This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/collision.c

1681 lines
45 KiB
C
Raw Normal View History

/* collision.c
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "MEM_guardedalloc.h"
#include "BKE_cloth.h"
#include "DNA_cloth_types.h"
#include "DNA_group_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_scene_types.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
2009-09-30 21:31:08 +00:00
#ifdef USE_BULLET
#include "Bullet-C-Api.h"
2009-09-30 21:31:08 +00:00
#endif
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object ( CollisionModifierData *collmd, float step, float prevstep )
{
float tv[3] = {0,0,0};
unsigned int i = 0;
for ( i = 0; i < collmd->numverts; i++ )
{
VECSUB ( tv, collmd->xnew[i].co, collmd->x[i].co );
VECADDS ( collmd->current_x[i].co, collmd->x[i].co, tv, prevstep );
VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
VECSUB ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
}
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
}
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon )
{
BVHTree *tree;
float co[12];
int i;
MFace *tface = mfaces;
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
// fill tree
for ( i = 0; i < numfaces; i++, tface++ )
{
VECCOPY ( &co[0*3], x[tface->v1].co );
VECCOPY ( &co[1*3], x[tface->v2].co );
VECCOPY ( &co[2*3], x[tface->v3].co );
if ( tface->v4 )
VECCOPY ( &co[3*3], x[tface->v4].co );
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
}
// balance tree
BLI_bvhtree_balance ( tree );
return tree;
}
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int numverts, int moving )
{
int i;
MFace *mfaces = faces;
float co[12], co_moving[12];
int ret = 0;
if ( !bvhtree )
return;
if ( x )
{
for ( i = 0; i < numfaces; i++, mfaces++ )
{
VECCOPY ( &co[0*3], x[mfaces->v1].co );
VECCOPY ( &co[1*3], x[mfaces->v2].co );
VECCOPY ( &co[2*3], x[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co[3*3], x[mfaces->v4].co );
// copy new locations into array
if ( moving && xnew )
{
// update moving positions
VECCOPY ( &co_moving[0*3], xnew[mfaces->v1].co );
VECCOPY ( &co_moving[1*3], xnew[mfaces->v2].co );
VECCOPY ( &co_moving[2*3], xnew[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co_moving[3*3], xnew[mfaces->v4].co );
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
}
else
{
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
}
// check if tree is already full
if ( !ret )
break;
}
BLI_bvhtree_update_tree ( bvhtree );
}
}
/***********************************
Collision modifier code end
***********************************/
/**
* gsl_poly_solve_cubic -
*
* copied from SOLVE_CUBIC.C --> GSL
*/
#define mySWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
int
gsl_poly_solve_cubic (double a, double b, double c,
double *x0, double *x1, double *x2)
{
double q = (a * a - 3 * b);
double r = (2 * a * a * a - 9 * a * b + 27 * c);
double Q = q / 9;
double R = r / 54;
double Q3 = Q * Q * Q;
double R2 = R * R;
double CR2 = 729 * r * r;
double CQ3 = 2916 * q * q * q;
if (R == 0 && Q == 0)
{
*x0 = - a / 3 ;
*x1 = - a / 3 ;
*x2 = - a / 3 ;
return 3 ;
}
else if (CR2 == CQ3)
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
/* Due to finite precision some double roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
double sqrtQ = sqrt (Q);
if (R > 0)
{
*x0 = -2 * sqrtQ - a / 3;
*x1 = sqrtQ - a / 3;
*x2 = sqrtQ - a / 3;
