]) < fabsf(zvec[1])) {
e_data.zpos_flag |= PLANE_XZ;
}
else {
e_data.zpos_flag |= PLANE_YZ;
}
e_data.zneg_flag = e_data.zpos_flag;
/* Persp : If camera is below floor plane, we switch clipping
* Ortho : If eye vector is looking up, we switch clipping */
if (((winmat[3][3] == 0.0f) && (e_data.camera_pos[2] > 0.0f)) ||
2017-10-07 15:57:14 +11:00
((winmat[3][3] != 0.0f) && (zvec[2] < 0.0f)))
{
e_data.zpos_flag |= CLIP_ZPOS;
e_data.zneg_flag |= CLIP_ZNEG;
}
else {
e_data.zpos_flag |= CLIP_ZNEG;
e_data.zneg_flag |= CLIP_ZPOS;
}
e_data.zplane_normal[0] = (float)((e_data.zpos_flag & PLANE_YZ) != 0);
e_data.zplane_normal[1] = (float)((e_data.zpos_flag & PLANE_XZ) != 0);
e_data.zplane_normal[2] = (float)((e_data.zpos_flag & PLANE_XY) != 0);
e_data.zplane_axes[0] = (float)((e_data.zpos_flag & (PLANE_XZ | PLANE_XY)) != 0);
e_data.zplane_axes[1] = (float)((e_data.zpos_flag & (PLANE_YZ | PLANE_XY)) != 0);
e_data.zplane_axes[2] = (float)((e_data.zpos_flag & (PLANE_YZ | PLANE_XZ)) != 0);
}
else {
e_data.zneg_flag = e_data.zpos_flag = CLIP_ZNEG | CLIP_ZPOS;
}
float dist;
if (rv3d->persp == RV3D_CAMOB && v3d->camera) {
Object *camera_object = DEG_get_evaluated_object(draw_ctx->depsgraph, v3d->camera);
dist = ((Camera *)camera_object)->clipend;
}
else {
dist = v3d->far;
}
e_data.grid_settings[0] = dist / 2.0f; /* gridDistance */
e_data.grid_settings[1] = grid_res; /* gridResolution */
e_data.grid_settings[2] = grid_scale; /* gridScale */
e_data.grid_settings[3] = v3d->gridsubdiv; /* gridSubdiv */
2017-08-01 13:35:26 +10:00
e_data.grid_settings[4] = (v3d->gridsubdiv > 1) ? 1.0f / logf(v3d->gridsubdiv) : 0.0f; /* 1/log(gridSubdiv) */
}
copy_v2_v2(e_data.inv_viewport_size, DRW_viewport_size_get());
invert_v2(e_data.inv_viewport_size);
}
static void OBJECT_engine_free(void)
{
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
MEM_SAFE_FREE(e_data.particle_format);
MEM_SAFE_FREE(e_data.empty_image_format);
MEM_SAFE_FREE(e_data.empty_image_wire_format);
DRW_SHADER_FREE_SAFE(e_data.outline_resolve_sh);
DRW_SHADER_FREE_SAFE(e_data.outline_resolve_aa_sh);
DRW_SHADER_FREE_SAFE(e_data.outline_detect_sh);
DRW_SHADER_FREE_SAFE(e_data.outline_fade_sh);
2017-05-20 22:57:47 +10:00
DRW_SHADER_FREE_SAFE(e_data.object_empty_image_sh);
DRW_SHADER_FREE_SAFE(e_data.object_empty_image_wire_sh);
DRW_SHADER_FREE_SAFE(e_data.grid_sh);
2017-05-19 18:32:40 +02:00
DRW_SHADER_FREE_SAFE(e_data.part_prim_sh);
2017-05-23 18:13:41 +02:00
DRW_SHADER_FREE_SAFE(e_data.part_axis_sh);
2017-05-23 14:25:12 +02:00
DRW_SHADER_FREE_SAFE(e_data.part_dot_sh);
DRW_SHADER_FREE_SAFE(e_data.lightprobe_grid_sh);
}
static DRWShadingGroup *shgroup_outline(DRWPass *pass, const float col[4], GPUShader *sh)
{
DRWShadingGroup *grp = DRW_shgroup_create(sh, pass);
DRW_shgroup_uniform_vec4(grp, "color", col, 1);
return grp;
}
/* currently same as 'shgroup_outline', new function to avoid confustion */
static DRWShadingGroup *shgroup_wire(DRWPass *pass, const float col[4], GPUShader *sh)
{
DRWShadingGroup *grp = DRW_shgroup_create(sh, pass);
DRW_shgroup_uniform_vec4(grp, "color", col, 1);
return grp;
}
/* currently same as 'shgroup_outline', new function to avoid confustion */
static DRWShadingGroup *shgroup_points(DRWPass *pass, const float col[4], GPUShader *sh)
{
DRWShadingGroup *grp = DRW_shgroup_create(sh, pass);
DRW_shgroup_uniform_vec4(grp, "color", col, 1);
return grp;
}
static DRWShadingGroup *shgroup_theme_id_to_outline_or(
OBJECT_StorageList *stl, int theme_id, DRWShadingGroup *fallback)
{
switch (theme_id) {
case TH_ACTIVE:
return stl->g_data->outlines_active;
case TH_SELECT:
return stl->g_data->outlines_select;
case TH_GROUP_ACTIVE:
return stl->g_data->outlines_select_group;
case TH_TRANSFORM:
return stl->g_data->outlines_transform;
default:
return fallback;
}
}
static DRWShadingGroup *shgroup_theme_id_to_wire_or(
OBJECT_StorageList *stl, int theme_id, DRWShadingGroup *fallback)
{
switch (theme_id) {
case TH_ACTIVE:
return stl->g_data->wire_active;
case TH_SELECT:
return stl->g_data->wire_select;
case TH_GROUP_ACTIVE:
return stl->g_data->wire_select_group;
case TH_TRANSFORM:
return stl->g_data->wire_transform;
default:
return fallback;
}
}
static DRWShadingGroup *shgroup_theme_id_to_point_or(
OBJECT_StorageList *stl, int theme_id, DRWShadingGroup *fallback)
{
switch (theme_id) {
case TH_ACTIVE:
return stl->g_data->points_active;
case TH_SELECT:
return stl->g_data->points_select;
case TH_GROUP_ACTIVE:
return stl->g_data->points_select_group;
case TH_TRANSFORM:
return stl->g_data->points_transform;
default:
return fallback;
}
}
2017-05-20 22:57:47 +10:00
static void image_calc_aspect(Image *ima, ImageUser *iuser, float r_image_aspect[2])
{
float ima_x, ima_y;
if (ima) {
int w, h;
BKE_image_get_size(ima, iuser, &w, &h);
ima_x = w;
ima_y = h;
}
else {
/* if no image, make it a 1x1 empty square, honor scale & offset */
ima_x = ima_y = 1.0f;
}
/* Get the image aspect even if the buffer is invalid */
float sca_x = 1.0f, sca_y = 1.0f;
if (ima) {
if (ima->aspx > ima->aspy) {
sca_y = ima->aspy / ima->aspx;
}
else if (ima->aspx < ima->aspy) {
sca_x = ima->aspx / ima->aspy;
}
}
const float scale_x_inv = ima_x * sca_x;
const float scale_y_inv = ima_y * sca_y;
if (scale_x_inv > scale_y_inv) {
r_image_aspect[0] = 1.0f;
r_image_aspect[1] = scale_y_inv / scale_x_inv;
}
else {
r_image_aspect[0] = scale_x_inv / scale_y_inv;
r_image_aspect[1] = 1.0f;
}
}
2017-05-22 16:20:54 +10:00
/* per-image shading groups for image-type empty objects */
struct EmptyImageShadingGroupData {
DRWShadingGroup *shgrp_image;
DRWShadingGroup *shgrp_wire;
float image_aspect[2];
};
2017-05-20 22:57:47 +10:00
static void DRW_shgroup_empty_image(
2017-05-22 16:20:54 +10:00
OBJECT_StorageList *stl, OBJECT_PassList *psl, Object *ob, const float color[3])
2017-05-20 22:57:47 +10:00
{
/* TODO: 'StereoViews', see draw_empty_image. */
if (stl->g_data->image_plane_map == NULL) {
stl->g_data->image_plane_map = BLI_ghash_ptr_new(__func__);
}
struct EmptyImageShadingGroupData *empty_image_data;
GPUTexture *tex = ob->data ?