}
else
{
*x0 = - sqrtQ - a / 3;
*x1 = - sqrtQ - a / 3;
*x2 = 2 * sqrtQ - a / 3;
}
return 3 ;
}
else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
{
double sqrtQ = sqrt (Q);
double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
double theta = acos (R / sqrtQ3);
double norm = -2 * sqrtQ;
*x0 = norm * cos (theta / 3) - a / 3;
*x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
*x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
/* Sort *x0, *x1, *x2 into increasing order */
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
if (*x1 > *x2)
{
mySWAP(*x1, *x2) ;
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
}
return 3;
}
else
{
double sgnR = (R >= 0 ? 1 : -1);
double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
double B = Q / A ;
*x0 = A + B - a / 3;
return 1;
}
}
/**
* gsl_poly_solve_quadratic
*
* copied from GSL
*/
int
gsl_poly_solve_quadratic (double a, double b, double c,
double *x0, double *x1)
{
double disc = b * b - 4 * a * c;
if (a == 0) /* Handle linear case */
{
if (b == 0)
{
return 0;
}
else
{
*x0 = -c / b;
return 1;
};
}
if (disc > 0)
{
if (b == 0)
{
double r = fabs (0.5 * sqrt (disc) / a);
*x0 = -r;
*x1 = r;
}
else
{
double sgnb = (b > 0 ? 1 : -1);
double temp = -0.5 * (b + sgnb * sqrt (disc));
double r1 = temp / a ;
double r2 = c / temp ;
if (r1 < r2)
{
*x0 = r1 ;
*x1 = r2 ;
}
else
{
*x0 = r2 ;
*x1 = r1 ;
}
}
return 2;
}
else if (disc == 0)
{
*x0 = -0.5 * b / a ;
*x1 = -0.5 * b / a ;
return 2 ;
}
else
{
return 0;
}
}
/*
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
* page 4, left column
*/
static int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
{
int num_sols = 0;
// x^0 - checked
double g = a[0] * c[1] * e[2] - a[0] * c[2] * e[1] +
a[1] * c[2] * e[0] - a[1] * c[0] * e[2] +
a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
// x^1
double h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
// x^2
double i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
b[2] * c[0] * f[1] - b[0] * c[2] * f[1] +
a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
// x^3 - checked
double j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
/*
printf("r1: %lf\n", a[0] * c[1] * e[2] - a[0] * c[2] * e[1]);
printf("r2: %lf\n", a[1] * c[2] * e[0] - a[1] * c[0] * e[2]);
printf("r3: %lf\n", a[2] * c[0] * e[1] - a[2] * c[1] * e[0]);
printf("x1 x: %f, y: %f, z: %f\n", a[0], a[1], a[2]);
printf("x2 x: %f, y: %f, z: %f\n", c[0], c[1], c[2]);
printf("x3 x: %f, y: %f, z: %f\n", e[0], e[1], e[2]);
printf("v1 x: %f, y: %f, z: %f\n", b[0], b[1], b[2]);
printf("v2 x: %f, y: %f, z: %f\n", d[0], d[1], d[2]);
printf("v3 x: %f, y: %f, z: %f\n", f[0], f[1], f[2]);
printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
*/
// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
if ( ABS ( j ) > DBL_EPSILON )
{
i /= j;
h /= j;
g /= j;
num_sols = gsl_poly_solve_cubic ( i, h, g, &solution[0], &solution[1], &solution[2] );
}
else
{
num_sols = gsl_poly_solve_quadratic ( i, h, g, &solution[0], &solution[1] );
solution[2] = -1.0;
}
// printf("num_sols: %d, sol1: %lf, sol2: %lf, sol3: %lf\n", num_sols, solution[0], solution[1], solution[2]);
// Discard negative solutions
if ( ( num_sols >= 1 ) && ( solution[0] < DBL_EPSILON ) )
{
--num_sols;
solution[0] = solution[num_sols];
}
if ( ( num_sols >= 2 ) && ( solution[1] < DBL_EPSILON ) )
{
--num_sols;
solution[1] = solution[num_sols];
}
if ( ( num_sols == 3 ) && ( solution[2] < DBL_EPSILON ) )
{
--num_sols;
}
// Sort
if ( num_sols == 2 )
{
if ( solution[0] > solution[1] )
{
double tmp = solution[0];
solution[0] = solution[1];
solution[1] = tmp;
}
}
else if ( num_sols == 3 )
{
// Bubblesort
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
if ( solution[1] > solution[2] )
{
double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
}
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
}
return num_sols;
}
// w3 is not perfect
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
double tempV1[3], tempV2[3], tempV4[3];
double a,b,c,d,e,f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
if ( ABS ( d ) < ALMOST_ZERO )
{
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
}
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
to[0] = to[1] = to[2] = 0;
VECADDMUL ( to, v1, w1 );
VECADDMUL ( to, v2, w2 );
VECADDMUL ( to, v3, w3 );
}
int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle static collisions here
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
VecMulf ( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
Normalize ( vrel_t_pre );
impulse = magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // 2.0 *
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
result = 1;
}
}
return result;
}
//Determines collisions on overlap, collisions are writen to collpair[i] and collision+number_collision_found is returned
CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap, CollPair *collpair )
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
MFace *face1=NULL, *face2 = NULL;
#ifdef USE_BULLET
ClothVertex *verts1 = clmd->clothObject->verts;
#endif
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
int i;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else
i++;
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
#ifdef USE_BULLET
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * ( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
if ( distance <= ( epsilon1 + epsilon2 + ALMOST_ZERO ) )
{
VECCOPY ( collpair->normal, collpair->vector );
Normalize ( collpair->normal );
collpair->distance = distance;
collpair->flag = 0;
2008-06-05 10:52:52 +00:00
collpair++;
}/*
else
{
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
// calc relative velocity
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
verts1[collpair->ap1].txold,
verts1[collpair->ap2].txold,
verts1[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
if(sqrt(INPR(relativeVelocity, relativeVelocity)) >= distance)
{
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
2008-06-05 10:52:52 +00:00
collpair++;
}
2008-06-05 10:52:52 +00:00
}*/
}
return collpair;
}
static int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
VecMulf ( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
Normalize ( vrel_t_pre );
impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
/*
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
*/
result = 1;
}
}
return result;
}
static float projectPointOntoLine(float *p, float *a, float *b)
{
float ba[3], pa[3];
VECSUB(ba, b, a);
VECSUB(pa, p, a);
return INPR(pa, ba) / INPR(ba, ba);
}
static void calculateEENormal(float *np1, float *np2, float *np3, float *np4,float *out_normal)
{
float line1[3], line2[3];
float length;
VECSUB(line1, np2, np1);
VECSUB(line2, np3, np1);