GPU_texture_from_blender(ob->data, ob->iuser, GL_TEXTURE_2D, false, false, false) : NULL;
void **val_p;
/* Create on demand, 'tex' may be NULL. */
if (BLI_ghash_ensure_p(stl->g_data->image_plane_map, tex, &val_p)) {
empty_image_data = *val_p;
}
else {
empty_image_data = MEM_mallocN(sizeof(*empty_image_data), __func__);
image_calc_aspect(ob->data, ob->iuser, empty_image_data->image_aspect);
if (tex) {
DRW_shgroup_instance_format(e_data.empty_image_format, {
{"objectColor" , DRW_ATTRIB_FLOAT, 4},
{"size" , DRW_ATTRIB_FLOAT, 1},
{"offset" , DRW_ATTRIB_FLOAT, 2},
{"InstanceModelMatrix" , DRW_ATTRIB_FLOAT, 16},
});
struct Gwn_Batch *geom = DRW_cache_image_plane_get();
2017-05-20 22:57:47 +10:00
DRWShadingGroup *grp = DRW_shgroup_instance_create(
e_data.object_empty_image_sh, psl->non_meshes, geom, e_data.empty_image_format);
2017-05-20 22:57:47 +10:00
DRW_shgroup_uniform_texture(grp, "image", tex);
DRW_shgroup_uniform_vec2(grp, "aspect", empty_image_data->image_aspect, 1);
empty_image_data->shgrp_image = grp;
}
else {
empty_image_data->shgrp_image = NULL;
}
{
DRW_shgroup_instance_format(e_data.empty_image_wire_format, {
{"objectColor" , DRW_ATTRIB_FLOAT, 4},
{"size" , DRW_ATTRIB_FLOAT, 1},
{"offset" , DRW_ATTRIB_FLOAT, 2},
{"InstanceModelMatrix" , DRW_ATTRIB_FLOAT, 16}
});
struct Gwn_Batch *geom = DRW_cache_image_plane_wire_get();
2017-05-20 22:57:47 +10:00
DRWShadingGroup *grp = DRW_shgroup_instance_create(
e_data.object_empty_image_wire_sh, psl->non_meshes, geom, e_data.empty_image_wire_format);
2017-05-20 22:57:47 +10:00
DRW_shgroup_uniform_vec2(grp, "aspect", empty_image_data->image_aspect, 1);
empty_image_data->shgrp_wire = grp;
}
*val_p = empty_image_data;
}
if (empty_image_data->shgrp_image != NULL) {
DRW_shgroup_call_dynamic_add(
empty_image_data->shgrp_image,
ob->col,
&ob->empty_drawsize,
ob->ima_ofs,
ob->obmat);
}
DRW_shgroup_call_dynamic_add(
empty_image_data->shgrp_wire,
color,
&ob->empty_drawsize,
ob->ima_ofs,
ob->obmat);
}
static void OBJECT_cache_init(void *vedata)
{
OBJECT_PassList *psl = ((OBJECT_Data *)vedata)->psl;
OBJECT_StorageList *stl = ((OBJECT_Data *)vedata)->stl;
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
if (!stl->g_data) {
/* Alloc transient pointers */
stl->g_data = MEM_mallocN(sizeof(*stl->g_data), __func__);
}
{
DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH | DRW_STATE_DEPTH_LESS | DRW_STATE_WIRE;
psl->outlines = DRW_pass_create("Outlines Depth Pass", state);
GPUShader *sh = GPU_shader_get_builtin_shader(GPU_SHADER_3D_UNIFORM_COLOR);
/* Select */
stl->g_data->outlines_select = shgroup_outline(psl->outlines, ts.colorSelect, sh);
stl->g_data->outlines_select_group = shgroup_outline(psl->outlines, ts.colorGroupActive, sh);
/* Transform */
stl->g_data->outlines_transform = shgroup_outline(psl->outlines, ts.colorTransform, sh);
/* Active */
stl->g_data->outlines_active = shgroup_outline(psl->outlines, ts.colorActive, sh);
stl->g_data->outlines_active_group = shgroup_outline(psl->outlines, ts.colorGroupActive, sh);
}
{
DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH | DRW_STATE_DEPTH_LESS;
psl->lightprobes = DRW_pass_create("Object Probe Pass", state);
/* Cubemap */
stl->g_data->lightprobes_cube = shgroup_instance(psl->lightprobes, DRW_cache_sphere_get());
/* Planar */
stl->g_data->lightprobes_planar = shgroup_instance(psl->lightprobes, DRW_cache_quad_get());
}
{
DRWState state = DRW_STATE_WRITE_COLOR;
struct Gwn_Batch *quad = DRW_cache_fullscreen_quad_get();
2017-03-21 19:29:58 +01:00
static float alphaOcclu = 0.35f;
/* Reminder : bool uniforms need to be 4 bytes. */
static const int bTrue = true;
static const int bFalse = false;
psl->outlines_search = DRW_pass_create("Outlines Detect Pass", state);
DRWShadingGroup *grp = DRW_shgroup_create(e_data.outline_detect_sh, psl->outlines_search);
DRW_shgroup_uniform_buffer(grp, "outlineColor", &e_data.outlines_color_tx);
DRW_shgroup_uniform_buffer(grp, "outlineDepth", &e_data.outlines_depth_tx);
DRW_shgroup_uniform_buffer(grp, "sceneDepth", &dtxl->depth);
2017-03-21 19:29:58 +01:00
DRW_shgroup_uniform_float(grp, "alphaOcclu", &alphaOcclu, 1);
DRW_shgroup_call_add(grp, quad, NULL);
psl->outlines_expand = DRW_pass_create("Outlines Expand Pass", state);
grp = DRW_shgroup_create(e_data.outline_fade_sh, psl->outlines_expand);
DRW_shgroup_uniform_buffer(grp, "outlineColor", &e_data.outlines_blur_tx);
DRW_shgroup_uniform_bool(grp, "doExpand", &bTrue, 1);
DRW_shgroup_call_add(grp, quad, NULL);
psl->outlines_bleed = DRW_pass_create("Outlines Bleed Pass", state);
grp = DRW_shgroup_create(e_data.outline_fade_sh, psl->outlines_bleed);
DRW_shgroup_uniform_buffer(grp, "outlineColor", &e_data.outlines_color_tx);
DRW_shgroup_uniform_bool(grp, "doExpand", &bFalse, 1);
DRW_shgroup_call_add(grp, quad, NULL);
}
{
DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND;
psl->outlines_resolve = DRW_pass_create("Outlines Resolve Pass", state);
struct Gwn_Batch *quad = DRW_cache_fullscreen_quad_get();
DRWShadingGroup *grp = DRW_shgroup_create(e_data.outline_resolve_aa_sh, psl->outlines_resolve);
DRW_shgroup_uniform_buffer(grp, "outlineBluredColor", &e_data.outlines_blur_tx);
DRW_shgroup_uniform_vec2(grp, "rcpDimensions", e_data.inv_viewport_size, 1);
DRW_shgroup_call_add(grp, quad, NULL);
}
{
/* Grid pass */
DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND;
psl->grid = DRW_pass_create("Infinite Grid Pass", state);
struct Gwn_Batch *quad = DRW_cache_fullscreen_quad_get();
static float mat[4][4];
unit_m4(mat);
/* Create 3 quads to render ordered transparency Z axis */
DRWShadingGroup *grp = DRW_shgroup_create(e_data.grid_sh, psl->grid);
DRW_shgroup_uniform_int(grp, "gridFlag", &e_data.zneg_flag, 1);
DRW_shgroup_uniform_vec3(grp, "planeNormal", e_data.zplane_normal, 1);
DRW_shgroup_uniform_vec3(grp, "planeAxes", e_data.zplane_axes, 1);
DRW_shgroup_uniform_vec3(grp, "cameraPos", e_data.camera_pos, 1);
DRW_shgroup_uniform_vec4(grp, "screenvecs[0]", e_data.screenvecs[0], 3);
DRW_shgroup_uniform_vec4(grp, "gridSettings", e_data.grid_settings, 1);
DRW_shgroup_uniform_float(grp, "gridOneOverLogSubdiv", &e_data.grid_settings[4], 1);
DRW_shgroup_uniform_block(grp, "globalsBlock", globals_ubo);
DRW_shgroup_uniform_vec2(grp, "viewportSize", DRW_viewport_size_get(), 1);
DRW_shgroup_uniform_buffer(grp, "depthBuffer", &dtxl->depth);
DRW_shgroup_call_add(grp, quad, mat);
grp = DRW_shgroup_create(e_data.grid_sh, psl->grid);
DRW_shgroup_uniform_int(grp, "gridFlag", &e_data.grid_flag, 1);
DRW_shgroup_uniform_vec3(grp, "planeNormal", e_data.grid_normal, 1);
DRW_shgroup_uniform_vec3(grp, "planeAxes", e_data.grid_axes, 1);
DRW_shgroup_uniform_block(grp, "globalsBlock", globals_ubo);
DRW_shgroup_uniform_buffer(grp, "depthBuffer", &dtxl->depth);
DRW_shgroup_call_add(grp, quad, mat);
grp = DRW_shgroup_create(e_data.grid_sh, psl->grid);
DRW_shgroup_uniform_int(grp, "gridFlag", &e_data.zpos_flag, 1);
DRW_shgroup_uniform_vec3(grp, "planeNormal", e_data.zplane_normal, 1);
DRW_shgroup_uniform_vec3(grp, "planeAxes", e_data.zplane_axes, 1);
DRW_shgroup_uniform_block(grp, "globalsBlock", globals_ubo);
DRW_shgroup_uniform_buffer(grp, "depthBuffer", &dtxl->depth);
DRW_shgroup_call_add(grp, quad, mat);
}
{
/* Solid bones */
DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH | DRW_STATE_DEPTH_LESS;
psl->bone_solid = DRW_pass_create("Bone Solid Pass", state);
}
{
/* Wire bones */
DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH | DRW_STATE_DEPTH_LESS | DRW_STATE_BLEND;
psl->bone_wire = DRW_pass_create("Bone Wire Pass", state);
}
{
/* distance outline around envelope bones */
DRWState state = DRW_STATE_ADDITIVE | DRW_STATE_WRITE_COLOR | DRW_STATE_DEPTH_LESS | DRW_STATE_BLEND;
psl->bone_envelope = DRW_pass_create("Bone Envelope Outline Pass", state);
}
{
/* Non Meshes Pass (Camera, empties, lamps ...) */
struct Gwn_Batch *geom;
DRWState state =
DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH |
DRW_STATE_DEPTH_LESS | DRW_STATE_BLEND | DRW_STATE_POINT;
state |= DRW_STATE_WIRE;
psl->non_meshes = DRW_pass_create("Non Meshes Pass", state);
/* Empties */
geom = DRW_cache_plain_axes_get();
stl->g_data->plain_axes = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_cube_get();
stl->g_data->cube = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_circle_get();
stl->g_data->circle = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_empty_sphere_get();
stl->g_data->sphere = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_empty_cone_get();
stl->g_data->cone = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_single_arrow_get();
stl->g_data->single_arrow = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_single_line_get();
stl->g_data->single_arrow_line = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_arrows_get();
stl->g_data->arrows = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_axis_names_get();
stl->g_data->axis_names = shgroup_instance_axis_names(psl->non_meshes, geom);
2017-05-20 22:57:47 +10:00
/* initialize on first use */
stl->g_data->image_plane_map = NULL;
/* Force Field */
geom = DRW_cache_field_wind_get();
stl->g_data->field_wind = shgroup_instance_scaled(psl->non_meshes, geom);
geom = DRW_cache_field_force_get();
stl->g_data->field_force = shgroup_instance_screen_aligned(psl->non_meshes, geom);
geom = DRW_cache_field_vortex_get();
stl->g_data->field_vortex = shgroup_instance_scaled(psl->non_meshes, geom);
geom = DRW_cache_screenspace_circle_get();
stl->g_data->field_curve_sta = shgroup_instance_screen_aligned(psl->non_meshes, geom);
/* Speaker */
geom = DRW_cache_speaker_get();
stl->g_data->speaker = shgroup_instance(psl->non_meshes, geom);
2017-06-07 16:00:10 +02:00
/* Probe */
static float probeSize = 14.0f;
geom = DRW_cache_lightprobe_cube_get();
stl->g_data->probe_cube = shgroup_instance_screenspace(psl->non_meshes, geom, &probeSize);
geom = DRW_cache_lightprobe_grid_get();
stl->g_data->probe_grid = shgroup_instance_screenspace(psl->non_meshes, geom, &probeSize);
static float probePlanarSize = 20.0f;
geom = DRW_cache_lightprobe_planar_get();
stl->g_data->probe_planar = shgroup_instance_screenspace(psl->non_meshes, geom, &probePlanarSize);
2017-06-07 16:00:10 +02:00
/* Camera */
geom = DRW_cache_camera_get();
stl->g_data->camera = shgroup_camera_instance(psl->non_meshes, geom);
geom = DRW_cache_camera_frame_get();
stl->g_data->camera_frame = shgroup_camera_instance(psl->non_meshes, geom);
geom = DRW_cache_camera_tria_get();
stl->g_data->camera_tria = shgroup_camera_instance(psl->non_meshes, geom);
geom = DRW_cache_plain_axes_get();
stl->g_data->camera_focus = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_single_line_get();
stl->g_data->camera_clip = shgroup_distance_lines_instance(psl->non_meshes, geom);
stl->g_data->camera_mist = shgroup_distance_lines_instance(psl->non_meshes, geom);
geom = DRW_cache_single_line_endpoints_get();
stl->g_data->camera_clip_points = shgroup_distance_lines_instance(psl->non_meshes, geom);
stl->g_data->camera_mist_points = shgroup_distance_lines_instance(psl->non_meshes, geom);
}
{
GPUShader *sh = GPU_shader_get_builtin_shader(GPU_SHADER_3D_UNIFORM_COLOR);
/* Unselected */
stl->g_data->wire = shgroup_wire(psl->non_meshes, ts.colorWire, sh);
/* Select */
stl->g_data->wire_select = shgroup_wire(psl->non_meshes, ts.colorSelect, sh);
stl->g_data->wire_select_group = shgroup_wire(psl->non_meshes, ts.colorGroupActive, sh);
/* Transform */
stl->g_data->wire_transform = shgroup_wire(psl->non_meshes, ts.colorTransform, sh);
/* Active */
stl->g_data->wire_active = shgroup_wire(psl->non_meshes, ts.colorActive, sh);
stl->g_data->wire_active_group = shgroup_wire(psl->non_meshes, ts.colorGroupActive, sh);
}
{
GPUShader *sh = GPU_shader_get_builtin_shader(GPU_SHADER_3D_POINT_FIXED_SIZE_UNIFORM_COLOR);
/* Unselected */
stl->g_data->points = shgroup_points(psl->non_meshes, ts.colorWire, sh);
/* Select */
stl->g_data->points_select = shgroup_points(psl->non_meshes, ts.colorSelect, sh);
stl->g_data->points_select_group = shgroup_points(psl->non_meshes, ts.colorGroupActive, sh);
/* Transform */
stl->g_data->points_transform = shgroup_points(psl->non_meshes, ts.colorTransform, sh);
/* Active */
stl->g_data->points_active = shgroup_points(psl->non_meshes, ts.colorActive, sh);
stl->g_data->points_active_group = shgroup_points(psl->non_meshes, ts.colorGroupActive, sh);
}
{
/* Metaballs Handles */
struct Gwn_Batch *geom;
geom = DRW_cache_screenspace_circle_get();
stl->g_data->mball_handle = shgroup_instance_mball_handles(psl->non_meshes, geom);
}
{
/* Lamps */
/* TODO
* for now we create multiple times the same VBO with only lamp center coordinates
* but ideally we would only create it once */
struct Gwn_Batch *geom;
/* start with buflimit because we don't want stipples */
geom = DRW_cache_single_line_get();
stl->g_data->lamp_buflimit = shgroup_distance_lines_instance(psl->non_meshes, geom);
stl->g_data->lamp_center = shgroup_dynpoints_uniform_color(psl->non_meshes, ts.colorLampNoAlpha, &ts.sizeLampCenter);
stl->g_data->lamp_center_group = shgroup_dynpoints_uniform_color(psl->non_meshes, ts.colorGroup, &ts.sizeLampCenter);
geom = DRW_cache_lamp_get();
stl->g_data->lamp_circle = shgroup_instance_screenspace(psl->non_meshes, geom, &ts.sizeLampCircle);
geom = DRW_cache_lamp_shadows_get();
stl->g_data->lamp_circle_shadow = shgroup_instance_screenspace(psl->non_meshes, geom, &ts.sizeLampCircleShadow);
geom = DRW_cache_lamp_sunrays_get();
stl->g_data->lamp_sunrays = shgroup_instance_screenspace(psl->non_meshes, geom, &ts.sizeLampCircle);
stl->g_data->lamp_groundline = shgroup_groundlines_uniform_color(psl->non_meshes, ts.colorLamp);
stl->g_data->lamp_groundpoint = shgroup_groundpoints_uniform_color(psl->non_meshes, ts.colorLamp);
geom = DRW_cache_lamp_area_get();
stl->g_data->lamp_area = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_lamp_hemi_get();
stl->g_data->lamp_hemi = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_single_line_get();
stl->g_data->lamp_distance = shgroup_distance_lines_instance(psl->non_meshes, geom);
geom = DRW_cache_single_line_endpoints_get();
stl->g_data->lamp_buflimit_points = shgroup_distance_lines_instance(psl->non_meshes, geom);
geom = DRW_cache_lamp_spot_get();
stl->g_data->lamp_spot_cone = shgroup_spot_instance(psl->non_meshes, geom);
geom = DRW_cache_circle_get();
stl->g_data->lamp_spot_blend = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_lamp_spot_square_get();