// printf("l1: %f, l1: %f, l2: %f, l2: %f\n", line1[0], line1[1], line2[0], line2[1]);
Crossf(out_normal, line1, line2);
length = Normalize(out_normal);
if (length <= FLT_EPSILON)
{ // lines are collinear
VECSUB(out_normal, np2, np1);
Normalize(out_normal);
}
}
static void findClosestPointsEE(float *x1, float *x2, float *x3, float *x4, float *w1, float *w2)
{
float temp[3], temp2[3];
double a, b, c, e, f;
VECSUB(temp, x2, x1);
a = INPR(temp, temp);
VECSUB(temp2, x4, x3);
b = -INPR(temp, temp2);
c = INPR(temp2, temp2);
VECSUB(temp2, x3, x1);
e = INPR(temp, temp2);
VECSUB(temp, x4, x3);
f = -INPR(temp, temp2);
*w1 = (e * c - b * f) / (a * c - b * b);
*w2 = (f - b * *w1) / c;
}
// calculates the distance of 2 edges
static float edgedge_distance(float np11[3], float np12[3], float np21[3], float np22[3], float *out_a1, float *out_a2, float *out_normal)
{
float line1[3], line2[3], cross[3];
float length;
float temp[3], temp2[3];
float dist_a1, dist_a2;
VECSUB(line1, np12, np11);
VECSUB(line2, np22, np21);
Crossf(cross, line1, line2);
length = INPR(cross, cross);
if (length < FLT_EPSILON)
{
*out_a2 = projectPointOntoLine(np11, np21, np22);
if ((*out_a2 >= -FLT_EPSILON) && (*out_a2 <= 1.0 + FLT_EPSILON))
{
*out_a1 = 0;
calculateEENormal(np11, np12, np21, np22, out_normal);
VECSUB(temp, np22, np21);
VecMulf(temp, *out_a2);
VECADD(temp2, temp, np21);
VECADD(temp2, temp2, np11);
return INPR(temp2, temp2);
}
CLAMP(*out_a2, 0.0, 1.0);
if (*out_a2 > .5)
{ // == 1.0
*out_a1 = projectPointOntoLine(np22, np11, np12);
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
{
calculateEENormal(np11, np12, np21, np22, out_normal);
// return (np22 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
VECSUB(temp, np12, np11);
VecMulf(temp, *out_a1);
VECADD(temp2, temp, np11);
VECSUB(temp2, np22, temp2);
return INPR(temp2, temp2);
}
}
else
{ // == 0.0
*out_a1 = projectPointOntoLine(np21, np11, np12);
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
{
calculateEENormal(np11, np11, np21, np22, out_normal);
// return (np21 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
VECSUB(temp, np12, np11);
VecMulf(temp, *out_a1);
VECADD(temp2, temp, np11);
VECSUB(temp2, np21, temp2);
return INPR(temp2, temp2);
}
}
CLAMP(*out_a1, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
if(*out_a1 > .5)
{
if(*out_a2 > .5)
{
VECSUB(temp, np12, np22);
}
else
{
VECSUB(temp, np12, np21);
}
}
else
{
if(*out_a2 > .5)
{
VECSUB(temp, np11, np22);
}
else
{
VECSUB(temp, np11, np21);
}
}
return INPR(temp, temp);
}
else
{
// If the lines aren't parallel (but coplanar) they have to intersect
findClosestPointsEE(np11, np12, np21, np22, out_a1, out_a2);
// If both points are on the finite edges, we're done.
if (*out_a1 >= 0.0 && *out_a1 <= 1.0 && *out_a2 >= 0.0 && *out_a2 <= 1.0)
{
float p1[3], p2[3];
// p1= np11 + (np12 - np11) * out_a1;
VECSUB(temp, np12, np11);
VecMulf(temp, *out_a1);
VECADD(p1, np11, temp);
// p2 = np21 + (np22 - np21) * out_a2;
VECSUB(temp, np22, np21);
VecMulf(temp, *out_a2);
VECADD(p2, np21, temp);
calculateEENormal(np11, np12, np21, np22, out_normal);
VECSUB(temp, p1, p2);
return INPR(temp, temp);
}
/*
* Clamp both points to the finite edges.
* The one that moves most during clamping is one part of the solution.
*/
dist_a1 = *out_a1;
CLAMP(dist_a1, 0.0, 1.0);
dist_a2 = *out_a2;
CLAMP(dist_a2, 0.0, 1.0);
// Now project the "most clamped" point on the other line.
if (dist_a1 > dist_a2)
{
/* keep out_a1 */
float p1[3];
// p1 = np11 + (np12 - np11) * out_a1;
VECSUB(temp, np12, np11);
VecMulf(temp, *out_a1);
VECADD(p1, np11, temp);
*out_a2 = projectPointOntoLine(p1, np21, np22);
CLAMP(*out_a2, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
// return (p1 - (np21 + (np22 - np21) * out_a2)).lengthSquared();
VECSUB(temp, np22, np21);
VecMulf(temp, *out_a2);
VECADD(temp, temp, np21);
VECSUB(temp, p1, temp);
return INPR(temp, temp);
}
else
{
/* keep out_a2 */
float p2[3];
// p2 = np21 + (np22 - np21) * out_a2;
VECSUB(temp, np22, np21);
VecMulf(temp, *out_a2);
VECADD(p2, np21, temp);
*out_a1 = projectPointOntoLine(p2, np11, np12);
CLAMP(*out_a1, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
// return ((np11 + (np12 - np11) * out_a1) - p2).lengthSquared();
VECSUB(temp, np12, np11);
VecMulf(temp, *out_a1);
VECADD(temp, temp, np11);
VECSUB(temp, temp, p2);
return INPR(temp, temp);
}
}
printf("Error in edgedge_distance: end of function\n");
return 0;
}
static int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
{
EdgeCollPair edgecollpair;
Cloth *cloth1=NULL;
ClothVertex *verts1=NULL;
unsigned int i = 0, k = 0;
int numsolutions = 0;
double x1[3], v1[3], x2[3], v2[3], x3[3], v3[3];
double solution[3], solution2[3];
MVert *verts2 = collmd->current_x; // old x
MVert *velocity2 = collmd->current_v; // velocity
float distance = 0;
float triA[3][3], triB[3][3];
int result = 0;
cloth1 = clmd->clothObject;
verts1 = cloth1->verts;
for(i = 0; i < 9; i++)
{
// 9 edge - edge possibilities
if(i == 0) // cloth edge: 1-2; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 1) // cloth edge: 1-2; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 2) // cloth edge: 1-2; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 3) // cloth edge: 2-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 4) // cloth edge: 2-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 5) // cloth edge: 2-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i ==6) // cloth edge: 1-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i ==7) // cloth edge: 1-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 8) // cloth edge: 1-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
/*
if((edgecollpair.p11 == 3) && (edgecollpair.p12 == 16))
printf("Ahier!\n");
if((edgecollpair.p11 == 16) && (edgecollpair.p12 == 3))
printf("Ahier!\n");
*/
// if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
{
// always put coll points in p21/p22
VECSUB ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
VECSUB ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
VECSUB ( x2, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
VECSUB ( v2, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
VECSUB ( x3, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
VECSUB ( v3, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].tv );
numsolutions = cloth_get_collision_time ( x1, v1, x2, v2, x3, v3, solution );
if((edgecollpair.p11 == 3 && edgecollpair.p12==16)|| (edgecollpair.p11==16 && edgecollpair.p12==3))
{
if(edgecollpair.p21==6 || edgecollpair.p22 == 6)
{
printf("dist: %f, sol[k]: %lf, sol2[k]: %lf\n", distance, solution[k], solution2[k]);
printf("a1: %f, a2: %f, b1: %f, b2: %f\n", x1[0], x2[0], x3[0], v1[0]);
printf("b21: %d, b22: %d\n", edgecollpair.p21, edgecollpair.p22);
}
}
for ( k = 0; k < numsolutions; k++ )
{
// printf("sol %d: %lf\n", k, solution[k]);
if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) && ( solution[k] > ALMOST_ZERO))
{
float a,b;
float out_normal[3];
float distance;
float impulse = 0;
float I_mag;
// move verts
VECADDS(triA[0], verts1[edgecollpair.p11].txold, verts1[edgecollpair.p11].tv, solution[k]);
VECADDS(triA[1], verts1[edgecollpair.p12].txold, verts1[edgecollpair.p12].tv, solution[k]);
VECADDS(triB[0], collmd->current_x[edgecollpair.p21].co, collmd->current_v[edgecollpair.p21].co, solution[k]);
VECADDS(triB[1], collmd->current_x[edgecollpair.p22].co, collmd->current_v[edgecollpair.p22].co, solution[k]);
// TODO: check for collisions
distance = edgedge_distance(triA[0], triA[1], triB[0], triB[1], &a, &b, out_normal);
if ((distance <= clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO) && (INPR(out_normal, out_normal) > 0))
{
float vrel_1_to_2[3], temp[3], temp2[3], out_normalVelocity;
float desiredVn;
VECCOPY(vrel_1_to_2, verts1[edgecollpair.p11].tv);
VecMulf(vrel_1_to_2, 1.0 - a);
VECCOPY(temp, verts1[edgecollpair.p12].tv);
VecMulf(temp, a);
VECADD(vrel_1_to_2, vrel_1_to_2, temp);
VECCOPY(temp, verts1[edgecollpair.p21].tv);
VecMulf(temp, 1.0 - b);
VECCOPY(temp2, verts1[edgecollpair.p22].tv);
VecMulf(temp2, b);
VECADD(temp, temp, temp2);
VECSUB(vrel_1_to_2, vrel_1_to_2, temp);
out_normalVelocity = INPR(vrel_1_to_2, out_normal);
/*
// this correction results in wrong normals sometimes?