stl->g_data->lamp_spot_pyramid = shgroup_instance(psl->non_meshes, geom);
geom = DRW_cache_square_get();
stl->g_data->lamp_spot_blend_rect = shgroup_instance(psl->non_meshes, geom);
}
{
/* -------- STIPPLES ------- */
/* TODO port to shader stipple */
struct Gwn_Batch *geom;
/* Relationship Lines */
stl->g_data->relationship_lines = shgroup_dynlines_uniform_color(psl->non_meshes, ts.colorWire);
DRW_shgroup_state_enable(stl->g_data->relationship_lines, DRW_STATE_STIPPLE_3);
/* Force Field Curve Guide End (here because of stipple) */
geom = DRW_cache_screenspace_circle_get();
stl->g_data->field_curve_end = shgroup_instance_screen_aligned(psl->non_meshes, geom);
/* Force Field Limits */
geom = DRW_cache_field_tube_limit_get();
stl->g_data->field_tube_limit = shgroup_instance_scaled(psl->non_meshes, geom);
geom = DRW_cache_field_cone_limit_get();
stl->g_data->field_cone_limit = shgroup_instance_scaled(psl->non_meshes, geom);
}
{
/* Object Center pass grouped by State */
DRWShadingGroup *grp;
static float outlineWidth, size;
DRWState state = DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND | DRW_STATE_POINT;
psl->ob_center = DRW_pass_create("Obj Center Pass", state);
outlineWidth = 1.0f * U.pixelsize;
size = U.obcenter_dia * U.pixelsize + outlineWidth;
GPUShader *sh = GPU_shader_get_builtin_shader(GPU_SHADER_3D_POINT_UNIFORM_SIZE_UNIFORM_COLOR_OUTLINE_AA);
/* Active */
grp = DRW_shgroup_point_batch_create(sh, psl->ob_center);
DRW_shgroup_uniform_float(grp, "size", &size, 1);
DRW_shgroup_uniform_float(grp, "outlineWidth", &outlineWidth, 1);
DRW_shgroup_uniform_vec4(grp, "color", ts.colorActive, 1);
DRW_shgroup_uniform_vec4(grp, "outlineColor", ts.colorOutline, 1);
stl->g_data->center_active = grp;
/* Select */
grp = DRW_shgroup_point_batch_create(sh, psl->ob_center);
DRW_shgroup_uniform_vec4(grp, "color", ts.colorSelect, 1);
stl->g_data->center_selected = grp;
/* Deselect */
grp = DRW_shgroup_point_batch_create(sh, psl->ob_center);
DRW_shgroup_uniform_vec4(grp, "color", ts.colorDeselect, 1);
stl->g_data->center_deselected = grp;
/* Select (library) */
grp = DRW_shgroup_point_batch_create(sh, psl->ob_center);
DRW_shgroup_uniform_vec4(grp, "color", ts.colorLibrarySelect, 1);
stl->g_data->center_selected_lib = grp;
/* Deselect (library) */
grp = DRW_shgroup_point_batch_create(sh, psl->ob_center);
DRW_shgroup_uniform_vec4(grp, "color", ts.colorLibrary, 1);
stl->g_data->center_deselected_lib = grp;
}
2017-05-19 18:32:40 +02:00
{
/* Particle Pass */
2017-07-14 16:56:02 +10:00
psl->particle = DRW_pass_create(
"Particle Pass",
DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH | DRW_STATE_DEPTH_LESS |
DRW_STATE_POINT | DRW_STATE_BLEND);
2017-05-19 18:32:40 +02:00
}
{
/* Empty/Background Image Pass */
psl->reference_image = DRW_pass_create(
"Refrence Image Pass",
DRW_STATE_WRITE_COLOR | DRW_STATE_WRITE_DEPTH | DRW_STATE_DEPTH_LESS | DRW_STATE_BLEND);
}
}
static void DRW_shgroup_mball_handles(OBJECT_StorageList *stl, Object *ob, ViewLayer *view_layer)
{
MetaBall *mb = ob->data;
float *color;
DRW_object_wire_theme_get(ob, view_layer, &color);
for (MetaElem *ml = mb->elems.first; ml != NULL; ml = ml->next) {
/* draw radius */
BKE_mball_element_calc_scale_xform(ml->draw_scale_xform, ob->obmat, &ml->x);
DRW_shgroup_call_dynamic_add(stl->g_data->mball_handle, ml->draw_scale_xform, &ml->rad, color);
}
}
static void DRW_shgroup_lamp(OBJECT_StorageList *stl, Object *ob, ViewLayer *view_layer)
{
Lamp *la = ob->data;
float *color;
int theme_id = DRW_object_wire_theme_get(ob, view_layer, &color);
static float zero = 0.0f;
typedef struct LampEngineData {
ObjectEngineData engine_data;
float shape_mat[4][4];
float spot_blend_mat[4][4];
} LampEngineData;
LampEngineData *lamp_engine_data =
(LampEngineData *)DRW_object_engine_data_ensure(
ob,
&draw_engine_object_type,
sizeof(LampEngineData),
NULL,
NULL);
float (*shapemat)[4] = lamp_engine_data->shape_mat;
float (*spotblendmat)[4] = lamp_engine_data->spot_blend_mat;
/* Don't draw the center if it's selected or active */
if (theme_id == TH_GROUP)
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_center_group, ob->obmat[3]);
else if (theme_id == TH_LAMP)
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_center, ob->obmat[3]);
/* First circle */
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_circle, ob->obmat[3], color);
/* draw dashed outer circle if shadow is on. remember some lamps can't have certain shadows! */
if (la->type != LA_HEMI) {
if ((la->mode & LA_SHAD_RAY) || ((la->mode & LA_SHAD_BUF) && (la->type == LA_SPOT))) {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_circle_shadow, ob->obmat[3], color);
}
}
/* Distance */
if (ELEM(la->type, LA_HEMI, LA_SUN, LA_AREA)) {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_distance, color, &zero, &la->dist, ob->obmat);
}
copy_m4_m4(shapemat, ob->obmat);
if (la->type == LA_SUN) {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_sunrays, ob->obmat[3], color);
}
else if (la->type == LA_SPOT) {
float size[3], sizemat[4][4];
static float one = 1.0f;
float blend = 1.0f - pow2f(la->spotblend);
size[0] = size[1] = sinf(la->spotsize * 0.5f) * la->dist;
size[2] = cosf(la->spotsize * 0.5f) * la->dist;
size_to_mat4(sizemat, size);
mul_m4_m4m4(shapemat, ob->obmat, sizemat);
size[0] = size[1] = blend; size[2] = 1.0f;
size_to_mat4(sizemat, size);
translate_m4(sizemat, 0.0f, 0.0f, -1.0f);
2017-08-01 13:35:26 +10:00
rotate_m4(sizemat, 'X', (float)(M_PI / 2));
mul_m4_m4m4(spotblendmat, shapemat, sizemat);
if (la->mode & LA_SQUARE) {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_spot_pyramid, color, &one, shapemat);
/* hide line if it is zero size or overlaps with outer border,
* previously it adjusted to always to show it but that seems
* confusing because it doesn't show the actual blend size */
if (blend != 0.0f && blend != 1.0f) {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_spot_blend_rect, color, &one, spotblendmat);
}
}
else {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_spot_cone, color, shapemat);
/* hide line if it is zero size or overlaps with outer border,
* previously it adjusted to always to show it but that seems
* confusing because it doesn't show the actual blend size */
if (blend != 0.0f && blend != 1.0f) {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_spot_blend, color, &one, spotblendmat);
}
}
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_buflimit, color, &la->clipsta, &la->clipend, ob->obmat);
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_buflimit_points, color, &la->clipsta, &la->clipend, ob->obmat);
}
else if (la->type == LA_HEMI) {
static float hemisize = 2.0f;
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_hemi, color, &hemisize, shapemat);
}
else if (la->type == LA_AREA) {
float size[3] = {1.0f, 1.0f, 1.0f}, sizemat[4][4];
if (la->area_shape == LA_AREA_RECT) {
size[1] = la->area_sizey / la->area_size;
size_to_mat4(sizemat, size);
mul_m4_m4m4(shapemat, shapemat, sizemat);
}
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_area, color, &la->area_size, shapemat);
}
/* Line and point going to the ground */
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_groundline, ob->obmat[3]);