if(out_normalVelocity < 0.0)
{
out_normalVelocity*= -1.0;
VecNegf(out_normal);
}
*/
/* Inelastic repulsion impulse. */
// Calculate which normal velocity we need.
desiredVn = (out_normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(distance)) - ALMOST_ZERO);
// Now calculate what impulse we need to reach that velocity.
I_mag = (out_normalVelocity - desiredVn) / 2.0; // / (1/m1 + 1/m2);
// Finally apply that impulse.
impulse = (2.0 * -I_mag) / (a*a + (1.0-a)*(1.0-a) + b*b + (1.0-b)*(1.0-b));
VECADDMUL ( verts1[edgecollpair.p11].impulse, out_normal, (1.0-a) * impulse );
verts1[edgecollpair.p11].impulse_count++;
VECADDMUL ( verts1[edgecollpair.p12].impulse, out_normal, a * impulse );
verts1[edgecollpair.p12].impulse_count++;
// return true;
result = 1;
break;
}
else
{
// missing from collision.hpp
}
// mintime = MIN2(mintime, (float)solution[k]);
break;
}
}
}
}
return result;
}
static int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
Cloth *cloth1;
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle moving collisions here
if (!( collpair->flag & COLLISION_IN_FUTURE ))
continue;
cloth_collision_moving_edges ( clmd, collmd, collpair);
// cloth_collision_moving_tris ( clmd, collmd, collpair);
}
return 1;
}
// return all collision objects in scene
// collision object will exclude self
Object **get_collisionobjects(Scene *scene, Object *self, int *numcollobj)
{
Base *base=NULL;
Object **objs = NULL;
Object *coll_ob = NULL;
CollisionModifierData *collmd = NULL;
int numobj = 0, maxobj = 100;
objs = MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
// check all collision objects
for ( base = scene->base.first; base; base = base->next )
{
2008-09-29 14:20:27 +00:00
/*Only proceed for mesh object in same layer */
if(!(base->object->type==OB_MESH && (base->lay & self->lay)))
continue;
coll_ob = base->object;
if(coll_ob == self)
continue;
if(coll_ob->pd && coll_ob->pd->deflect)
{
collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
}
else
collmd = NULL;
if ( collmd )
{
if(numobj >= maxobj)
{
// realloc
int oldmax = maxobj;
Object **tmp;
maxobj *= 2;
tmp = MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
memcpy(tmp, objs, sizeof(Object *)*oldmax);
MEM_freeN(objs);
objs = tmp;
}
objs[numobj] = coll_ob;
numobj++;
}
else
{
if ( coll_ob->dup_group )
{
GroupObject *go;
Group *group = coll_ob->dup_group;
for ( go= group->gobject.first; go; go= go->next )
{
coll_ob = go->ob;
collmd = NULL;
if(coll_ob == self)
continue;
if(coll_ob->pd && coll_ob->pd->deflect)
{
collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
}
else
collmd = NULL;
if ( !collmd )
continue;
if( !collmd->bvhtree)
continue;
if(numobj >= maxobj)
{
// realloc
int oldmax = maxobj;
Object **tmp;
maxobj *= 2;
tmp = MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
memcpy(tmp, objs, sizeof(Object *)*oldmax);
MEM_freeN(objs);
objs = tmp;
}
objs[numobj] = coll_ob;
numobj++;
}
}
}
}
*numcollobj = numobj;
return objs;
}
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap)
{
int i;
*collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 4, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
*collisions_index = *collisions;
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, overlap+i, *collisions_index );
}
}
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
{
Cloth *cloth = clmd->clothObject;
int i=0, j = 0, numfaces = 0, numverts = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
float tnull[3] = {0,0,0};
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
{
result = 0;
if ( collmd->bvhtree )
{