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_groundpoint, ob->obmat[3]);
}
static void DRW_shgroup_camera(OBJECT_StorageList *stl, Object *ob, ViewLayer *view_layer)
{
const DRWContextState *draw_ctx = DRW_context_state_get();
View3D *v3d = draw_ctx->v3d;
Scene *scene = draw_ctx->scene;
RegionView3D *rv3d = draw_ctx->rv3d;
Camera *cam = ob->data;
const bool is_active = (ob == v3d->camera);
const bool look_through = (is_active && (rv3d->persp == RV3D_CAMOB));
float *color;
DRW_object_wire_theme_get(ob, view_layer, &color);
float vec[4][3], asp[2], shift[2], scale[3], drawsize;
scale[0] = 1.0f / len_v3(ob->obmat[0]);
scale[1] = 1.0f / len_v3(ob->obmat[1]);
scale[2] = 1.0f / len_v3(ob->obmat[2]);
BKE_camera_view_frame_ex(scene, cam, cam->drawsize, false, scale,
asp, shift, &drawsize, vec);
/* Frame coords */
copy_v2_v2(cam->drwcorners[0], vec[0]);
copy_v2_v2(cam->drwcorners[1], vec[1]);
copy_v2_v2(cam->drwcorners[2], vec[2]);
copy_v2_v2(cam->drwcorners[3], vec[3]);
/* depth */
cam->drwdepth = vec[0][2];
/* tria */
cam->drwtria[0][0] = shift[0] + ((0.7f * drawsize) * scale[0]);
cam->drwtria[0][1] = shift[1] + ((drawsize * (asp[1] + 0.1f)) * scale[1]);
cam->drwtria[1][0] = shift[0];
cam->drwtria[1][1] = shift[1] + ((1.1f * drawsize * (asp[1] + 0.7f)) * scale[1]);
if (look_through) {
/* Only draw the frame. */
DRW_shgroup_call_dynamic_add(
stl->g_data->camera_frame, color, cam->drwcorners,
&cam->drwdepth, cam->drwtria, ob->obmat);
}
else {
DRW_shgroup_call_dynamic_add(
stl->g_data->camera, color, cam->drwcorners,
&cam->drwdepth, cam->drwtria, ob->obmat);
/* Active cam */
if (is_active) {
DRW_shgroup_call_dynamic_add(
stl->g_data->camera_tria, color,
cam->drwcorners, &cam->drwdepth, cam->drwtria, ob->obmat);
}
}
/* draw the rest in normalize object space */
copy_m4_m4(cam->drwnormalmat, ob->obmat);
normalize_m4(cam->drwnormalmat);
if (cam->flag & CAM_SHOWLIMITS) {
static float col[3] = {0.5f, 0.5f, 0.25f}, col_hi[3] = {1.0f, 1.0f, 0.5f};
float sizemat[4][4], size[3] = {1.0f, 1.0f, 0.0f};
float focusdist = BKE_camera_object_dof_distance(ob);
copy_m4_m4(cam->drwfocusmat, cam->drwnormalmat);
translate_m4(cam->drwfocusmat, 0.0f, 0.0f, -focusdist);
size_to_mat4(sizemat, size);
mul_m4_m4m4(cam->drwfocusmat, cam->drwfocusmat, sizemat);
DRW_shgroup_call_dynamic_add(
stl->g_data->camera_focus, (is_active ? col_hi : col),
&cam->drawsize, cam->drwfocusmat);
DRW_shgroup_call_dynamic_add(
stl->g_data->camera_clip, color,
&cam->clipsta, &cam->clipend, cam->drwnormalmat);
DRW_shgroup_call_dynamic_add(
stl->g_data->camera_clip_points, (is_active ? col_hi : col),
&cam->clipsta, &cam->clipend, cam->drwnormalmat);
}
if (cam->flag & CAM_SHOWMIST) {
World *world = scene->world;
if (world) {
static float col[3] = {0.5f, 0.5f, 0.5f}, col_hi[3] = {1.0f, 1.0f, 1.0f};
world->mistend = world->miststa + world->mistdist;
DRW_shgroup_call_dynamic_add(
stl->g_data->camera_mist, color,
&world->miststa, &world->mistend, cam->drwnormalmat);
DRW_shgroup_call_dynamic_add(
stl->g_data->camera_mist_points, (is_active ? col_hi : col),
&world->miststa, &world->mistend, cam->drwnormalmat);
}
}
}
static void DRW_shgroup_empty(OBJECT_StorageList *stl, OBJECT_PassList *psl, Object *ob, ViewLayer *view_layer)
{
float *color;
DRW_object_wire_theme_get(ob, view_layer, &color);
switch (ob->empty_drawtype) {
case OB_PLAINAXES:
DRW_shgroup_call_dynamic_add(stl->g_data->plain_axes, color, &ob->empty_drawsize, ob->obmat);
break;
case OB_SINGLE_ARROW:
DRW_shgroup_call_dynamic_add(stl->g_data->single_arrow, color, &ob->empty_drawsize, ob->obmat);
DRW_shgroup_call_dynamic_add(stl->g_data->single_arrow_line, color, &ob->empty_drawsize, ob->obmat);
break;
case OB_CUBE:
DRW_shgroup_call_dynamic_add(stl->g_data->cube, color, &ob->empty_drawsize, ob->obmat);
break;
case OB_CIRCLE:
DRW_shgroup_call_dynamic_add(stl->g_data->circle, color, &ob->empty_drawsize, ob->obmat);
break;
case OB_EMPTY_SPHERE:
DRW_shgroup_call_dynamic_add(stl->g_data->sphere, color, &ob->empty_drawsize, ob->obmat);
break;
case OB_EMPTY_CONE:
DRW_shgroup_call_dynamic_add(stl->g_data->cone, color, &ob->empty_drawsize, ob->obmat);
break;
case OB_ARROWS:
DRW_shgroup_call_dynamic_add(stl->g_data->arrows, color, &ob->empty_drawsize, ob->obmat);
DRW_shgroup_call_dynamic_add(stl->g_data->axis_names, color, &ob->empty_drawsize, ob->obmat);
break;
2017-05-20 22:57:47 +10:00
case OB_EMPTY_IMAGE:
DRW_shgroup_empty_image(stl, psl, ob, color);
break;
}
}
static void DRW_shgroup_forcefield(OBJECT_StorageList *stl, Object *ob, ViewLayer *view_layer)
{
int theme_id = DRW_object_wire_theme_get(ob, view_layer, NULL);
float *color = DRW_color_background_blend_get(theme_id);
PartDeflect *pd = ob->pd;
Curve *cu = (ob->type == OB_CURVE) ? ob->data : NULL;
/* TODO Move this to depsgraph */
float tmp[3];
copy_v3_fl(pd->drawvec1, ob->empty_drawsize);
switch (pd->forcefield) {
case PFIELD_WIND:
pd->drawvec1[2] = pd->f_strength;
break;
case PFIELD_VORTEX:
if (pd->f_strength < 0.0f) {
pd->drawvec1[1] = -pd->drawvec1[1];
}
break;
case PFIELD_GUIDE:
if (cu && (cu->flag & CU_PATH) && ob->curve_cache->path && ob->curve_cache->path->data) {
where_on_path(ob, 0.0f, pd->drawvec1, tmp, NULL, NULL, NULL);
where_on_path(ob, 1.0f, pd->drawvec2, tmp, NULL, NULL, NULL);
}
break;
}
if (pd->falloff == PFIELD_FALL_TUBE) {
pd->drawvec_falloff_max[0] = pd->drawvec_falloff_max[1] = (pd->flag & PFIELD_USEMAXR) ? pd->maxrad : 1.0f;
pd->drawvec_falloff_max[2] = (pd->flag & PFIELD_USEMAX) ? pd->maxdist : 0.0f;
pd->drawvec_falloff_min[0] = pd->drawvec_falloff_min[1] = (pd->flag & PFIELD_USEMINR) ? pd->minrad : 1.0f;
pd->drawvec_falloff_min[2] = (pd->flag & PFIELD_USEMIN) ? pd->mindist : 0.0f;
}
else if (pd->falloff == PFIELD_FALL_CONE) {
float radius, distance;
radius = DEG2RADF((pd->flag & PFIELD_USEMAXR) ? pd->maxrad : 1.0f);
distance = (pd->flag & PFIELD_USEMAX) ? pd->maxdist : 0.0f;
pd->drawvec_falloff_max[0] = pd->drawvec_falloff_max[1] = distance * sinf(radius);
pd->drawvec_falloff_max[2] = distance * cosf(radius);
radius = DEG2RADF((pd->flag & PFIELD_USEMINR) ? pd->minrad : 1.0f);
distance = (pd->flag & PFIELD_USEMIN) ? pd->mindist : 0.0f;
pd->drawvec_falloff_min[0] = pd->drawvec_falloff_min[1] = distance * sinf(radius);
pd->drawvec_falloff_min[2] = distance * cosf(radius);
}
/* End of things that should go to depthgraph */
switch (pd->forcefield) {
case PFIELD_WIND:
DRW_shgroup_call_dynamic_add(stl->g_data->field_wind, color, &pd->drawvec1, ob->obmat);
break;
case PFIELD_FORCE:
DRW_shgroup_call_dynamic_add(stl->g_data->field_force, color, &pd->drawvec1, ob->obmat);
break;
case PFIELD_VORTEX:
DRW_shgroup_call_dynamic_add(stl->g_data->field_vortex, color, &pd->drawvec1, ob->obmat);
break;
case PFIELD_GUIDE:
if (cu && (cu->flag & CU_PATH) && ob->curve_cache->path && ob->curve_cache->path->data) {
DRW_shgroup_call_dynamic_add(stl->g_data->field_curve_sta, color, &pd->f_strength, ob->obmat);
DRW_shgroup_call_dynamic_add(stl->g_data->field_curve_end, color, &pd->f_strength, ob->obmat);
}
break;
}
if (pd->falloff == PFIELD_FALL_SPHERE) {
/* as last, guide curve alters it */
if ((pd->flag & PFIELD_USEMAX) != 0) {
DRW_shgroup_call_dynamic_add(stl->g_data->field_curve_end, color, &pd->maxdist, ob->obmat);
}
if ((pd->flag & PFIELD_USEMIN) != 0) {
DRW_shgroup_call_dynamic_add(stl->g_data->field_curve_end, color, &pd->mindist, ob->obmat);
}
}
else if (pd->falloff == PFIELD_FALL_TUBE) {
if (pd->flag & (PFIELD_USEMAX | PFIELD_USEMAXR)) {
DRW_shgroup_call_dynamic_add(stl->g_data->field_tube_limit, color, &pd->drawvec_falloff_max, ob->obmat);
}
if (pd->flag & (PFIELD_USEMIN | PFIELD_USEMINR)) {
DRW_shgroup_call_dynamic_add(stl->g_data->field_tube_limit, color, &pd->drawvec_falloff_min, ob->obmat);
}
}
else if (pd->falloff == PFIELD_FALL_CONE) {
if (pd->flag & (PFIELD_USEMAX | PFIELD_USEMAXR)) {
DRW_shgroup_call_dynamic_add(stl->g_data->field_cone_limit, color, &pd->drawvec_falloff_max, ob->obmat);
}
if (pd->flag & (PFIELD_USEMIN | PFIELD_USEMINR)) {
DRW_shgroup_call_dynamic_add(stl->g_data->field_cone_limit, color, &pd->drawvec_falloff_min, ob->obmat);
}
}
}
static void DRW_shgroup_speaker(OBJECT_StorageList *stl, Object *ob, ViewLayer *view_layer)
{
float *color;
static float one = 1.0f;
DRW_object_wire_theme_get(ob, view_layer, &color);
DRW_shgroup_call_dynamic_add(stl->g_data->speaker, color, &one, ob->obmat);
}
typedef struct OBJECT_LightProbeEngineData {
2018-01-30 13:36:41 +11:00
ObjectEngineData engine_data;
float prb_mats[6][4][4];
float probe_cube_mat[4][4];
float draw_size;
float increment_x[3];
float increment_y[3];
float increment_z[3];
float corner[3];
} OBJECT_LightProbeEngineData;
static void DRW_shgroup_lightprobe(OBJECT_StorageList *stl, OBJECT_PassList *psl, Object *ob, ViewLayer *view_layer)
2017-06-07 16:00:10 +02:00
{
float *color;
static float one = 1.0f;
LightProbe *prb = (LightProbe *)ob->data;
bool do_outlines = ((ob->base_flag & BASE_SELECTED) != 0);
DRW_object_wire_theme_get(ob, view_layer, &color);
2017-06-07 16:00:10 +02:00
OBJECT_LightProbeEngineData *prb_data =
(OBJECT_LightProbeEngineData *)DRW_object_engine_data_ensure(
ob,
&draw_engine_object_type,
sizeof(OBJECT_LightProbeEngineData),
NULL,
NULL);
if ((DRW_state_is_select() || do_outlines) && ((prb->flag & LIGHTPROBE_FLAG_SHOW_DATA) != 0)) {
if (prb->type == LIGHTPROBE_TYPE_GRID) {
/* Update transforms */
float cell_dim[3], half_cell_dim[3];
cell_dim[0] = 2.0f / (float)(prb->grid_resolution_x);
cell_dim[1] = 2.0f / (float)(prb->grid_resolution_y);
cell_dim[2] = 2.0f / (float)(prb->grid_resolution_z);
mul_v3_v3fl(half_cell_dim, cell_dim, 0.5f);
/* First cell. */
copy_v3_fl(prb_data->corner, -1.0f);
add_v3_v3(prb_data->corner, half_cell_dim);
mul_m4_v3(ob->obmat, prb_data->corner);
/* Opposite neighbor cell. */
copy_v3_fl3(prb_data->increment_x, cell_dim[0], 0.0f, 0.0f);
add_v3_v3(prb_data->increment_x, half_cell_dim);
add_v3_fl(prb_data->increment_x, -1.0f);
mul_m4_v3(ob->obmat, prb_data->increment_x);
sub_v3_v3(prb_data->increment_x, prb_data->corner);
copy_v3_fl3(prb_data->increment_y, 0.0f, cell_dim[1], 0.0f);
add_v3_v3(prb_data->increment_y, half_cell_dim);
add_v3_fl(prb_data->increment_y, -1.0f);
mul_m4_v3(ob->obmat, prb_data->increment_y);
sub_v3_v3(prb_data->increment_y, prb_data->corner);
copy_v3_fl3(prb_data->increment_z, 0.0f, 0.0f, cell_dim[2]);
add_v3_v3(prb_data->increment_z, half_cell_dim);
add_v3_fl(prb_data->increment_z, -1.0f);
mul_m4_v3(ob->obmat, prb_data->increment_z);
sub_v3_v3(prb_data->increment_z, prb_data->corner);
DRWShadingGroup *grp = DRW_shgroup_instance_create(e_data.lightprobe_grid_sh, psl->lightprobes,
DRW_cache_sphere_get(), NULL);
DRW_shgroup_set_instance_count(grp, prb->grid_resolution_x * prb->grid_resolution_y * prb->grid_resolution_z);
DRW_shgroup_uniform_vec4(grp, "color", color, 1);
DRW_shgroup_uniform_vec3(grp, "corner", prb_data->corner, 1);
DRW_shgroup_uniform_vec3(grp, "increment_x", prb_data->increment_x, 1);
DRW_shgroup_uniform_vec3(grp, "increment_y", prb_data->increment_y, 1);
DRW_shgroup_uniform_vec3(grp, "increment_z", prb_data->increment_z, 1);
DRW_shgroup_uniform_ivec3(grp, "grid_resolution", &prb->grid_resolution_x, 1);
DRW_shgroup_uniform_float(grp, "sphere_size", &prb->data_draw_size, 1);
}
else if (prb->type == LIGHTPROBE_TYPE_CUBE) {
prb_data->draw_size = prb->data_draw_size * 0.1f;
unit_m4(prb_data->probe_cube_mat);
copy_v3_v3(prb_data->probe_cube_mat[3], ob->obmat[3]);
DRW_shgroup_call_dynamic_add(stl->g_data->lightprobes_cube, color, &prb_data->draw_size, prb_data->probe_cube_mat);
}
else {
prb_data->draw_size = 1.0f;
DRW_shgroup_call_dynamic_add(stl->g_data->lightprobes_planar, color, &prb_data->draw_size, ob->obmat);
}
}
switch (prb->type) {
case LIGHTPROBE_TYPE_PLANAR:
DRW_shgroup_call_dynamic_add(stl->g_data->probe_planar, ob->obmat[3], color);
break;
case LIGHTPROBE_TYPE_GRID:
DRW_shgroup_call_dynamic_add(stl->g_data->probe_grid, ob->obmat[3], color);
break;
case LIGHTPROBE_TYPE_CUBE:
default:
DRW_shgroup_call_dynamic_add(stl->g_data->probe_cube, ob->obmat[3], color);
break;
}
if (prb->type == LIGHTPROBE_TYPE_PLANAR) {
float (*mat)[4];
mat = (float (*)[4])(prb_data->prb_mats[0]);
copy_m4_m4(mat, ob->obmat);
normalize_m4(mat);
DRW_shgroup_call_dynamic_add(stl->g_data->single_arrow, color, &ob->empty_drawsize, mat);
DRW_shgroup_call_dynamic_add(stl->g_data->single_arrow_line, color, &ob->empty_drawsize, mat);
mat = (float (*)[4])(prb_data->prb_mats[1]);
copy_m4_m4(mat, ob->obmat);
zero_v3(mat[2]);
DRW_shgroup_call_dynamic_add(stl->g_data->cube, color, &one, mat);
}
if ((prb->flag & LIGHTPROBE_FLAG_SHOW_INFLUENCE) != 0) {
prb->distfalloff = (1.0f - prb->falloff) * prb->distinf;
prb->distgridinf = prb->distinf;
2017-06-14 13:45:54 +02:00
if (prb->type == LIGHTPROBE_TYPE_GRID) {
prb->distfalloff += 1.0f;
prb->distgridinf += 1.0f;
2017-06-14 13:45:54 +02:00
}
if (prb->type == LIGHTPROBE_TYPE_GRID ||
2017-10-07 15:57:14 +11:00
prb->attenuation_type == LIGHTPROBE_SHAPE_BOX)
{
DRW_shgroup_call_dynamic_add(stl->g_data->cube, color, &prb->distgridinf, ob->obmat);
DRW_shgroup_call_dynamic_add(stl->g_data->cube, color, &prb->distfalloff, ob->obmat);
}
else if (prb->type == LIGHTPROBE_TYPE_PLANAR) {
float (*rangemat)[4];
rangemat = (float (*)[4])(prb_data->prb_mats[2]);
copy_m4_m4(rangemat, ob->obmat);
normalize_v3(rangemat[2]);
mul_v3_fl(rangemat[2], prb->distinf);
DRW_shgroup_call_dynamic_add(stl->g_data->cube, color, &one, rangemat);
rangemat = (float (*)[4])(prb_data->prb_mats[3]);
copy_m4_m4(rangemat, ob->obmat);
normalize_v3(rangemat[2]);
mul_v3_fl(rangemat[2], prb->distfalloff);
DRW_shgroup_call_dynamic_add(stl->g_data->cube, color, &one, rangemat);
}
else {
DRW_shgroup_call_dynamic_add(stl->g_data->sphere, color, &prb->distgridinf, ob->obmat);
DRW_shgroup_call_dynamic_add(stl->g_data->sphere, color, &prb->distfalloff, ob->obmat);
}
}
if ((prb->flag & LIGHTPROBE_FLAG_SHOW_PARALLAX) != 0) {
if (prb->type != LIGHTPROBE_TYPE_PLANAR) {
float (*obmat)[4], *dist;
if ((prb->flag & LIGHTPROBE_FLAG_CUSTOM_PARALLAX) != 0) {
dist = &prb->distpar;
/* TODO object parallax */
obmat = ob->obmat;
}
else {
dist = &prb->distinf;
obmat = ob->obmat;
}
if (prb->parallax_type == LIGHTPROBE_SHAPE_BOX) {
DRW_shgroup_call_dynamic_add(stl->g_data->cube, color, dist, obmat);
}
else {
DRW_shgroup_call_dynamic_add(stl->g_data->sphere, color, dist, obmat);
}
}
}
if ((prb->flag & LIGHTPROBE_FLAG_SHOW_CLIP_DIST) != 0) {
if (prb->type != LIGHTPROBE_TYPE_PLANAR) {
static const float cubefacemat[6][4][4] = {