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
if ( result )
{
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if ( verts[i].impulse_count )
{
VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECCOPY ( verts[i].impulse, tnull );
verts[i].impulse_count = 0;
ret++;
}
}
}
}
}
return ret;
}
// cloth - object collisions
int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, float dt )
{
Cloth *cloth=NULL;
BVHTree *cloth_bvh=NULL;
int i=0, numfaces = 0, numverts = 0, k, l, j;
int rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
int numcollobj = 0;
if ( ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ ) || ! ( ( ( Cloth * ) clmd->clothObject )->bvhtree ) )
{
return 0;
}
cloth = clmd->clothObject;
verts = cloth->verts;
cloth_bvh = ( BVHTree * ) cloth->bvhtree;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
collobjs = get_collisionobjects(clmd->scene, ob, &numcollobj);
if(!collobjs)
return 0;
do
{
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
// check all collision objects
for(i = 0; i < numcollobj; i++)
{
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
int result = 0;
if(!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
// go to next object if no overlap is there
if(!result || !overlap)
{
if ( overlap )
MEM_freeN ( overlap );
continue;
}
/* check if collisions really happen (costly near check) */
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i], &collisions_index[i], result, overlap);
// resolve nearby collisions
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
ret2 += ret;
if ( overlap )
MEM_freeN ( overlap );
}
rounds++;
for(i = 0; i < numcollobj; i++)
{
if ( collisions[i] ) MEM_freeN ( collisions[i] );
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for ( i = 0; i < numverts; i++ )
{
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
{
for(l = 0; l < clmd->coll_parms->self_loop_count; l++)
{
// TODO: add coll quality rounds again
BVHTreeOverlap *overlap = NULL;
int result = 0;
// collisions = 1;
verts = cloth->verts; // needed for openMP
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
if ( cloth->bvhselftree )
{
// search for overlapping collision pairs
overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
// #pragma omp parallel for private(k, i, j) schedule(static)
for ( k = 0; k < result; k++ )
{
float temp[3];
float length = 0;
float mindistance;
i = overlap[k].indexA;
j = overlap[k].indexB;
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
VECSUB ( temp, verts[i].tx, verts[j].tx );
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
// check for adjacent points (i must be smaller j)
if ( BLI_edgehash_haskey ( cloth->edgehash, MIN2(i, j), MAX2(i, j) ) )
{
continue;
}
length = Normalize ( temp );
if ( length < mindistance )
{
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, -correction );
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, correction );
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else
{
VecMulf ( temp, -correction*0.5 );
VECADD ( verts[j].tx, verts[j].tx, temp );
VECSUB ( verts[i].tx, verts[i].tx, temp );
}
ret = 1;
ret2 += ret;
}
else
{
// check for approximated time collisions
}
}
if ( overlap )
MEM_freeN ( overlap );
}
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if ( ret2 )
{
for ( i = 0; i < cloth->numverts; i++ )
{
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
{
VECSUB ( verts[i].tv, verts[i].tx, verts[i].txold );
}
}
}
////////////////////////////////////////////////////////////
}
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if(collobjs)
MEM_freeN(collobjs);
return MIN2 ( ret, 1 );
}