{{0.0, 0.0, -1.0, 0.0}, {0.0, -1.0, 0.0, 0.0}, {-1.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 1.0}},
{{0.0, 0.0, 1.0, 0.0}, {0.0, -1.0, 0.0, 0.0}, {1.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 1.0}},
{{1.0, 0.0, 0.0, 0.0}, {0.0, 0.0, -1.0, 0.0}, {0.0, 1.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 1.0}},
{{1.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 1.0, 0.0}, {0.0, -1.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 1.0}},
{{1.0, 0.0, 0.0, 0.0}, {0.0, -1.0, 0.0, 0.0}, {0.0, 0.0, -1.0, 0.0}, {0.0, 0.0, 0.0, 1.0}},
{{-1.0, 0.0, 0.0, 0.0}, {0.0, -1.0, 0.0, 0.0}, {0.0, 0.0, 1.0, 0.0}, {0.0, 0.0, 0.0, 1.0}},
};
for (int i = 0; i < 6; ++i) {
float (*clipmat)[4];
clipmat = (float (*)[4])(prb_data->prb_mats[i]);
normalize_m4_m4(clipmat, ob->obmat);
mul_m4_m4m4(clipmat, clipmat, cubefacemat[i]);
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_buflimit, color, &prb->clipsta, &prb->clipend, clipmat);
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_buflimit_points, color, &prb->clipsta, &prb->clipend, clipmat);
}
}
}
/* Line and point going to the ground */
if (prb->type == LIGHTPROBE_TYPE_CUBE) {
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_groundline, ob->obmat[3]);
DRW_shgroup_call_dynamic_add(stl->g_data->lamp_groundpoint, ob->obmat[3]);
}
2017-06-07 16:00:10 +02:00
}
static void DRW_shgroup_relationship_lines(OBJECT_StorageList *stl, Object *ob)
{
if (ob->parent && DRW_check_object_visible_within_active_context(ob->parent)) {
DRW_shgroup_call_dynamic_add(stl->g_data->relationship_lines, ob->obmat[3]);
DRW_shgroup_call_dynamic_add(stl->g_data->relationship_lines, ob->parent->obmat[3]);
}
}
static void DRW_shgroup_object_center(OBJECT_StorageList *stl, Object *ob, ViewLayer *view_layer, View3D *v3d)
{
const bool is_library = ob->id.us > 1 || ID_IS_LINKED(ob);
DRWShadingGroup *shgroup;
if (ob == OBACT(view_layer)) {
shgroup = stl->g_data->center_active;
}
else if (ob->base_flag & BASE_SELECTED) {
if (is_library) {
shgroup = stl->g_data->center_selected_lib;
}
else {
shgroup = stl->g_data->center_selected;
}
}
else if (v3d->flag & V3D_DRAW_CENTERS) {
if (is_library) {
shgroup = stl->g_data->center_deselected_lib;
}
else {
shgroup = stl->g_data->center_deselected;
}
}
else {
return;
}
DRW_shgroup_call_dynamic_add(shgroup, ob->obmat[3]);
}
static void OBJECT_cache_populate_particles(Object *ob,
OBJECT_PassList *psl)
{
for (ParticleSystem *psys = ob->particlesystem.first; psys; psys = psys->next) {
if (psys_check_enabled(ob, psys, false)) {
ParticleSettings *part = psys->part;
int draw_as = (part->draw_as == PART_DRAW_REND) ? part->ren_as : part->draw_as;
if (draw_as == PART_DRAW_PATH && !psys->pathcache && !psys->childcache) {
draw_as = PART_DRAW_DOT;
}
static float mat[4][4];
unit_m4(mat);
if (draw_as != PART_DRAW_PATH) {
struct Gwn_Batch *geom = DRW_cache_particles_get_dots(psys);
DRWShadingGroup *shgrp = NULL;
static int screen_space[2] = {0, 1};
static float def_prim_col[3] = {0.5f, 0.5f, 0.5f};
static float def_sec_col[3] = {1.0f, 1.0f, 1.0f};
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
/* Dummy particle format for instancing to work. */
DRW_shgroup_instance_format(e_data.particle_format, {{"dummy", DRW_ATTRIB_FLOAT, 1}});
Material *ma = give_current_material(ob, part->omat);
switch (draw_as) {
case PART_DRAW_DOT:
shgrp = DRW_shgroup_create(e_data.part_dot_sh, psl->particle);
DRW_shgroup_uniform_vec3(shgrp, "color", ma ? &ma->r : def_prim_col, 1);
DRW_shgroup_uniform_vec3(shgrp, "outlineColor", ma ? &ma->specr : def_sec_col, 1);
DRW_shgroup_uniform_float(shgrp, "pixel_size", DRW_viewport_pixelsize_get(), 1);
DRW_shgroup_uniform_float(shgrp, "size", &part->draw_size, 1);
DRW_shgroup_uniform_texture(shgrp, "ramp", globals_ramp);
DRW_shgroup_call_add(shgrp, geom, mat);
break;
case PART_DRAW_CROSS:
2017-07-14 16:56:02 +10:00
shgrp = DRW_shgroup_instance_create(
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
e_data.part_prim_sh, psl->particle, DRW_cache_particles_get_prim(PART_DRAW_CROSS),
e_data.particle_format);
DRW_shgroup_uniform_texture(shgrp, "ramp", globals_ramp);
DRW_shgroup_uniform_vec3(shgrp, "color", ma ? &ma->r : def_prim_col, 1);
DRW_shgroup_uniform_int(shgrp, "screen_space", &screen_space[0], 1);
break;
case PART_DRAW_CIRC:
2017-07-14 16:56:02 +10:00
shgrp = DRW_shgroup_instance_create(
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
e_data.part_prim_sh, psl->particle, DRW_cache_particles_get_prim(PART_DRAW_CIRC),
e_data.particle_format);
DRW_shgroup_uniform_texture(shgrp, "ramp", globals_ramp);
DRW_shgroup_uniform_vec3(shgrp, "color", ma ? &ma->r : def_prim_col, 1);
DRW_shgroup_uniform_int(shgrp, "screen_space", &screen_space[1], 1);
break;
case PART_DRAW_AXIS:
2017-07-14 16:56:02 +10:00
shgrp = DRW_shgroup_instance_create(
Gawain: Refactor: VAOs caching AND use new VAOs manager. A major bottleneck of current implementation is the call to create_bindings() for basically every drawcalls. This is due to the VAO being tagged dirty when assigning a new shader to the Batch, defeating the purpose of the Batch (reuse it for drawing). Since managing hundreds of batches in DrawManager and DrawCache seems not fun enough to me, I prefered rewritting the batches itself. --- Batch changes --- For this to happen I needed to change the Instancing to be part of the Batch rather than being another batch supplied at drawtime. The Gwn_VertBuffers are copied from the batch to be instanciated and a new Gwn_VertBuffer is supplied for instancing attribs. This mean a VAO can be generated and cached for this instancing case. A Batch can be rendered with instancing, without instancing attribs and without the need for a new VAO using the GWN_batch_draw_range_ex with the force_instance parameter set to true. --- Draw manager changes --- The downside with this approach is that we must track the validity of the instanced batch (the original one). For this the only way (I could think of) is to set a callback for when the batch is getting free. This means a bit of refactor in the DrawManager with the separation of batching and instancing Batches. --- VAO cache --- Each VAO is generated for a given ShaderInterface. This means we can keep it alive as long as the shader interface lives. If a ShaderInterface is discarded, it needs to destroy every VAO associated to it. Otherwise, a new ShaderInterface with the same adress could be generated and reuse the same VAO with incorrect bindings. The VAO cache itself is using a mix between a static array of VAO and a dynamic array if the is not enough space in the static. Using this hybrid approach is a bit more performant than the dynamic array alone. The array will not resize down but empty entries will be filled up again. It's unlikely we get a buffer overflow from this. Resizing could be done on next allocation if needed. --- Results --- Using Cached VAOs means that we are not querying each vertex attrib for each vbo for each drawcall, every redraw! In a CPU limited test scene (10000 cubes in Clay engine) I get a reduction of CPU drawing time from ~20ms to 13ms. The only area that is not caching VAOs is the instancing from particles (see comment DRW_shgroup_instance_batch).
2018-02-20 01:55:19 +01:00
e_data.part_axis_sh, psl->particle, DRW_cache_particles_get_prim(PART_DRAW_AXIS),
e_data.particle_format);
DRW_shgroup_uniform_int(shgrp, "screen_space", &screen_space[0], 1);
break;
default:
break;
}
if (shgrp) {
if (draw_as != PART_DRAW_DOT) {
DRW_shgroup_uniform_float(shgrp, "draw_size", &part->draw_size, 1);
DRW_shgroup_instance_batch(shgrp, geom);
}
}
}
}
}
}
static void OBJECT_cache_populate(void *vedata, Object *ob)
{
2017-04-27 16:57:11 +10:00
OBJECT_PassList *psl = ((OBJECT_Data *)vedata)->psl;
OBJECT_StorageList *stl = ((OBJECT_Data *)vedata)->stl;
const DRWContextState *draw_ctx = DRW_context_state_get();
ViewLayer *view_layer = draw_ctx->view_layer;
View3D *v3d = draw_ctx->v3d;
int theme_id = TH_UNDEFINED;
/* Handle particles first in case the emitter itself shouldn't be rendered. */
if (ob->type == OB_MESH) {
OBJECT_cache_populate_particles(ob, psl);
}
if (DRW_check_object_visible_within_active_context(ob) == false) {
return;
}
//CollectionEngineSettings *ces_mode_ob = BKE_layer_collection_engine_evaluated_get(ob, COLLECTION_MODE_OBJECT, "");
//bool do_wire = BKE_collection_engine_property_value_get_bool(ces_mode_ob, "show_wire");
bool do_outlines = ((ob->base_flag & BASE_SELECTED) != 0);
if (do_outlines) {
if ((ob != draw_ctx->object_edit) && !((ob == draw_ctx->obact) && (draw_ctx->object_mode & OB_MODE_ALL_PAINT))) {
struct Gwn_Batch *geom = DRW_cache_object_surface_get(ob);
if (geom) {
theme_id = DRW_object_wire_theme_get(ob, view_layer, NULL);
DRWShadingGroup *shgroup = shgroup_theme_id_to_outline_or(stl, theme_id, NULL);
if (shgroup != NULL) {
DRW_shgroup_call_object_add(shgroup, geom, ob);
}
}
}
}
switch (ob->type) {
case OB_MESH:
2017-06-01 02:26:24 +10:00
{
if (ob != draw_ctx->object_edit) {
Mesh *me = ob->data;
if (me->totpoly == 0) {
if (me->totedge == 0) {
struct Gwn_Batch *geom = DRW_cache_mesh_verts_get(ob);
if (geom) {
if (theme_id == TH_UNDEFINED) {
theme_id = DRW_object_wire_theme_get(ob, view_layer, NULL);
}
DRWShadingGroup *shgroup = shgroup_theme_id_to_point_or(stl, theme_id, stl->g_data->points);
DRW_shgroup_call_object_add(shgroup, geom, ob);
}
}
else {
struct Gwn_Batch *geom = DRW_cache_mesh_edges_get(ob);
if (geom) {
if (theme_id == TH_UNDEFINED) {
theme_id = DRW_object_wire_theme_get(ob, view_layer, NULL);
}
DRWShadingGroup *shgroup = shgroup_theme_id_to_wire_or(stl, theme_id, stl->g_data->wire);
DRW_shgroup_call_object_add(shgroup, geom, ob);
2017-06-01 02:26:24 +10:00
}
}
}
}
break;
2017-06-01 02:26:24 +10:00
}
case OB_SURF:
break;
case OB_LATTICE:
{
if (ob != draw_ctx->object_edit) {
struct Gwn_Batch *geom = DRW_cache_lattice_wire_get(ob, false);
if (theme_id == TH_UNDEFINED) {
theme_id = DRW_object_wire_theme_get(ob, view_layer, NULL);
}
DRWShadingGroup *shgroup = shgroup_theme_id_to_wire_or(stl, theme_id, stl->g_data->wire);
DRW_shgroup_call_object_add(shgroup, geom, ob);
}
break;
}
case OB_CURVE:
{
if (ob != draw_ctx->object_edit) {
struct Gwn_Batch *geom = DRW_cache_curve_edge_wire_get(ob);
if (theme_id == TH_UNDEFINED) {
theme_id = DRW_object_wire_theme_get(ob, view_layer, NULL);
}
DRWShadingGroup *shgroup = shgroup_theme_id_to_wire_or(stl, theme_id, stl->g_data->wire);
DRW_shgroup_call_object_add(shgroup, geom, ob);
}
break;
}
case OB_MBALL:
{
if (ob != draw_ctx->object_edit) {
DRW_shgroup_mball_handles(stl, ob, view_layer);
}
break;
}
case OB_LAMP:
DRW_shgroup_lamp(stl, ob, view_layer);
break;
case OB_CAMERA:
DRW_shgroup_camera(stl, ob, view_layer);
2017-03-04 00:09:22 +01:00
break;
case OB_EMPTY:
DRW_shgroup_empty(stl, psl, ob, view_layer);
break;
case OB_SPEAKER:
DRW_shgroup_speaker(stl, ob, view_layer);
break;
case OB_LIGHTPROBE:
DRW_shgroup_lightprobe(stl, psl, ob, view_layer);
2017-06-07 16:00:10 +02:00
break;
case OB_ARMATURE:
{
bArmature *arm = ob->data;
if (arm->edbo == NULL) {
if (DRW_state_is_select() || !DRW_pose_mode_armature(ob, draw_ctx->obact)) {
2017-04-27 16:57:11 +10:00
DRW_shgroup_armature_object(
ob, view_layer, psl->bone_solid, psl->bone_wire, psl->bone_envelope,
stl->g_data->relationship_lines);
2017-04-27 16:57:11 +10:00
}
}
break;
}
default:
break;
}
if (ob->pd && ob->pd->forcefield) {
DRW_shgroup_forcefield(stl, ob, view_layer);
}
/* don't show object extras in set's */
if ((ob->base_flag & (BASE_FROM_SET | BASE_FROMDUPLI)) == 0) {
DRW_shgroup_object_center(stl, ob, view_layer, v3d);
DRW_shgroup_relationship_lines(stl, ob);
if ((ob->dtx & OB_DRAWNAME) && DRW_state_show_text()) {
struct DRWTextStore *dt = DRW_text_cache_ensure();
if (theme_id == TH_UNDEFINED) {
theme_id = DRW_object_wire_theme_get(ob, view_layer, NULL);
}
unsigned char color[4];
UI_GetThemeColor4ubv(theme_id, color);
DRW_text_cache_add(
dt, ob->obmat[3],
ob->id.name + 2, strlen(ob->id.name + 2),
10, DRW_TEXT_CACHE_GLOBALSPACE | DRW_TEXT_CACHE_STRING_PTR, color);
}
}
}
static void OBJECT_draw_scene(void *vedata)
{
OBJECT_PassList *psl = ((OBJECT_Data *)vedata)->psl;
OBJECT_StorageList *stl = ((OBJECT_Data *)vedata)->stl;
OBJECT_FramebufferList *fbl = ((OBJECT_Data *)vedata)->fbl;
DefaultFramebufferList *dfbl = DRW_viewport_framebuffer_list_get();
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
float clearcol[4] = {0.0f, 0.0f, 0.0f, 0.0f};
if (DRW_state_is_fbo()) {
DRW_stats_group_start("Outlines");
/* attach temp textures */
DRW_framebuffer_texture_attach(fbl->outlines, e_data.outlines_depth_tx, 0, 0);
DRW_framebuffer_texture_attach(fbl->outlines, e_data.outlines_color_tx, 0, 0);
DRW_framebuffer_texture_attach(fbl->blur, e_data.outlines_blur_tx, 0, 0);
/* Render filled polygon on a separate framebuffer */
DRW_framebuffer_bind(fbl->outlines);
DRW_framebuffer_clear(true, true, false, clearcol, 1.0f);
DRW_draw_pass(psl->outlines);
DRW_draw_pass(psl->lightprobes);
/* detach textures */
DRW_framebuffer_texture_detach(e_data.outlines_depth_tx);
/* Search outline pixels */
DRW_framebuffer_bind(fbl->blur);
DRW_draw_pass(psl->outlines_search);
/* Expand outline to form a 3px wide line */
DRW_framebuffer_bind(fbl->outlines);
DRW_draw_pass(psl->outlines_expand);
/* Bleed color so the AA can do it's stuff */
DRW_framebuffer_bind(fbl->blur);
DRW_draw_pass(psl->outlines_bleed);
/* detach temp textures */
DRW_framebuffer_texture_detach(e_data.outlines_color_tx);
DRW_framebuffer_texture_detach(e_data.outlines_blur_tx);
/* restore main framebuffer */
DRW_framebuffer_bind(dfbl->default_fb);
DRW_stats_group_end();
}
else if (DRW_state_is_select()) {
/* Render probes spheres/planes so we can select them. */
DRW_draw_pass(psl->lightprobes);
}
MULTISAMPLE_SYNC_ENABLE(dfbl)
/* This needs to be drawn after the oultine */
// DRW_draw_pass(psl->bone_envelope); /* Never drawn in Object mode currently. */
DRW_draw_pass(psl->bone_wire);
DRW_draw_pass(psl->bone_solid);
DRW_draw_pass(psl->non_meshes);
2017-05-19 18:32:40 +02:00
DRW_draw_pass(psl->particle);
DRW_draw_pass(psl->reference_image);
MULTISAMPLE_SYNC_DISABLE(dfbl)
DRW_draw_pass(psl->ob_center);
if (DRW_state_is_fbo()) {
2017-05-27 21:28:29 +02:00
if (e_data.draw_grid) {
DRW_framebuffer_texture_detach(dtxl->depth);
2017-05-27 21:28:29 +02:00
DRW_draw_pass(psl->grid);
DRW_framebuffer_texture_attach(dfbl->default_fb, dtxl->depth, 0, 0);
2017-05-27 21:28:29 +02:00
}
/* Combine with scene buffer last */
DRW_draw_pass(psl->outlines_resolve);
}
/* This has to be freed only after drawing empties! */
if (stl->g_data->image_plane_map) {
BLI_ghash_free(stl->g_data->image_plane_map, NULL, MEM_freeN);
}
}
void OBJECT_collection_settings_create(IDProperty *props)
{
BLI_assert(props &&
props->type == IDP_GROUP &&
props->subtype == IDP_GROUP_SUB_MODE_OBJECT);
BKE_collection_engine_property_add_int(props, "show_wire", false);
BKE_collection_engine_property_add_int(props, "show_backface_culling", false);
}
static const DrawEngineDataSize OBJECT_data_size = DRW_VIEWPORT_DATA_SIZE(OBJECT_Data);
DrawEngineType draw_engine_object_type = {
NULL, NULL,
N_("ObjectMode"),
&OBJECT_data_size,
&OBJECT_engine_init,
&OBJECT_engine_free,
&OBJECT_cache_init,
&OBJECT_cache_populate,
NULL,
NULL,
&OBJECT_draw_scene,
NULL,
NULL,
};